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1. Introduction

The term τ -tilting theory was coined by Adachi, Iyama and Reiten in [3] a paper having
this title that first appeared in the arXiv in 2012 and that was published in 2014. In this
paper, the authors combined with a fresh approach to the the study of two classical branches of
representation theory of finite dimensional algebras, namely tilting theory and Auslander-Reiten
theory. The combination of these two subjects is clearly reflected in the name of this novel theory,
where the greek letter τ represents the Auslander-Reiten translation in the module category of
an algebra while the reference to tilting theory is obvious.

In these notes we give a small introduction to τ -tilting theory from the representation the-
oretic perspective, making special emphasis in the close relation between τ -tilting theory and
torsion theories. Clearly, this notes do not represent a complete survey on the topic since several
important aspects of the theory are not covered in detail or even mentioned. For instance, in
this notes we do not cover the explicit between τ -tilting theory with cluster theory, stability
conditions, or exceptional sequences, just to name a few.

These notes are organised as follows. In Section 2 we give a short historical account of the
developments in representation theory that lead to the introduction of τ -tilting theory, hoping
that this will help placing τ -tilting theory in the more general framework of representation theory.

Then, in Section 3 we start giving the material that is covered in the lectures by giving the
definition of our main objects of study: τ -rigid and τ -tilting modules and pairs.

Afterwards, in Section 4 we explain the relationship between τ -tilting theory and torsion
classes in the module category of algebras.

We finish these notes in Section 5 were we show how representation theory in general, and
τ -tilting theory in particular, can be encoded using integer vectors.

We warn the reader that we do not include in these notes any proofs, these can found in the
references given in the each result. Given the short time that has passed since the introduction of
τ -tilting theory, to our knowledge, there is no much material on the subject available other that
the original research papers, with the exception of [45]. For survey materials on more classical
tilting theory, the reader is encouraged to see [7, 5].

2. Towards τ-tilting theory

It can be argued that the modern study of representation theory started with the parallel
developments of almost split sequences by Auslander and Reiten [14, 16, 17] (see also [52]) and the
theory of quiver representations by Gabriel [39, 40]. Gabriel showed two very important results
using quivers. One of these results says that the representation theory of every finite dimensional
algebra over an algebraically closed field can be understood using quiver representations. The
formal statement is the following.
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Figure 1. The Auslander-Reiten quiver of A

Theorem 2.1. [39] Let A be a finite dimensional algebra over an algebraically closed field K.
Then A is Morita equivalent to the category KQ/I, the path algebra of the quiver Q bounded by
the ideal of relations I. Moreover the quiver Q is uniquely determined by A.

In the literature, people refer to the quiver Q determined by the algebra as the ordinary quiver
or the Gabriel quiver or simply the quiver of the algebra. In these notes we take the latter option.
The reason to give it such names is that one can associate to each finite dimensional algebra
another quiver known as the Aulander-Reiten quiver of the algebra, which encodes all the almost
split sequences in mod A. For more information about the Auslander-Reiten theory of algebras,
the reader is encouraged to see the course on this topic by Raquel Coelho-Simões in this same
series.

The second result result of Gabriel we want to mention here is the classification of hereditary
algebras of finite representation type by means of Dynkin diagrams as follows.

Theorem 2.2. [39] Let A be a hereditary finite dimensional algebra over an algebraically closed
field K. Then A is Morita equivalent to K∆, where ∆ is a quiver whose underlying graph is
a Dynkin diagram. Moreover there is a one-to-one correspondence between the indecomposable
representations of A and the positive roots of the root systems associated to ∆.

When this result appeared, it came with a great surprise since many fundamental properties
of the path algebra of a quiver depends on the orientations of the arrows. For instance, the
dimension as K-vector spaces of a Dynkin quiver vary depending of the orientation we chose.
Hence, there was no reason to believe that the number of indecomposable representations should
be the same.

Example 2.3. For instance, take the algebra A and A′ to be the path algebras of the quivers

QA = 1 // 2 // 3 QA′ = 1 // 2 3oo

of type A3. A quick calculation shows that dimKA = 6 while dimKA
′ = 5. The Auslander-

Reiten quiver of A and A′ can be found in Figure 1 and Figure 2, respectively. Here the arrows
correspond to the irreducible morphisms in its module category and the dashed line correspond to
the Auslander-Reiten translation. In these figures we can see that the number of indecomposable
representations of A and A′ coincide.

As a consequence, there was a high interest to explain this phenomenon. The first explanation
was given by Bernstein, Gelfand and Ponomarev in [23] by constructing the so-called reflection
functors.
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Figure 2. The Auslander-Reiten quiver of A′

Let Q a quiver of type ∆. Since every Dynkin diagram is a tree, there is at least one vertex
x ∈ Q0 which is a sink, that is a vertex such that all the arrows incident on that vertex are
incoming arrows. Now, we construct a quiver Q′ which is identical to Q, except for the fact
that now the vertex x is a source, which means that every arrow incident to x is an outgoing
arrow. One says that Q and Q′ are reflections of each other at x. In our example, A′ is the
reflection of A at the vertex 3. Then, Bernstein, Gelfand and Ponomarev showed is the existence
of functors, that they called reflection functors, between modKQ and modKQ′ that induce a
one-to-one correspondence between their indecomposable objects.

Some years after that, Auslander, Platzeck and Reiten [15] realised that these functors were
induced by a very specific object in modKQ. To be more precise, note that the simple module
S(x) associated to the vertex x ∈ Q0 is projective and it is not injective, so inverse of the
Auslander-Reiten translation τ−1S(x) of S(x) is a non-zero indecomposable object of modKQ.
Then they showed that the reflection functors described by Berstein, Gelfand and Ponomarev
were induced by

(1) T = τ−1S(x)⊕
⊕

x 6=y∈Q0

P (y)

that is the sum of all of the indecomposable projectives except S(x) direct sum τ−1S(x). More-
over, they showed that KQ′ was isomorphic to EndKQ(T )op. In particular, this approach allowed
them to show the existence of reflection-like functors between the module category of any Artin
algebra A having a simple projective module and EndA(T )op, even when A is not hereditary
or even when A has no quiver associated to it. Going once again to our running example, the

module described by Auslander, Platzeck and Reiten in modA is T = 2⊕
1
2
3
⊕ 1

2

Some years later, Brenner and Butler went further and studied in [25] this phenomenon
axiomatically. In this paper they introduce the notion of tilting modules as follows.

Definition 2.4. [25] Let A be an algebra and T be an A-module. We say that T is a tilting
module if the following holds:

(i) pdAT ≤ 1, the projective dimension of T is at most 1.
(ii) T is rigid, that is Ext1A(T, T ) = 0.
(iii) There exists a short exact sequence of the form

0→ A→ T ′ → T ′′ → 0

where T ′, T ′′ are direct summands of direct sums of T .
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Figure 3. Torsion pairs and APR-tilting

In this paper they show that given any given tilting A-module T acts as a sort of translator
between the representation theory of A and B := EndA(T )op, the opposite of the endomorphism
algebra of T .

The first thing that they have shown is that a tilting A-module T is also a tilting B-module.
Moreover they showed that T induced a torsion pair (T ,F) in modA and a torsion pair (X ,Y) in
modB such that the functors HomA(T,−) : modA → modB and ExtA(T,−) : modA → modB
induce an equivalence of categories between T and Y and between F and X , respectively. For
the precise definition of torsion pair, please see Definition 4.1. This result of Brenner and Butler
can be seen applied to our running example in Figure 3.

Since the module introduced by Auslander, Platzeck and Reiten was their motivating example,
one can expect that it verifies (i)-(iii) and indeed this is the case. In fact, nowadays this module
is nowadays known as the APR-tilting module. But, as the lector is already guessing, there are

many more examples of tilting modules. Then take the module T = 3 ⊕
1
2
3
⊕ 1. One can verify

that T is indeed a tilting module. Firstly, the projective dimension of T is less or equal to one
since A is hereditary. Secondly, one can check that T does not admit self extensions. Finally,
the short exact sequence

0→ 3⊕ 2
3⊕

1
2
3
→ 3⊕

1
2
3
⊕

1
2
3
→ 1→ 0

is such that 3⊕
1
2
3
⊕

1
2
3
and 1 belong to are direct summands of direct sums of T .
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Figure 4. The Auslander-Reiten quiver of B

Now, the algebra B = EndA(T )op is isomorphic to the path algebra of the quiver

1 // 2 // 3

modulo the ideal generated by the composition of the two arrows. The Auslander-Reiten quiver
of B can be seen in Figure 4.

As we can see in this example, when we take an arbitrary tilting module A the number of
indecomposable representations in modA and in modB are not the same. However, this is not
a contradiction of the results of Brenner and Butler since their result only sees what happens
inside the torsion pairs induced by T in modA and modB. In this particular case, as we can see
in Figure 5, the indecomposable object 2

3 is does not belong to any of the two subcategories T
and F induced by the tilting module T .

Although the module categories of an algebra can be to a certain extent different to the module
category of the endomorphism algebra, it was shown by Happel [41], first, and then generalised
by Rickard [53] that these two algebras are derived equivalents. Without going to the details,
starting from an the module category of an algebra, one can construct a triangulated category
known as the derived category of the algebra that encodes a wealth of homological information of
the algebra. Then, the results of Happel and Rickard state that, at a derived level, the original
algebra and the endomorphism algebra of the tilting module have the same derived category,
which implies that they share many homological properties that we will not discuss here.

Let me do a small parenthesis here that will be important later. The algebra B is the smaller
non-hereditary example of the so-called tilted algebras. Tilted algebras were introduced by Happel
and Ringel in [42] as the endomorphism algebra of a tilting module over a hereditary algebra.
The main idea behind its introduction was to use all the information available on hereditary
algebras to understand a new class of algebras which have not been study systematically until
that moment.

The study of tilted algebras has sparked a great deal of research which it would be impossible
to describe completely here. However, I need to mention two notorious developments.

Firstly, note that the tilting theorem of Brenner and Butler does not impose any restriction
on the algebra A. Then, if we are able to understand some of the representation theory of tilted
algebras using the knowledge we have on hereditary algebras, we can repeat the process and
understand the representation theory a new family of algebras using the knowledge we have on
tilted algebras via the tilting theorem. These algebras are known as iterated tilted algebras. In
[13], Assem and Skowroński classified all the iterated tilted of Dynkin type A in terms of their
ordinary quiver and relations, which lead them to the definition of the so-called gentle algebras.
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Figure 5. Torsion classes and a tilted algebra

Today, gentle algebras constitute a highly active area of research, deepening our understanding
of representation theory of finite dimensional algebras and connecting this topic with various
other branches of mathematics such as group theory and algebraic and differential geometry.

The second is the characterisation of tilted algebras found independently by Liu [48] and
Skowroński [57] using the Auslander-Reiten quiver an algebra. They have shown that an algebra
is tilted if and only if there is a structure with specific homological and combinatorial properties in
their Auslander-Reiten quiver. Inspired by this characterisation of tilted algebras many families
of algebras have been defined and determined by means of their Auslander-Reiten quiver.

Some years later, at the beginning of the twenty first century, Fomin and Zelevinsky [36, 37,
22, 38] were studying the properties of the canonical bases arising in Lie theory and this study
lead to the introduction of cluster algebras.

This algebras are spanned by a basis of so-called cluster variables that are produced inductively
from an initial seed via a process called mutation. Even if the process of mutation is repeated
ad-infinitum, for some initial seeds there are only finitely many cluster variables that can be
constructed. In this case we say that an algebra is of finite type. Moreover, for some of these
algebras, known as skew-symmetrizable cluster algebras, their combinatorial construction can be
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expressed using quivers. One surprising result shown by Fomin and Zelevinsky in the first of the
series of papers where they introduced cluster algebras is the following classification.

Theorem 2.5. [37] Let (Q, {x}) be the initial seed of a cluster algebra A. Then A is of finite
type if and only if Q is mutation equivalent to a quiver whose underlying graph is a Dynkin
diagram.

The resemblance of this result with Theorem 2.2 is striking and points towards a deep rela-
tionship between cluster theory and representations of finite dimensional algebras.

Cluster variables are always arranged in sets called clusters which have exactly n variables.
These clusters can be arranged into a n-regular graph where there is an edge between two clusters
if one can be obtained from the other performing a single mutation.

As it turns out, similar phenomena has been described in tilting theory. For instance it was
shown by Skowroński in [58] that every tilting module has exactly n isomorphism classes of
indecomposable direct summands. Also, Happel and Unger have shown in [43] that every partial
tilting module having n− 1 isomorphism classes of indecomposable direct summands can always
be completed into a tilting module and there are at most two ways in which it can be completed
to a tilting module.

Hence, one would like to categorify all the cluster phenomena using tilting theory, where
the cluster variables are represented by indecomposable pretilting modules and tilting modules
correspond to clusters. However, tilting theory falls short to describe the cluster phenomena
for at least two reasons. The first is that, as we just mention, there are some examples of
almost complete tilting modules that can be completed into a tilting module in exactly one way,
which means that we can not reproduce the process of mutation in some indecomposable direct
summand of this module.

The second reason, and maybe the most obvious, is that there are fewer indecomposable partial
tilting modules than cluster variables. For instance, an hereditary path algebra of type An has
exactly n(n−1)

2 indecomposable partial tilting modules, while the number of cluster variables in
a cluster algebra of type An is n(n+1)

2 , that is, there are exactly n more cluster variables than
indecomposable partial tilting objects.

Then if one wants to categorify cluster algebras using tilting theory, it is necessary to extend
the latter in some way. That is exactly what Buan, Marsh, Reineke, Reiten and Todorov did in
[26]. In this seminal paper, instead of working with the module category of the algebra, they
constructed a slightly larger triangulated category that they called the cluster category where
everything works perfectly by the definition of the so-called (partial) cluster-tilting objects.

See in Figure 6 the cluster category associated to the algebra A of Example 2.3. The points
that are tagged with the same object in the Auslander-Reiten quiver of CA should be identified.
In particular, we see that the Auslander-Reiten quiver of the cluster category of an algebra of
type A3 is a Möbius strip. In fact the Auslander-Reiten quiver of the cluster category of any
algebra of type An is a Möbius strip.

One the one hand they show that there is a one to one correspondence between cluster vari-
ables and indecomposable partial cluster-tilting objects; that there is a one to one correspondence
between clusters and cluster-tilting objects; that the mutation is well-defined in all the indecom-
posable direct summands of any cluster-tilting object; and that the mutation of clusters and
cluster-tilting objects are compatible.

On the other, they showed that there is a natural inclusion of the module category of the path
algebra into the cluster category such that every (partial) tilting module in the module category
becomes a (partial) cluster-tilting module. Moreover, they show that every possible mutation of
tilting modules at the level of the module category becomes a mutation of cluster-tilting modules
at the level of the cluster category.
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Figure 6. The Auslander-Reiten quiver of CA

We said before that Happel and Ringel showed that much of the representation theory of tilted
algebras can be described from the information we have about the representation theory of the
hereditary algebras. Now, the cluster categories associated to hereditary algebras have very nice
properties, close to the properties of the hereditary algebras they come from. So Buan, Marsh
and Reiten, emulating the construction of tilted algebras, introduced in [27] the cluster-tilted
algebras as the endomorphism algebras of cluster-tilting objects in a cluster category. In this
case, they showed that given a cluster-tilting object T in CA, the functor HomCA(T,−) induces a
equivalence of categories between mod(EndCA(T ))op and the quotient of CA by the ideal I(τT )
of all the morphisms that factor through τT the Auslander-Reiten translation of T .

We have mentioned already that any hereditary category A is naturally embedded in its
cluster category CA. Moreover, if T is a tilting object in modA, it turns out that T becomes a
cluster-tilting object in CA when we apply the natural embedding. Then starting from T we can
construct a tilted algebra EndA(T ) and a cluster-tilted algebra EndCA(T ). The relation between
EndA(T ) and EndCA(T ) and their module categories was studied by Assem, Brüstle and Schiffler
in a series of papers [9, 8, 10, 11]. Firstly, they showed that one can recover EndCA(T ) from the
EndA(T ) via a process that they called relation extension which bypasses the cluster category
CA. Moreover, they have shown that every cluster-tilted algebra is the relation extension of
a tilted algebra. They also have characterised all the tilted algebras that have an isomorphic
Weymanrelation extension using a particular structure that can be found in the Auslander-Reiten
quiver of cluster-tilted algebras which are deeply related to the structures described by Liu and
Skowroński for tilted algebras.

In order to start the construction of the cluster category, Buan, Marsh, Reineke, Reiten and
Todorov assumed that the quiver in the initial seed of the algebra is acyclic. However, there is
no reason why one should start with an acyclic quiver. From a cluster perspective, any quiver
is equally valid, so was expected for a similar cluster category to exists regardless of the quiver
we choose at the start. The first problem with a more general quivers arising in cluster theory
is that they have cycles, so their path algebra is infinite dimensional. Then in order to use
something close to tilting theory, we need to quotient this path algebra with the correct ideal
of relations. This problem was solved by Derksen, Weyman and Zelevinsky [33, 34] when they
started considering certain of potentials associated to a quiver. They have shown that associated
to each quiver there exists a special potential, that they called non-degenerate, such that one
can categorify the cluster algebra associated to the quiver using their decorated representations.
Moreover, they went further and showed that there exists a notion of mutation of non-degenerated
potentials that is compatible with the cluster mutations of the quivers. We note that the notion
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of decorated representation gives rise a rich theory that is closely related to that of τ -tilting
theory and it can be considered as a precursor of the latter.

Now that we have the correct algebras associated to the cyclic quivers in cluster theory we
would like to have their corresponding cluster categories. To build these categories is not obvious.
The main problem being that the construction of Buan, Marsh, Reineke, Reiten and Todorov
uses heavily the structure of the derived category of the algebra and some key properties used in
their construction fail when the algebra is not hereditary. Then this problem was overcome by
Amiot in [4], where she used the theory of Ginzburg dg-algebras developed by Keller and Yang
in [47] to construct a cluster category is compatible with the other notions of cluster categories
existing to that moment.

All the phenomenon on cluster algebras and its close parallelism with tilting theory pointed
to the existence of an extension of classical tilting theory were we would be always allowed to
perform mutations. For hereditary algebras, the construction of this theory was performed by
Ingalls and Thomas in [44], where they introduced the so-called support tilting modules. To
explain the notion of support tilting module, let us look at the limitations of classical tilting
theory.

As we did before consider A to be the path algebra of the linearly oriented A3 quiver. Then

T =
1
2
3
⊕ 1⊕ 3 is a tilting module in modA.

Ideally, we would like to perform a mutation over every single direct summand of T . In
other words, we would like to replace each indecomposable direct summand of T by another
indecomposable in such a way that the resulting module is again tilting.

The summand 1 is replaceable, since we can change it by 2
3 to obtain

1
2
3
⊕ 2

3⊕ 3 which is tilting.

We can also mutate at the summand 3, because it can be replaced by 1
2 to obtain the tilting

module
1
2
3
⊕ 1

2⊕ 1.

However, we can not replace
1
2
3
by any other indecomposable module to obtain a new tilting

module. This is a consequence to a classical result obtained independently by Assem [] and
Smalø[], which implies that every indecomposable projective-injective object in modA is a direct

summand of any tilting module in modA. In particular,
1
2
3
can not be replaced because it is a

projective-injective module in modA.

The solution found by Ingalls and Thomas was to drop
1
2
3
from T altogether to obtain T ′ = 1⊕3

which clearly is not tilting. However, it is tilting on its support algebra, which is constructed
by taking a quotient of A by the ideal generated by the idempotent included in the annihilator
annT ′ of T ′.

More generally, they showed that for a hereditary algebra the mutation is always possible if
we allow our tilting modules not to be supported over every vertex of the algebra.

Now, for more general algebras this construction fails again. For instance, if we take the
algebra A to be the path algebra of the quiver

2

��
1

@@

3oo

modulo the ideal generated by all paths of length 2, we have that A as a right module over itself
is isomorphic to 1

2⊕
3
1⊕

2
3. Note that in this case every indecomposable projective is also injective.
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But at the same time we can not drop any of the direct summands since the sum of the two
remaining projective modules is supported on every vertex of the algebra.

Something that we have not said before is that, by construction, in the cluster category we
have that

Ext1CA(M,N) ∼= HomCA(N, τM).

This isomorphism can actually be translated to the module categories of non-hereditary cluster-
tiled algebras. So, we can translate the cluster-tilting objects of the cluster category to the
module category of a cluster-tilted algebra to get a series of modules which categorify perfectly
the corresponding cluster algebra. However, these objects are not in general partial tilting objects
because they might be of infinite projective dimension.

Then, Adachi, Iyama and Reiten introduced τ -tilting theory in [3], the object of study of these
lectures, by dropping the restriction on the projective dimension of the modules into consideration
and changing the classical rigidity by the notion of τ -rigidity that we will introduce in the next
section.

Before starting with the material of the lectures notes, we would like to point out that many
results of τ -tilting theory were developed independently by Derksen and Fei in [32], where they
studied general presentations using methods of a more geometric nature.

3. τ-tilting theory: Basic definitions

In this section we give the basic definitions on τ -tilting theory. We also mention some of the
basic relations between τ -tilting theory and classical tilting theory.

Recall that in this notes A is always a finite dimensional algebra over an algebraically closed
field, modA is the category of finitely generated right A-modules and τ denotes the Auslander-
Reiten translation in modA.

Given any A-module M , we denote |M | the number of isomorphism classes of indecompos-
able direct summands of M . Throughout this document we assume that n is the number of
isomorphism classes of simple A-modules. Note that in this case |A| = n.

Also, unless otherwise specified, every module in this notes is assumed to be basic, meaning
that the set of indecomposable direct summands of M are pairwise non-isomorphic. For more
background material, the reader is encouraged to see [12, 19, 54].

We start giving the definition of the most fundamental notion in this notes.

Definition 3.1. [21, 20, 3] Let A be an algebra and M be an object in modA. We say that M
is τ -rigid if HomA(M, τM) = 0.

We now give without proof a series of important properties of τ -rigid modules which show in
which sense τ -tilting theory is a generalisation of the classical tilting theory.

Proposition 3.2. Let A be an algebra and T be a partial tilting module. Then T is τ -rigid.
Moreover, if T is tilting then |T | = n.

Proposition 3.3. [12] Let M be a τ -rigid module. Then the following holds.
(1) There are at most n isomorphism classes of indecomposable direct summands of M . In

short, |M | ≤ n.
(2) M is rigid, that is, Ext1A(M,M) = 0.
(3) If the annihilator ann(M) of M is equal to the ideal {0} ⊂ A, then M is a partial tilting

module.
(4) If the projective dimension pdM of M is at most one, then M is a partial tilting module.
(5) If |M | = n and ann(M) = {0}, then M is a tilting module.

We now give the definition of support τ -tilting modules.
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Definition 3.4. [3] Let A be an algebra. A τ -rigid A-module M is τ -tilting if |M | = n. We say
that a τ -rigid A-module M is support τ -tilting if there exists an idempotent e ∈ A such that M
is a τ -tilting A/AeA-module, where AeA is the ideal generated by e in A.

As a direct consequence of the results in Proposition 3.2 and Proposition 3.3 we obtain the
following.

Proposition 3.5. Let A be an algebra. Then an A-module M is tilting if and only if M is
τ -rigid and pdM ≤ 1.

This result can be presented as evidence to the statement that τ -tilting theory is a generalisa-
tion of tilting theory which is independent of the projective dimension of the objects. Following
this idea, in the last decade a series of works appeared generalising classical results in tilting
theory to τ -tilting theory.

However, one needs to be careful when giving such statements, since before the definition
of τ -tilting theory there have been at least another generalisation of tilting theory to higher
projective dimensions. I am speaking of the generalised tilting modules introduced by Miyashita
in [49]. They are defined as follows.

Definition 3.6. [49] Let A be an algebra and T be an A-module and r be a positive integer.
We say that T is a r-tilting module if the following holds:

(i) pdAT ≤ r, the projective dimension of T is at most r.
(ii) ExtiA(T, T ) = 0 for all 1 ≤ i ≤ r.
(iii) There exists a short exact sequence of the form

0→ A→ T (1) → T (2) → · · · → T (r) → 0

where T (i) is a direct summands of direct sums of T for all 1 ≤ i ≤ r.

Over time, it has been shown that many important results of classical tilting theory can be
generalised to generalised tilting modules. One might expect that people would try to show
an explicit relation between τ -tilting modules and generalised tilting modules. However, to my
knowledge, nobody has done this yet.

We now give an example of all the support τ -tilting modules in the module category of an
algebra.

Example 3.7. Let A be the path algebra given by the quiver

2

��
1

@@

3oo

modulo the second power of the ideal generated by all the arrows. The Auslander-Reiten quiver
of A can be seen in Figure 7.

Note that every module is represented by its Loewy series and both copies of 2
3 should be

identified, so the Auslander-Reiten quiver of A has the shape of a cylinder. In the table 1 we give
a complete list of the support τ -tilting modules in modA together with its associated idempotent.

Suppose that we are working on with the algebra of the previous example and we come across
the module M = 1

2 ⊕ 1. After a quick calculation we can see that this module is τ -rigid. But is
this module support τ -tilting or is it only τ -rigid?

What I mean with this question is that M is only a support τ -tilting module only when we
associate to it the idempotent e3. However this notation does not allow us to see if M has
associated the idempotent or not.
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Figure 7. The Auslander-Reiten quiver of B

support τ -tilting module idempotent
1
2⊕

2
3⊕

3
1 ∅

1
2⊕

2
3⊕ 2 ∅

1
2⊕

3
1⊕ 1 ∅

2
3⊕

3
1⊕ 3 ∅

3
1⊕ 3 e2
3
1⊕ 1 e2
1
2⊕ 1 e3
1
2⊕ 2 e3
2
3⊕ 3 e1
2
3⊕ 2 e1

1 e2 + e3
2 e1 + e3
3 e1 + e2
0 e1 + e2 + e3

Table 1. Support τ -tilting modules in modA

As we will see, for certain problems in τ -tilting theory it is important to distinguish the τ -rigid
module 1

2⊕ 1 from the support τ -tilting module 1
2⊕ 1 and for that we need to the notion of τ -rigid

and τ -tilting pairs. Before doing so, recall that given an idempotent e ∈ A we have that the
right ideal eA is a projective module and that every projective arises this way.

Definition 3.8. Let A be an algebra, M be an A-module and P be a projective module. We
say that the pair (M,P ) is τ -rigid if M is a τ -rigid module and HomA(P,M) = 0. A τ -rigid pair
is τ -tilting if |M |+ |P | = n.

As you would expect, these two notations are equivalent. Indeed, given a support τ -tiling
module M with associated idempotent e we have that (M, eA) is a τ -tilting pair. Conversely,
if (M,P ) is a τ -tilting pair then we have that P = eA for some idempotent e ∈ A. Then M
is a support τ -tilting module with associated idempotent e. The list of all τ -tilting pairs of the
algebra in Example 3.7 can be found in Table 2
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τ -tilting pair
(12⊕

2
3⊕

3
1, 0)

(12⊕
2
3⊕ 2, 0)

(12⊕
3
1⊕ 1, 0)

(23⊕
3
1⊕ 3, 0)

(31⊕ 3, 23)

(31⊕ 1, 23)

(12⊕ 1, 31)

(12⊕ 2, 31)

(23⊕ 3, 12)

(23⊕ 2, 12)

(1, 23⊕
3
1)

(2, 12⊕
3
1)

(3, 12⊕
2
3)

(0, 12⊕
2
3⊕

3
1)

Table 2. τ -tilting pairs in modA

4. τ-tilting pairs and torsion classes

In this section, after recalling the definition of torsion pairs and their basic properties, we will
investigate the deep relation existing between τ -tilting theory and torsion classes.

4.1. Torsion pairs and torsion classes. The notion of torsion pairs, also known as torsion
theories, started almost with the introduction of abelian categories as a generalisation of a well-
known phenomenon in the category of finitely generated abelian groups, one of the most iconic
example of abelian categories.

A classical classification result states that given a finitely generated abelian group, up to
isomorphism, has a unique torsion subgroup such that the resulting factor group is torsion free.
The extension of this fact to every abelian category was done by Dickson in [] as follows.

Definition 4.1. [35] Let A be an abelian category and let (T ,F) be a pair of subcategories of
A. We say that (T ,F) is a torsion pair in A if the following holds.

(1) HomA(X,Y ) = 0 for all X ∈ T and Y ∈ F .
(2) For all object M ∈ A there exists, up to isomorphism, a unique short exact sequence

0→ tM →M → fM → 0

such that tM is an object of T and fM is an object of F .
If (T ,F) is a torsion pair in A we say that T is a torsion class and F is a torsion free class.
Moreover, for each object M of A, we say that

0→ tM →M → fM → 0

is the canonical short exact sequence of M and that tM is the torsion object of M with respect
to the torsion pair (T ,F).

The previous definition is valid for an arbitrary abelian category. However, in these notes we
are interested in a particular class of abelian categories, namely the category of finitely generated
modules over a finitely dimensional algebra. These categories have many extra properties (for
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example they are length categories) that allow us to describe more precisely the torsion pairs in
this category.

Proposition 4.2. Let A be an algebra. Then the following holds true.
(1) A subcategory T of modA is a torsion class if and only if T is closed under quotients

and extensions. Moreover, in this case the torsion free class associated to T is

F = {Y ∈ modA : HomA(X,Y ) = 0 for all X ∈ T }.
(2) A subcategory F of modA is a torsion free class if and only if F is closed under subobjects

and extensions. Moreover, in this case the torsion free class associated to F is

T := {X ∈ modA : HomA(X,Y ) = 0 for all Y ∈ F}.
Suppose that M is an A-module. Then we can ask the following: Is there a minimal torsion

class in modA containing M? The following result answers this question affirmatively.

Proposition 4.3. Let A be an algebra. Then the intersection of arbitrarily many torsion classes
is a torsion class. Likewise, the intersection of arbitrarily many torsion free classes is a torsion
free class.

Then the minimal torsion class containing a given objectM of modA is simply the intersection
of all torsion classes containing M . Clearly, M is in this intersection and, by the precious
proposition, this is also a torsion class.

Now, there is a more descriptive answer to this question, but to give that answer we need to
introduce some notation.

Let X be a subcategory of modA. The category Filt(X ) of objects filtered by X is defined as
the category of all the objects Y in modA that admit a filtration

0 = Y0 ⊂ Y1 ⊂ · · · ⊂ Yr−1 ⊂ Yr = Y

such that the successive quotients Yi/Yi−1 are objects in X .
We define the category FacX as the category of objects Y such that there exists an object X

in X and an epimorphism p : X → Y → 0. Often times in the notes, the category X we will the
additive category addM additively generated by a module M . In this case, by abuse of notation
we will write FacM instead of Fac(addM). Note that FacM can be described as

FacM = {Y ∈ modA : there is an epimorphismp : Mr → Y → 0 for some r ∈ N}.
Now we are able to give a better description of the minimal torsion class containing M .

Proposition 4.4. Let A be an algebra and M be an A-module. Then Filt(FacM) is the minimal
torsion class containing M .

Remark 4.5. Note that, in general, Fac(FiltM) is not a torsion class since it might not be closed
under extensions.

4.2. Torsion pairs and τ-rigid modules. From the previous subsection we have that to get
the minimal torsion class containing M one needs to first calculate FacM and then make the
extension closure of this category. However, sometimes FacM is closed under extensions, which
makes the second step of the construction superfluous.

The following theorem, originally proved by Auslander and Smalø in [20], is arguably the first
result on τ -tilting theory, even if this theory was formally introduced thirty years later.

Theorem 4.6. Let A be an algebra and M be an object in modA. Then FacM is a torsion class
if and only if M is τ -rigid, that is HomA(M, τM) = 0. Moreover, in this case

M⊥ := {X ∈ modA : HomA(M,X) = 0}
is the torsion free class such that (FacM,M⊥) is a torsion pair in modA.
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As we just said, several years passed between the publication of this result and the start of
τ -tilting theory as an independent subject in representation theory. However, this was not the
only result that worked with τ -rigid objects. In fact, a well-established technique used in classical
tilting to determine if an object is tilting was to show that the candidateM was a τ -rigid module
such that pdM ≤ 1 and |M | = n. The interested reader is encouraged to surf the literature to
look for such examples.

4.3. Functorially finite torsion pairs and τ-tilting. From a torsion theoretic point of view,
the breakthrough made by Adachi, Iyama and Reiten in [3] is that they showed that τ -tilting
pairs characterised a particular class of torsion classes, the functorially finite torsion classes.

Let X be a subcategory of an abelian category A and suppose that X is an object of X and
M is an arbitrary object of A. A morphism f : X →M in is called a right X -approximation of
M if any map f ′ : X ′ →M with X ′ ∈ X factors through f . Dually, a morphism g : M → X in is
called a left X -approximation of M if any map g′ : M → X ′ with X ′ ∈ X factors through g. We
say that X is contravariantly finite (resp. covariantly finite) if any object M in A admits a right
(resp left) X -approximation. We say that X is functorially finite if it is both contravariantly
finite and covariantly finite.

An important consequence of the uniqueness up to isomorphism of the canonical exact se-
quence of an object with respect to a torsion pair is the following.

Proposition 4.7. Let (T ,F) be a torsion pair in an abelian category A and let M be an object
of A. If

0→ tM →M → fM → 0

is the short exact sequence of M with respect to (T ,F) then the canonical inclusion i : tM → M
is a right T -approximation. Dually, the canonical projection p : M → fM is a left F-approximation.
In particular every torsion class in A is contravariantly finite and every torsion free class F in
A is covariantly finite.

Given a τ -rigid module M , we know by Theorem 4.6 that FacM is a torsion class. It is not
hard to convince oneself that FacM is also a functorially finite. In part, the result of Adachi,
Iyama and Reiten is telling us that these are all the functorially finite torsion classes. To give the
precise statement of this result let us denote by τ -tp-A the set of all τ -tilting pairs and by ftors-A
the set of all functorially finite torsion classes in modA. Moreover we recall that an object T in
a category X is said to be Ext-projective in F if Ext1A(T,X) = 0 for all X ∈ X .

Theorem 4.8. [3] Let A be an algebra then the map Φ : τ -tp-A→ ftors-A defined by

Φ(M,P ) = FacM

is a bijection. Moreover, the inverse Φ−1 : ftors-A→ τ -tp-A is defined as

Φ−1(T ) = (P(T ),⊥P T )

where P(T ) is a basic additive generator of the Ext-projectives of T and ⊥pT is a basic additive
generator of the category of projective modules P such that HomA(P, T ) = 0 for all T ∈ T .

4.4. Completing τ-rigid modules and τ-rigid pairs. The choice of taking τ -rigid mod-
ules to develop τ -tilting theory is completely arbitrary. In fact, one can develop the com-
pletely dual τ−1-tilting theory, where we study τ−1-rigid modules, that is, modules N such
that HomA(τ−1N,N) = 0. In this case, dual of Theorem 4.6 reads as follows.

Theorem 4.9. [20] Let A be an algebra and N be an object in modA. Then the category

SubN := {Y ∈ modA : there is an monomorphismi : 0→ Y → Nr for some r ∈ N}
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is a torsion free class if and only in N is τ−1-rigid. Moreover, in this case
⊥N := {X ∈ modA : HomA(X,N) = 0}

is the torsion class such that (SubN,⊥N) is a torsion pair in modA.

Now, take a τ -rigid pair M . Then it is easy to see that τM is τ−1-rigid. Indeed,

HomA(τ−1τM, τM) = HomA(M, τM) = 0.

Hence there are two torsion classes naturally associated to M , namely FacM and ⊥τM . In the
following result we give some results regarding the relation between these two torsion classes and
M , all of which appeared already in [3].

Theorem 4.10. [3] Let A be an algebra and M be a τ -rigid A-module. Then the following holds.
(1) FacM ⊂ ⊥τM .
(2) The torsion classes M⊥ and ⊥τM coincide if and only if M is τ -tilting.
(3) Suppose that T is a functorially finite torsion class. Then M is a direct summand of
P(T ) if and only if FacM ⊂ T ⊂ ⊥τM .

From the previous theorem we have that ⊥τM is the maximal torsion class having M as an
Ext-projective, which makes the module P(⊥τM) especial enough to have a name. We say that
P(⊥τM) is the Bongartz completion of M . This name was chosen in honour to Bongartz who
showed in [24] that if T is partial tilting, then P(⊥τT ) is a tilting module having T as a direct
summand. In other words, Bongartz showed that every partial tilting module can be completed
to a tilting module.

If we use the language of τ -rigid pairs instead of τ -rigid modules we can be more precise in
our statements. Here we say that a τ -rigid pair (M,P ) is a direct summand of (M ′, P ′) if M is
a direct summand of M and P is a direct summand of P ′.

Theorem 4.11. [3] Let A be an algebra and (M,P ) be a τ -rigid pair in modA. Then the
following holds.

(1) ⊥τM ∩ P⊥ is a torsion class and FacM ⊂ ⊥τM ∩ P⊥.
(2) The torsion classes M⊥ and ⊥τM ∩P⊥ coincide if and only if (M,P ) is a τ -tilting pair.
(3) Suppose that T is a functorially finite torsion class. Then (M,P ) is a direct summand

of Φ−1(T ) if and only if FacM ⊂ T ⊂ ⊥τM ∩ P⊥.

As for τ -rigid modules, we say that Φ−1(⊥τM ∩ P⊥) is the Bongartz completion of (M,P ).
But now we can also compute the τ -tilting pair Φ−1(FacM) which is the τ -tilting pair generating
the smallest torsion class containing (M,P ). In this case, we say that Φ−1(FacM) is the Bongatrz
cocompletion of (M,P ).

4.5. Mutation of τ-tilting pairs and torsion classes. As we said in in the introduction of
these notes, τ -tilting theory was conceived with the goal to complete the classical tilting theory
with respect to mutation. The achievement of this goal in the following result.

Theorem 4.12. [3] Let A be an algebra and let (M,P ) be an almost complete τ -tilting pair, that
is a τ -rigid pair such that |M |+ |P | = n− 1. Then there is no functorially finite torsion class T
such that FacM ( T ( ⊥τM ∩ P⊥.

In other words, for every almost complete τ -tilting pair (M,P ) there are exactly two τ -tilting
pairs (M1, P1) and (M2, P2) having (M,P ) as a direct summand.

The previous theorem allow us to give the following definition.
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Definition 4.13. Let (M1, P1) and (M2, P2) be two τ -tilting pairs. We say that (M1, P1) is
a mutation of (M2, P2) if there is an almost complete τ -tilting pair (M,P ) which is a direct
summand of (M1, P1) and (M2, P2). By abuse of notation we also say that FacM1 is a mutation
of FacM2 if (M1, P1) is a mutation of (M2, P2).

Remark 4.14. Note that (M1, P1) is a mutation of (M2, P2) if and only if (M2, P2) is a mutation
of (M1, P1). Also note that if (M1, P1) is a mutation of (M2, P2) then either FacM1 ⊂ FacM2 or
FacM2 ⊂ FacM1. In particular, FacM1 6= FacM2.

In fact, there are explicit homological formulas to construct (M1, P1) from (M2, P2) and back
but we will not explicit them here. The interested reader is encouraged to see [3] for more details
on the matter.

In Theorem 4.12 we said that given two torsion classes FacM1 and FacM2 which are mutation
of each other, then there are no functorially finite torsion classes in between them. In fact, it
was shown by Demonet, Iyama and Jasso in [29] that there are no torsion classes of any kind in
between FacM1 and FacM2. This is a consequence of the following stronger result.

Theorem 4.15. [29] Let A be an algebra (M,P ) be a τ -tilting pair and T be a torsion class in
modA. Then the following hold.

(1) If T ( FacM then there exists a mutation (M ′, P ′) such that T ⊂ FacM ′ ( FacM .
(2) If FacM ( T then there exists a mutation (M ′′, P ′′) such that FacM ( FacM ′′ ⊂ T .

4.6. Maximal green sequences. In the module category of any algebra A there are always at
least two torsion classes, some times called the trivial torsion classes, which are the whole modA
and the torsion class {0} containing only the objects that are isomorphic to the 0 object. Both
these torsion classes are functorially finite and they are generated by the τ -tilting pairs (A, 0)
and (0, A), respectively.

Clearly {0} ( modA. So we can apply Theorem 4.15.1 and obtain a τ -tilting pair (M1, P1)
which is a mutation of (A, 0) such that {0} ⊂ FacM1 ( modA. If FacM1 is not equal to {0}
we can repeat the process to obtain a mutation (M2, P2) of (M1, P1) such that {0} ⊂ FacM2 (
FacM1 ( modA. We could repeat this process inductively to obtain a decreasing chain of torsion
classes

{0} ⊂ · · · ( FacM3 ( FacM2 ( FacM1 ( modA

which in general can continue forever. However, in some cases this process stops. In other
words, there is a finite set of τ -tilting pairs {(Mi, Pi) : 0 ≤ i ≤ t} such that (M0, P0) = (A, 0),
(Mt, Pt) = (0, A) and (Mi, Pi) is a mutation of (Mi−1, Pi−1). In this case, we say that the chain
of torsion classes

{0} = FacMt ( · · · ( FacM3 ( FacM2 ( FacM1 ( modA

is a maximal green sequence.

Remark 4.16. Note that a maximal green sequence is a non refinable chain of torsion classes,
that is, if

{0} = FacMt ( · · · ( FacM3 ( FacM2 ( FacM1 ( modA

is a maximal green sequence and T is a torsion class such that FacMi ⊂ T ⊂ FacMi−1 for some
1 ≤ i ≤ t, then T = FacMi or FacMi−1 = T .

Maximal green sequences were originally introduced by Keller in [] in the context of cluster
algebras to give a combinatorial method to calculate certain geometric invariants known as
Donaldson-Thomas invariants. The definition can be considered as a generalisation to the setting
of τ -tilting theory of the original definition, since there are many examples of algebras which do
not have a cluster counter-part.
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Remark 4.17. Note that the word green in the name maximal green sequence does not make
reference to any mathematician of name Green. Instead this words makes reference to the
classical colouring in the traffic lights.

The reason for this is that in cluster algebras there is no evident reason to say that a mutation
is going forward or backwards. However, Keller needed to impose such a direction to mutations
in order to get the desired calculation. Then, he came up with a colouring of the vertices of the
quiver associated to the cluster algebra in which a vertex is either green or red, which indicates if
we are allowed to mutate at the given vertex or not, respectively. In this colouring, every vertex
in the quiver of the initial seed is green and we are allowed to mutate at one green vertex at a
time. The process finishes if after a finite number of mutations all the vertices in the quiver are
red.

There has been a lot of interest in the representation theory community on the study of
maximal green sequences. To learn more about this rich subject, please see [31].

4.7. τ-tilting reduction and torsion classes. For the moment we have only seen that an
almost complete τ -tilting pair can be completed in exactly two ways to a τ -tilting pair. More
generally, one can consider the problem of finding all τ -tilting pairs having a given τ -rigid pair
(M,P ) as a direct summand. This problem was solved by Jasso in [46] using a procedure that
is now known as τ -tilting reduction. Here we give a brief summary of that process.

By Theorem 4.11 one knows that (M,P ) yields the torsion classes FacM and ⊥(τM) ∩ P⊥.
Moreover, Theorem 4.11 states the existence of a τ -tilting pair of the form (M ⊕M ′, P ) such
that Fac(M ⊕M ′) =⊥ (τM) ∩ P⊥.

Now define B(M,P ) = EndA(M ⊕M ′) to be the endomorphism algebra of M ⊕M ′. In the
algebra B(M,P ) = EndA(M ⊕ M ′), there is an idempotent element e(M,P ) associated to the
B(M,P )-projective module HomA(M ⊕M ′,M). We define the algebra C(M,P ) as the quotient of
B(M,P ) by the ideal generated by e(M,P ), that is,

C(M,P ) := B(M,P )/B(M,P )e(M,P )B(M,P ).

Now we are able to state one of the main theorems of [46].

Theorem 4.18. [46] Let (M,P ) be a τ -rigid pair in modA. Then the functor

HomA(M ⊕M ′,−) : modA→ modB(M,P )

induces an equivalence of categories

F : M⊥ ∩ ⊥τM ∩ P⊥ → modC(M,P )

between the perpendicular categoryM⊥∩⊥τM∩P⊥ of (M,P ) and the module category modC(M,P ).

A direct consequence of Theorem 4.18 and Theorem 4.11 we obtain the following result.

Theorem 4.19. [46] Let (M,P ) be a τ -rigid pair in modA and C(M,P ) as above. Then the the
functor

HomA(M ⊕M ′,−) : modA→ modB(M,P )

induces a bijection between the torsion classes T in modA such that FacM ⊂ T ⊂ ⊥τM ∩ P⊥
and the torsion classes in modC(M,P ).

In particular the functor

HomA(M ⊕M ′,−) : modA→ modB(M,P )

induces a bijection between the τ -tilting pairs in modA having (M,P ) as a direct summand and
the τ -tilting pairs in modC(M,P ).
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Remark 4.20. Note that Theorem 4.19 does not give a specific number of completions of a given
τ -rigid pair (M,P ). This is due to the fact that the number of τ -tilting pairs in two algebras
might differ hugely.

However, we can still recover Theorem 4.12 as a consequence of Theorem 4.19. Indeed, one can
verify that for all almost complete τ -tilting pair (M,P ) the algebra C(M,P ) is local, which implies
that there is only one isomorphism class of simple modules in modC(M,P ). As a consequence of
this, if S is a simple module in modC(M,P ) we have that HomC(M,P )

(X,S) = 0 implies that X is
isomorphic to 0.

Let S be a simple module in modC(M,P ) and T be a torsion class. Then we have two options
either S ∈ T or S 6∈ T . If S ∈ T , then X ∈ T for all X ∈ modC(M,P ) since torsion classes are
closed under extensions. Otherwise, we have that T = {0} by the argument above.

This shows that every local algebra, no matter how complicated its representation theory,
has exactly two torsion classes in its module category, which are the trivial torsion classes. In
particular, this implies that there are exactly two τ -tilting pairs in modC(M,P ) if (M,P ) is an
almost complete τ -tilting pair. Hence Theorem 4.12 follows from Theorem 4.19.

Note that the perpendicular categoryM⊥∩⊥τM ∩P⊥ defined by Jasso is a the intersection of
the torsion class ⊥τM∩P⊥ with the torsion free classM⊥. Moreover, in this caseM⊥⊥τM∩P⊥
is what is called a wide subcategory of modA. A subcategory X is called wide when is closed
under kernels, cokernels and extensions. In particular, this implies that X is an abelian category.
Then Asai and Pfeiffer found in [6] the following generalisation of Theorem 4.19.

Theorem 4.21. [6] Let (T1,F1) and (T2,F2) be two torsion pairs in modA such that T1 ⊂ T2.
Suppose moreover that T2 ∩F1 is a wide subcategory of modA. Then there is a bijection between
the torsion classes T in modA such that T1 ⊂ T ⊂ T2 and the torsion classes in T2 ∩ F1 given
by map T 7→ T ∩ T1.

However, the intersection of a torsion class with a torsion free class is not always a wide
subcategory. However it has some structure, the intersection of a torsion class and a torsion free
class is always a quasi-abelian subcategory. The definition of quasi-abelian subcategories is a bit
technical and it will be skipped.

However, it is worth mentioning that Tattar showed in [59] that there is a well-defined notion
of torsion classes in quasi-abelian subcategories. Moreover he showed that Theorem 4.19 can be
generalised to this setting as follows.

Theorem 4.22. [59] Let (T1,F1) and (T2,F2) be two torsion pairs in modA such that T1 ⊂ T2.
Then there is a bijection between the torsion classes T in modA such that T1 ⊂ T ⊂ T2 and the
torsion classes in T2 ∩ F1 given by map T 7→ T ∩ T1.

4.8. τ-tilting finite algebras. To finish this section we speak about a new class of algebras
that originated with the study of τ -tilting theory, the so-called τ -tilting finite algebras. They
were introduced by Demonet, Iyama and Jasso as follows.

Definition 4.23. [29] An algebra A is τ -tilting finite if there are only finitely many τ -tilting
pairs in modA.

Even if the class of τ -tilting finite algebras has been recently introduced, they have received
a lot of attention. In the following theorem we compile a series of characterisations of τ -tilting
finite algebras. For that, recall that an A-moduleM is called a brick if its endomorphism algebra
is a division algebra.

Theorem 4.24. Let A be an algebra. Then the following are equivalent.
(1) A is τ -tilting finite.
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(2) There are finitely many indecomposable τ -rigid objects in modA.
(3) [29] There are finitely many torsion classes in modA.
(4) [30] There are finitely many bricks in modA.
(5) [55] The length of all bricks in modA is bounded.

Remark 4.25. Note that by Theorem 4.24.3 we have that all torsion classes in the module category
of a τ -tilting finite algebra is functorially finite.

As we can see in Theorem 4.24, τ -tilting finite algebras have module categories that are
somehow manageable for a torsion theoretic perspective, even if they are wild. As a consequence,
there is an ongoing informal programme that aims to classify all the τ -tilting finite algebras. This
problem has been attacked by several people in different families of algebras. The following is a
list of families of algebras where some progress to understanding on the problem has been made.
Note that this list is not exhaustive nor efficient, since some families are included in others.

• [39] Hereditary algebras.
• [1] Nakayama algebras.
• [37, 27] Cluster-tilted algebras.
• [60] Auslander algebras.
• [50] Preprojective algebras.
• [51] Gentle algebras.
• [2] Brauer graph algebras.
• [56] Special biserial algebras.

5. Integer vectors and τ-tilting theory

In the introduction of these notes we said that many developments that occurred in repre-
sentation theory in the twenty first century, including τ -tilting theory, were aiming to categorify
cluster algebras to some extent.

In loose terms, the term categorification refers to the process of explaining some combinatorial
phenomena by showing the existence some categorical phenomena. For instance, the bijection
between the indecomposable τ -rigid modules in the module category of an hereditary algebra of
Dynkin type and the number of non-initial variables in the cluster algebra of the corresponding
Dynkin type is a categorification of cluster variables.

But as there is a process of categorification, there is also a process of decategorification, a
process where you start with a category and you find some combinatorial or numerical data that
reflects the phenomena occurring at the categorical level.

In this section we focus on different ways that one can decategorify the τ -tilting theory of an
algebra using integer vectors.

5.1. The Grothendieck group of an algebra. The most classical decategorification using
integer vectors of the representation theory of an algebra is the Grothendieck group of an algebra.
We start recalling their definition, which we define for arbitrary abelian categories.

Definition 5.1. Let A be an abelian category. The Grothendieck group K0(A) of A is the
defined as the quotient of the free abelian group generated by the isomorphism classes [M ] of all
objects M ∈ A modulo the ideal generated by the short exact sequences as follows.

K0(A) =
〈[M ] : M ∈ A〉

〈[M ]− [L]− [N ] : 0→ L→M → N → 0 is a short exact sequence in A〉
In these notes we are interested only in the module categories modA of finite dimensional

algebras A over an algebraically closed field. By abuse of notation, the Grothendieck group
K0(modA) of modA will be denoted by K0(A) and we refer to it as the Grothendieck group of
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A. An immediate consequence of the Jordan-Hölder theorem for module categories we have the
following result.

Theorem 5.2. Let A be an algebra. Then K0(A) is isomorphic to Zn, where n is the number
of isomorphism classes of simple modules in modA.

From now on, we fix a complete set {[S(1)], . . . , [S(n)]} of isomorphism classes of simple A-
modules. Clearly, {[S(1)], . . . , [S(n)]} forms a basis of K0(A). However, this is not the only basis
of K0(A). For instance is well-known that the set

{[P (1)], . . . , [P (n)] : P (i) is the projective cover of [S(i)]}
forms another basis of K0(A).

In these notes, when we speak about the Grothendieck group of A we always assume that the
basis chosen to represent our vectors is the basis given by the simple modules with a fixed order.

Theorem 5.3. Let A be an algebra and K0(A) be its Grothendieck group having as canonical
basis the set {[S(1)], . . . , [S(n)]} of isomorphism classes of simple A-modules. Then for every
object M ∈ modA we have that

[M ] = [dimK(HomA(P (1),M)), . . . ,dimK(HomA(P (n),M))]

[M ] = [dimK(HomA(M, I(1)), . . . ,dimK(HomA(M, I(n)))]

where P (i) and I(i) are the projective cover and the injective envelope of the simple S(i), respec-
tively, for all 1 ≤ i ≤ n.

The previous result justifies that the element of the Grothendieck group [M ] associated to M
is often called the dimension vector of M , terminology that we adopt in these notes as well.

Sometimes in the literature one finds the notation dimM for the dimension vector, reserving
[M ] for the abstract class of M in the Grothendieck group with no prefered basis of K0(A).

Remark 5.4. In the previous result we are actually using the hypothesis that A is an algebra over
an algebraically closed field. Otherwise, the result is not true in general. We warn the reader
that this remark is also valid for several other results in this section.

5.2. g-vectors. Another set of integer vectors that can be associated to the category of finitely
presented A-modules are the g-vectors.

Although the idea of g-vectors has been around for several decades, their systematic study is
rather recent since the main motivation behind its study, as the might be guessing already, lyes
on the categorification of cluster algebras.

In fact, the name g-vector itself comes from cluster theory. The g-vectors were introduced by
Fomin and Zelevinsky in [38], where they conjectured that cluster variables could be parametrised
using g-vectors. Later on, it was shown that g-vectors encoded the projective presentation of
τ -rigid A-modules. Their definition is the following.

Definition 5.5. Let M be an A-module. Choose the minimal projective presentation

P1 −→ P0 −→M −→ 0

of M , where P0 =
n⊕
i=1

P (i)ai and P1 =
n⊕
i=1

P (i)bi . Then the g-vector of M is defined as

gM = (a1 − b1, a2 − b2, . . . , an − bn).

The g-vector of a τ -rigid pair (M,P ) is defined as gM − gP .

In general there are many A-modules having the same projective presentation, which implies
that g-vectors are in some sense ambiguous. However this ambiguity disappears when we restrict
ourselves to τ -tilting theory.
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Theorem 5.6. Let A be an algebra and letM andM ′ be two τ -rigid A-modules. Then gM = gM
′

if and only if M is isomorphic to M ′.

Although the spirit of the previous result can be found already in the work of Auslander and
Reiten [18], the first appearance of this result in this form was in the work on 2-Calabi-Yau
categories of Dehy and Keller [28]. Later, this result was adapted to the context of τ -tilting
theory in the works of Adachi, Iyama and Reiten [3] and later extended by Demonet, Iyama and
Jasso in [29] as follows.

Theorem 5.7. Let A be an algebra and let M and M ′ be two τ -rigid A-modules. Suppose that
(gM )i ≤ (gM

′
)i for every 1 ≤ i ≤ n, then M is a quotient of M ′. In particular gM = gM

′
if and

only if M is isomorphic to M ′.

In order to state the next result we need to fix some notation. Given a τ -tilting pair (M,P )

we fix a decomposition M =
⊕k

i=1Mi and P =
⊕n

j=k+1 Pj of M and P , respectively.

Theorem 5.8. Let (M,P ) be a τ -tilting pair. Then the set of g-vectors

{gM1 , . . . , gMk ,−gPk+1 , . . . ,−gPn}
of the indecomposable direct summands of M and P form a basis of Zn.

5.3. g-vectors, dimension vectors end the Euler form. Given a finite dimensional algebra
A, one can always associate to it a square matrix known as the Cartan matrix of the algebra as
follows.

Definition 5.9. Let A be an algebra and {P (1), . . . , P (n)} be a complete set of non-isomorphic
indecomposable projective A-modules. The Cartan matrix CA of A is the n× n matrix

CA := ([P (1)]|[P (2)]| . . . |[P (n)])

where the i-th column corresponds to the dimension vector [P (i)] of P (i) for all 1 ≤ i ≤ n.
The Euler characteristic of A is a Z-bilinear form

〈−,−〉A : K0(A)×K0(A)→ Z

defined as 〈[M ], [N ]〉A = [M ]TC−1A [N ], where [M ] and [N ] are though as column vectors.

Remark 5.10. The fact that the Euler form is well-defined is due to the fact that {[P (1)], . . . , [P (n)]}
forms a basis of Zn.

An important property of the Euler characteristic of an algebra is that provides important
homological information, as shown in the following proposition

Proposition 5.11. Let A be an algebra of finite global dimension s and let M,N be two A-
modules. Then

〈[M ], [N ]〉A =

s∑
i=0

(−1)i dimK(ExtiA(M,N))

where Ext0A(M,N) stands for HomA(M,N). In particular, if A is a hereditary algebra we have
that

〈[M ], [N ]〉A = dimK(HomA(M,N))− dimK(Ext1(M,N)).

The following theorem was proven at the beginning of the 1980’s by Auslander and Reiten in
[18] but went unnoticed for several decades. Recently, with the development of τ -tilting theory
this result came to light again and it is playing a key role in some of the latest developments of
this theory. To state the theorem, we denote by 〈−,−〉 : Rn ×Rn → R the classical dot product
in R
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Theorem 5.12. [18] Let M and N be modules over an algebra A. Then

〈gM , [N ]〉 = dimK(HomA(M,N))− dimK(Hom(N, τM)).

As a direct consequence of the previous result and the classical Auslander-Reiten formula we
have the following corollary.

Corollary 5.13. Let A be a hereditary algebra and let M and N be two A-modules. Then

〈gM , [N ]〉 = 〈[M ], [N ]〉A.

Based on this last corollary, the author is of the opinion that the pairing between g-vectors
and dimension vectors of modules is a τ -tilting version of the Euler form of the algebra.

5.4. The g-vector fan of the algebra. We know that each g-vector is a vector with n integer
coordinates. In this last subsection of the lecture notes, we explore the distribution of the g-
vectors of the indecomposable τ -rigid objectes in Rn.

In order to do that, we first need to associate a cone in Rn to each τ -rigid pair.

Definition 5.14. Let A be an algebra and let (M,P ) be a τ -rigid pair whose set of g-vectors is

{gM1 , . . . , gMk ,−gPk+1 , . . . ,−gPn}.
Then we define the cone C(M,P ) as

C(M,P ) =


k∑
i=1

αig
Mi −

t∑
j=k+1

αjg
Pj : αi ≥ 0 for every 1 ≤ i ≤ t

 .

The following result was shown by Demonet, Iyama and Jasso in [29].

Theorem 5.15. [29] Let A be an algebra and let (M1, P1) and (M2, P2) be two τ -rigid pairs.
Then C(M1,P1) ∩ C(M2,P2) 6= {0} if and only if there is a τ -rigid pair (M,P ) which is a direct
summand of both (M1, P1) and (M2, P2). Moreover, if (M,P ) is the maximal common direct
summand of (M1, P1) and (M2, P2) then C(M1,P1) ∩ C(M2,P2) = C(M,P ).

An important consequence of the previous result is that the g-vectors of indecomposable τ -
rigid pairs have a geometrical structure known as polyhedral fan. Hence, it is common to refer
the set of all g-vectors of indecomposable τ -rigid pairs as the g-vector fan of the algebra.

In particular, if our algebra is τ -tilting algebras we have that the g-vector fan of the algebra
has finitely many cones spanned by its g-vectors. Moreover, these cones of g-vectors fit together
very well, as was shown by Demonet, Iyama and Jasso in [29].

Theorem 5.16. [29] Let A be an algebra. Then A is τ -tilting finite if and only if

Rn =
⋃

(M,P ) τ-rigid

C(M,P ).

Note that the previous result characterises τ -tilting finite algebras, so we can complete Theo-
rem 4.24 as follows.

Theorem 5.17. Let A be an algebra. Then the following are equivalent.
(1) A is τ -tilting finite.
(2) There are finitely many indecomposable τ -rigid objects in modA.
(3) [29] There are finitely many torsion classes in modA.
(4) [30] There are finitely many bricks in modA.
(5) [55] The length of all bricks in modA is bounded.
(6) [29] The g-vector fan of A spans the whole Rn.
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