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1. Introduction: motivations for studying self-similar solutions

e Role of near-identity transformation underlying
source-type self-similar solutions

e (GGenerating equation that determines the near-identity

e Exemplify with the hypoviscous Burgers equation

e Non-zero energy dissipation for it 7



2. Standard Burgers equation (review)
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Hopf's proof: The final form is given as is without any reason.
Cole’s proof: Derived it based on scale-invariance,
urging us to go for the velocity potential ¢



Burgers equation —|— O%u
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scale invariance x — A\x,t — )\Qt,u —~ At

If u(z,t) is a solution, so is uy(z,t) = Au(Az, A\2t), YA > 0.
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scale invariance z — A\x,t — \%t, & — A%

If ¢(z,t) is a solution, so is ¢y (z,t) = A0z, \2t).
Type 1 critical scale-invariance: physical dimension [¢] = [v] = [LTQ]
Cole suspected u(x,t) = F(0(x,t)) for some F', and he was right.

4



Dynamic scaling
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Aside: an alternative look at type 2 scale-invariance
Linearised solutions
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Recall Af(Ax) - Mé(x), as A\ — oo, M = [ fdzx.
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Repeat Cole’s argument after dynamic scaling
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Assume d(s) = Cf(s) for If, s E/O exp( 61277 )dn,
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14
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Plug them into Y = vUg + agU
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f is a near-identity, i.e. f(s) ~ s for large v
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Near-Gaussian form U(§) = >

e.g. Liu and Pierre (1984), Escobedo and Zuazua (1991)

Source-type solution wu(x,t) 1 U —= (t 0)
- u\xr =  —
7 Vv 22at V2at)’

im0 \/—U( ) = Més()

IImt_>oot Hu(x t) — ( gat)” =0, for uge L1,1 <p<
p
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Small deviation from the Gaussian tells us how to handle more general

solutions
C /€ an?
U= —200: 10 1——/ exp [~ ) 4
voe g( 2v J0 p( 21/) 77)

What can we learn if we do the same for other equations, hypoviscous
Burgers, SQG & Navier-Stokes 7



3. Hypoviscous Burgers equation

Well-posedness: Kiselev, Nazarov & Shterenberg (2008)

scale invariance z — \x,t — A\t,u — \u

If u(z,t) is a solution, so is uy(z,t) = Au(Az, \t)
Type 1 critical scale-invariance: physical dimension [u] = [V/] = [%]

Ow 2 /
—w* — VN
ot tu 8m womrae

scale invariance x= — Az,t — \t,w — A 1w

If w(x,t) is a solution, so is wy(x,t) = Aw(Ax, At)
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Linearised solutions Poisson kernel (analogue of 'heat kernel’)
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Dynamic scaling
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Linearised solutions: scaled form
M p

lim W, r) = P24 2

T—00
where p =v'/a, M = [wdx
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cf. After dynamic scaling
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cf. Different scaling adopted under different BCs, Iwabuchi(2015)
12



Self-similar profile W (¢) = lim;—oo W (£, 7)

Put Wr =0, (UW)e = —V'AW 4 a(EW)e.

EW — pH[W] = tuw  (¥)

If the nonlinear term is neglected

EW — uH[W] = 0.

To leading-order
XX H
€2 + p2
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Assume U(€) = Cf().W(€) = O jr‘ (5). s = tan_lé
UW = -V H[W] + aéW
C ff/ § / I /
- — — H
BECET T [SQ—I—uQ‘f]’
c ff p / B
or Pz 2 = H [52 +M2] ff—H LQ _I_sz] , (a commutator)

Rfgcos®s = K[1]lg — K|[g]|,g = f': generating equation forf(s)(= s),

K[1] = cosssins

C 1 ™/2 "ds'
where R = —, K|g] = —p.v./ 9(s')ds ,
v 7'(' —n/2tans —tans/
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cf.

N | =

g = f’ for standard Burgers



Successive approximation

1
ffr/l—l-l — K[1] (K[flz] + R fuf), cos? 3) (n=1,2,...)
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f5=14 Rscots

Jscotsds =s— "G5 — 555 — g5 — ---» 18| <, & elementary functions
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Lifting (standard Burgers equation)
—~ 2
Step 1. Assume ®(¢) =Cf(s),s =P = fg exp (—%)

—~

U(€) = F(P(); 9:P(€)) =

1
1 -5

U(&) is a near-identity transformation of 8§$(§).

Reverting to the original variables, a particular solution is

I S S o~ = 1 85(1)(\/%)
a0 = 752 (* (7)o@ (Vam) ) = v 35
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Step 2. Replacing the self-similar heat flow with the general one,

1 - -
u(x,t) = \/%F (qb (z,t); V2ator¢ (x, t))
N n 8$$(337 t)
— F CU, 1 aCC x? = ~ 9
(6 (2,) ; 0 (2, 1)) ey

where

T S L (z —y)?
¢($, t) - m oo Qb(g, O) exp <_ At > dy



Lifting (Hypoviscous Burgers equation)
Step 1. Assume that U(¢) = Cf(s), s(=U) =tan~1&

W(©) =Cr'(9)g jj 5 =FU©:90(©)

W (¢) is a near-identity transformation of 9:U ().
Reverting to the original variables, a particular solution is

wte) = 5 (0(5)20 (7))

Step 2. Replacing the self-similar Poisson flow with the general one,

w(x,t) = %F (u (xz,t); atozu (x,t))

= F(u(x,t);0.u(z,t)) = f'(a(z,t)) Ost (z,t)

uo(y)dy
y)? + (V'1)?

R vt
where u(x,t) = /
) (@ - 17



4. Summary and outlook

e Self-similar solution to the hypoviscous Burgers equation

e A generating equation for the near-identity f(-) is derived.
(Integrable by the Poisson kernel.)

e [ he second-order approximation is worked out, but turns out to
be poorly accurate.

e Better approximations is to be sought.
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e Applications to other equations (SQG, Navier-Stokes).

e Energy dissipation rate for the hypoviscous Burgers equation



