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‘ A brief Introduction about Matrix Orthogonal Polynomials

‘ A family of Jacobi type Polynomials associated to a differential opertor of
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Some comments about the algebra D(W) of matrix-valued differential operators
associated to our matrix weight W



INTRODUCTION

Given a self-adjoint positive definite matrix valued weight function W (t) (of
dimension N x N) consider the skew symmetric bilinear form defined for any
pair of matrix valued functions P(t) and Q(¢) by the numerical matrix

(P.Q) = (P,Q)w = / P(W(£)Q* (t)dt,

R

where Q*(t) denotes the conjugate transpose of Q(t).

There exists a sequence (P,,), of matrix polynomials, orthonormal with re-
spect to W and with P,, of degree n.

The sequence (P,), is unique up to a product with a unitary matrix.



INTRODUCTION

Any sequence of orthonormal matrix valued polynomials (FP,), satisfies a

ALP, 1(t) + gqﬁ(t) + Ani1Pay1 () = tPy (1),

where P_q is the zero matrix and Fy is non singular.

Considering possible applications of MOP it is natural to concentrate
on those cases where some extra property holds.



MATRIX ORTHOGONAL POLYNOMIALS AND DIFFERENTIAL EQUATIONS

In the nineties, A. Duran, Rocky Mountain J. Math (1997) raises the problem
of characterizing M OP which satisty second order differential equations.

he matrix Bochner Problem

Characterize all families of MOP satisfying

Polo,r = P, Fy(t) + P, Fi(t) + PoFy(t) = AnPy(t), n >0

Right hand side differential operator
lo.r = D*°Fy(t) + D' Fi(t) + D°Fy(2).
P, eigenfunctions, A,, eigenvalues:

Pn€2,R - AnPn



MATRIX ORTHOGONAL POLYNOMIALS AND DIFFERENTIAL EQUATIONS

What does this mean?

The first examples of MOP non reducible to scalar satistying 2nd order
differential equations appeared using representations of matrix valued spherical
functions associated to symmetric spaces F.A. Grinbaum, I. Pacharoni, J. Tirao

(2003).

In the framework of the general theory of orthogonal polynomials appeared
first in

e Duran-Grunbaum , Orthogonal Matriz Polynomials satisfying differential
equations Int. Math Res. Not. 2004.



MATRIX ORTHOGONAL POLYNOMIALS AND DIFFERENTIAL EQUATIONS

Search for an orthogonality weight W and a differential operator D such
that the pair (W, D) “does not reduce to scalar”.

The pair (W, D) “reduces to scalar” if there exists a nonsingular matrix S
(independent of t) for which:

Diff op. with diagonal
coefficients

W(t) = SW(#)S*, (S*)"'DS*

Diagonal Matrix Weight




MATRIX ORTHOGONAL POLYNOMIALS AND DIFFERENTIAL EQUATIONS

The collection of examples of MOP in connection with differential equations has been
growing in the last 20 years (see for instance a series of papers by several different
authors: A. Duran, A. Grinbaum, A. Tirao, |. Pacharoni, M.C., M.D. de la Iglesia, P.Roman,
|. Zurrian, E. Koelink, M. van Pruijssen, A.M. de los Rios...)

The problem of giving a general classification of these families of matrix-valued orthogonal
plynomials as solutions of the so called Matrix Bochner Problem has been also recently

addressed in R. Casper and M. Yakimov, The matrix Bochner problem, Amer. J. Math. (2021),
to appear, arXiv:1803.04405.

A new family of matrix-valued orthogonal polynomials of size 2x2 was introduced in:

C. Calderodn, Y. Gonzalez, |. Pacharoni, S. Simondi, and |. Zurrian, 2x2 hypergeometric
operators with diagonal eigenvalues, J. Approx. Theory, 248:105299, 17 pp (2019).

which are common eigenfunctions of a differential operator of hypergeometric type, in the

sense defined by A. Tirao in The matrix-valued hypergeometric equation, Proc. Natl. Acad.
Sci. U.S.A., 100(14), (2003).




THE FAMILY OF MATRIX ORTHOGONAL POLYNOMIALS ASSOCIATED TO 2X2
HYPERGEOMETRIC OPERATORS WIT DIAGONAL EIGENVALUES

A new family of matrix-valued orthogonal polynomials of size 2x2 introduced in:

C. Calderénn, Y. Gonzalez, |. Pacharoni, S. Simondi, and |. Zurrian, 2x2 hypergeometric
operators with diagonal eigenvalues, J. Approx. Theory, 248:105299, 17 pp (2019).

which are common eigenfunctions of a differential operator of hypergeometric type, in the
sense defined by A. Tirao (2003):

d2 d . 2X2
D = — Ll (O i (O € ©

Jacobi parameters

In particular, the polynomials (P,,Sf"ﬁ ’v))nzo introduced”py C. Calderén et

al. are orthogonal with respect to a weight matrix W(®#?) are common eigen-
functions of an hypergeometric operator with matrix eigenvalues A,,, which are
diagonal matrices with no repetition in their entries:

e A O Ap=—-n(n—1)—n(a+6+4) —v,
AT un=-nn—1) —n(a+5+4).

The commutativity of the matrix-valued eigenvalues could play an important role in
the context of time-and-band limiting



The weight matrix

Consider: a2 E) =2 (1 — ) WSS ar R (NI
e a, B, vER, a,f>—1and |a— 6| < |v]| <a+ [ +2.
. 2
=4 Bl o) (o 1) (@4 B+2)t—(a+1)
W(awBaU) (t) tholl Kv,—p
V(k—v,8 +2) 2
(a+B8+2)t—(a+1) P t* — (k—wp+2)t+ (a4 1)
_rU,_B
for the sake of clearness we will use the notation: R e =0 e ) = )

T —

W(@B:v) ig an irreducible matrix-weight and the hypergeometric type differ-
ential operator given by

d? d
D = — 1 — st it =t g 1 2X2.
—olll = Olpe (Ol S it UL TR0 E €
where:
C o _|_ 1 P /{_va_/B /{’U,—IB V O
L v v ,U=(a+B8+4 IandV:( ),
_K’,_v’_ﬁ o 1 I li%_[g ( 5 ) O O

v v

is symmetric with respect to the matrix-weight W (e8:2)



D—d—QF (t)+iF (t) + F
T ode2 dt ! %

The differential operator D is symmetric with respect to W if

I, @i RO A el 2 ) = O

The differential operator D is symmetric with respect to W if and only if
(Duran-Grunbaum, 2004)

Symmetry Equations

BW = WF}
(BT — RO g = T

with the boundary conditions

lim "Fy()W(t) =0, lim " (Fy()W (@) — FL()W () =0

t— 100 t— T oo



THE RODRIGUES FORMULA

Useful tool

Theorem, A. Duran, Int. Math. Research Notices (2009) Let F5, F; and Fy
be matrix polynomials of degrees not larger than 2, 1, and 0, respectively. Let
W, R, be N x N matrix functions twice and n times differentiable, respectively,
in an open set €2 of the real line. Assume that W (t) is nonsingular for ¢ €
and that satisfies the symmetry equations.

If for a matrix A,,, the function R,, satisfies

e (e E + n(FS)]) + R, {Fg +n(FF) + (Z) (F;)”} = AnRon.

then P, satisfies

D (O PO ) B (R ==



THE RODRIGUES FORMULA
Theorem (C. Calderon, M.C)

Consider the matrix-weight W(t) = W(%#v)(¢) given by the expression
above. Consider the matrix-valued functions (FP,), >, and (R;),>, defined by

RO () (v (),

liivigzaﬂ:viﬁ.

—

O‘)Bﬂ) Cn O
R,1<172 ) — Rn,Z N (O dn> )
( cn(cv+2n+2+6)f<cv,_5\
_Cn/{ﬂvv_ﬁ
R(a,B,v) i ok 1 (livﬁ + 2n + 2)
n,1 Toe dn(a+2n+24+ B)k_y 5 I !
— rfRe A
\ (k—v,8 +2n+2) A )
C /{/07_5 —c /{va_ﬁ
Plesoit ,  ldnta| (st 2n+2) " (Kv,6 + 20 + 2)
’I’L,O = n70 iLE v d /{_U’_IB _d /{—’U,—IB )

(Kk—v g +2n + 2) "(k_yp+2n+2)

where (¢, ), and (d,), are arbitrary sequences of complex numbers. Then
P, (t) is a polynomial of degree n with nonsingular leading coefficient equal to

(Bo—platB+nt3), : o — 8| < |v| < a+ B +2
n Cn
(=)™ (0,6 +2) |
0 K—U,—B(&+B+n+3)nd ’
\ ()" ol +2)
(P (t))n is a sequence of MOP with respect to W




THE RODRIGUES FORMULA

Theorem (C. Calderon, M.C)
Consider the matrix-weight W (t) = W(®5v)(¢) given by the expression
above. Consider the matrix-valued functions (P,), >, and (R,),~ defined by

ERGE (R ()" (W (),
R () — e (1 - o™ (RUP2 + RSP e REPOT

Main Tools in the Proof:

We use the following Rodrigues formula for the classical Jacobi polynomial
p%a,ﬁ) il -
= {t““ @e= t)”*ﬂ = nlt® (1 — t)° pl@f) (1 — 2¢),

where

D) — 0

I'(n+a+1) de (n)r(n+a+5+1+j)

Pl (n+a+B+1) < \J )

Thus, we obtain The ortogonality of Pn follows
from this expression

RN — nlt® (1 —t)° (pga“»ﬁ)u — e o e G R = ] — zt)Rn,o) .

T wwite (U (G R s U s e TG
one verifies that P, (t) = (R, (t))(n) (W (t))” " is a polynomial of degree n



THE RODRIGUES FORMULA

R:l:’l),:l:ﬁ :ij:/UZIZ/[j .
Ve are considering the Jacobi type weight -matrix: p— ——

e A e e R RSB e = (L)
where:
V(Ko g + 2)
W (@bB:v) () = e
(a+B8+2)t— (a+1)

t° — (kg +2)t+ (a+1) GRS (o - 1)

'Y 2 ’
_Uleoup $2) AT

K_U7_B

Collorary: The sequence of monic polynomials, orthogonal w.r.t W(5:¥)(¢) defined by

the Rodrigues formula: qua’ﬂ’v)(t) = (Rffza’ﬁ’v)(t))m) (W(O"B"">(t))_1, can be
written as:

B 00— 20c0P + 550 - 20eiP) + D (0 — 20 P v

for certain matrix valued entries C,,(f;’ﬁ ’v), e ()



ORTHONORMAL POLYNOMIALS Ftvits =atvEf.

——

Rodrigues formula allows us to compute the norm of the sequence of monic matrix- valued OP:

(kv +2) (kv +2n+4)

2_n'UB(&+n+275+n+2) liv7_5(liv75—|—2n—|—2) ¢
— (()4—|—n—|—3—|—6)n . (Kev,g+2) (Kvpg+2n+4)
Having the norm of monic OP one can write the recurrence relation for the sequence of
orthonormal polynomials:

péoz,ﬂ,fv)

i K—v,—8 (/ﬁ:_v,ﬁ + 2n + 2)

tﬁéa,ﬁ,v) (t) ik g(aaﬁﬂj)ﬁ(aaﬁﬂj) (t) _|_ Eéa,ﬁ,v)ﬁéa,ﬂ,v) (t) —I_ (Zq(@a,ﬂ,fu)) ﬁrr(LO_éaleU) (t)’

n+1 n+1
| o |
with: A?(%O_tf’”) e péa,ﬁ,v) ‘ qui,lﬂ,v) ,
5 =]
B,’(L(X’B’IU) = qua767v> B’r(),a,B’U) |PT(LO‘757'U) :
Bf,(f’ﬁ ) are the entries of the recurrence for the monic OP already given in

C. Calderén et al., JAT, (2019):

a,b,v) __ a,B,v o,P,v o,p,v o,p,v a,B,v
(PR = PR 4 B Pes) 4 Al P

Having the recurrence relation for the orthonormal OP one can write the €=D formula:

n

@=0)Y (F™) @ B (@) =

e D 9 § (o v *Naa y U Naa U E NOé, 7U~O€ v
e ()(A07) P () (B () At Sl



THE SEQUENCE OF DERIVATIVES OF THE MOP

It is very well known that in the case of classical orthogonal polynomials
(Py), can be characterized by the orthogonality of their derivatives (P}, ;):

Classical orthogonal polynomials (P, ), can be characterized equivalently by
ANlic nerelationtbetween P, and P, P, P, _;:

These properties are also equivalent to a Pearson type equation for the
orthogonality functional:

D(u®) = uV¥, deg(®) <2, deg(V)=1

- T. S. Chihara, an introduction to Orthogonal Polynomials, Gordon and Breach, NY, 1978

- S. Bonan, D. S. Lubinsky, P. Nevai, T. S. Chihara, orthogonal polynomials and their
derivatives, SIAM J. Math. Anal. 18 (1987)

- P. Maroni, Connected problems, Variations arround classical orthogonal polynomials, J.
Comput. Appl. Math. 48 (1-2) (1993) 133-155.

- F. Marcellan, A. Branquinho, J. Petronilho, Classical orthogonal polynomials: a functional
approach, Acta Appl. Math. 34 (3) (1994) 283-303.



THE SEQUENCE OF DERIVATIVES OF THE MOP

A first step to determine whether or not this characterizations hold in the matrix setting was
given in:

- A. Duran, F.A. Grinbaum, Orthogonal Polynomials, scalar type Rodriges formulas and
Pearson equations, J. Approx. Theory 134 (2005).

Here one may see an example of MOP satisfying a second order differential equation but not
the required Pearson-type equation in order for the sequence of derivatives to be orthogonal
thus not all families of MOP have orthogonal derivatives.



THE SEQUENCE OF DERIVATIVES OF THE MOP
A nice characterization of these properties for the matrix setting was given in:

:,y? 8 ‘4 Avadable onkne at www scencedrect com
w’&¥§ . e, - o o JOumNAL OF
-:-‘»%ﬁ' *.” ScienceDirect Approximation

. Theory
ELSEVIER Journal of Approximation Theory 146 (2007) 174 -211

www.elsevier.com/ocate/jat

Matrix orthogonal polynomials whose derivatives are
also orthogonal >

M.J. Cantero, L. Moral*, L. Veldzquez

Departamento de Matemdtica Aplicade, Universidad de Zaragoza, SX00Y Zaragoze, Spain
Received 5 Apnil 2006; received 1n revised form 27 September 2006; acoepted 17 October 2006

Comenumcated by Guillermo Lépez Lagomasino
Availeble online 31 December 2006

Abstract

In this paper we prove some characterizations of the matrix orthogonal polynomials whose derivatives
are also orthogonal, which generalize other known ones in the scalar case. In particular, we prove that the
corresponding orthogonality matrix functional is characterized by a Pearson-type equation with two matrix
polynomials of degree not greater than 2 and 1. The proofs are given for a general sequence of matrix
orthogonal polynomials, not necessarily associated with a hermitian functional. We give several examples
of non-diagonalizable positive definite weight matrices satisfying a Pearson-type equation, which show that
the previous results are non-trivial even in the positive definite case.

A detailed analysis is made for the class of matrix functionals which satisfy a Pearson-type equation whose
polynomial of degree not greater than 2 is scalar. We characterize the Pearson-type equations of this kind that
yield a sequence of matrix orthogonal polynomials, and we prove that these matrix orthogonal polynomials
satisfy a second order differential equation even in the non-hermitian case. Finally, we prove and improve a
conjecture of Durdn and Grinbaum concerning the triviality of this class in the positive definite case, while
some examples show the non-triviality for hermitian functionals which are not positive definite.

In particular, the authors show that if a matrix-valued functional satisfies a Pearson type equation then
the sequence of derivatives of the corresponding MOP is also orthogonal.

u is a Po 1 functional if there exist matrix-valued poynomials ®, deg(®) < 2,
U, deg(V¥) < 1, with det(®) # 0 such that D(u®) = uW¥

“Matrix-valued weights belonging to Py 1 class can be considered as matrix
generalizations of the classical scalar orthogonal polynomials”



THE SEQUENCE OF DERIVATIVES OF THE MOP

We prove that polynomials in the sequence of derivatives of the orthogonal

matrix polynomials (PT(LO"B ’U)) are also orthogonal by obtaining a Pearson
n>0

equation for the weight matrix W (v (¢).

Consider the sequence of monic polynomials corresponding to the derivative
of order k of the monic polynomial piP ’U)(t), for n > k:

k
(n s k)' d P(a"B’U) (t)

Péa,ﬁ,v,k) (t) = et




THE PEARSON EQUATION Kivtg = QEVED.
Let a,8 > —(k+1) and |a— 8| < |v|<a+B8+2(k+1). We consider tlieme=— —

weight matrix

W) () = Wl@Bvk) (1) = gtk (1 — )PHF pr(ebuk) (1) where W% (1) = W2 4+ wiF¢ + WP

with

) s Ky,— B (k) 1)
en 2R e _(a+k+1)< .>’

0
\ /{_Ua_ﬁ )
(i S — Ry, Q + 6 1 1
I (a+/3 _K_U,B) +2(k+1) (1 1).

Theorem (M.C, C. Calderén) The matrix-weight W (*) satisfies the follow-
ing Pearson equation,

/
(W<k> (1) ) (t)) —W® @) v® (£), k>0 with
®F) (1) = A5¢2 + AFt + AF and TP (¢) = BFt + B,

Taking into account that deg (®*)(¢)) = 2 and deg (¥*)(¢)) = 1, we obtain
from [CMV, corollary 3.10] the following

Corollary The sequence of polynomials (Péa’ﬁ ’U’k)) g is orthogonal with

respect to the matrix-valued weight W)k > 1.



THE PEARSON EQUATION fitptp =TV E[ .

— —

W(k) (t) = W(a,ﬁ,v,k) (t) it toH—k (1 i t)B—HC /Wv(oz,ﬁ,v,k) (t)
Theorem The matrix-weight W (%) satisfies the following Pearson equation,

/
(W("“) (1) @) (t)) —W® ) ¥® (£), k>0 with
k) (1) = A2 4 AR¢ 4+ AE and W) () = BF¢ + BE,

(_/{U,B—I-Q(k—FQ) 0 \
AE = Ko g+ 2(k+1)
0 kw1t 2(k+2) |7
\ kv +2(k+1))
i = ; ( : “”’5) — Ak,
w6 A A S I G e A e NG 0

Akz S Ry, —pR—v,—8 (—1 1)
U il A R e A A L
B = (g =t G A
1 et
B = (—(a+k+1)[— - ( "—0”7‘5 - . 5))/\’5

1 2k + 4 s 5
¥ <a+/3+ k+ A’f+8f>< kvp—2(k+1) 0 )

20V v




THE SEQUENCE OF DERIVATIVES OF THE MOP
R4v,+83 :oz:I:v:I:b’ ]

——

Consider the sequence of monic polynomials corresponding to the derivative
of order k of the monic polynomial P\*” ’v)(t), for n > k:

o, B3,v (n_k)' dk o, 3,v
pisod (1) = W RS pso)

One has that

PT(LOé7B7U7k>D(a757U7k) — AnP,r(LOé,B7,U’k), n > k’

where ,

d d
N P L e R S AN ), L 1
=il = el (O )

g T Tl Rv,—B
= v O
o® = ( LI %,5) UM —G@+pr2e+R)] V(o ).

U (%

TR Noe An=—nn—1)—n(a+6+4) —v,
B : tp=-nn—1) —n(a+5+4).



THE SEQUENCE OF DERIVATIVES OF THE MOP
R4+v,+83 :Oz:|:fU:|:[5 !

Let a,0 > —(k+1) and |a — B8] < |[v| < a+ B+ 2(k + 1). We consider the
weight matrix

W) () = W@bvk) () = otk (1 — ¢)PHF pr(ebok) () where W(Fv%) (1) = WiFe2 4+ w®e 4 WP,

with
(5) i 3 @ 5 1
e 0 B 2R i _(O‘+k+1)(—1 1)’
\ R p
(k) — i i e (Bhe o) Rt
W, (a Iy K_@)ﬂ) +2(k+1) (1 i

Proposition W () is an irreducible matrix-weight and the differential hypergeometric
operator D(®8:v:F) ig symmetric with respect to the matrix-weight W),



THE SEQUENCE OF DERIVATIVES OF THE MOP

We have the following explicit expression for the sequence of polynomials
(PT(LO"B ’v’k)) ; in terms of hypergeometric function o H; (U, V, C;t) defined by
n>
J. A. Tirao in The matrix-valued hypergeometric equation, Proc. Natl. Acad.

Sci. U.S.A., 100(14):8138-8141 (2003).

x 2]
(PLAo®) (1)) = oHy (UD,V + 2o, CB5t) (n— ) [ OB, UB, ¥ 40,
(1)
— |
oHy (UV 4 1, C93) (n = 0! [C9,00,V 4] (0

where:

+J
2Hy (U, V,C;t) = [C,U, V], Fo—, Fo € C?,
>0 J:
j=
and [C,U, V], is defined inductively as [C,U, V], = I and
[07 U7 V]j-|—1 = (C _|_j)_1 (.] (.] 3% 1)I+]U T V) [Cv U7 V]j ;

1 0



THE SEQUENCE OF DERIVATIVES OF THE MOP

* —1
(quo"ﬁ’””‘“) (t)) = L (U(’“), V + An, C®, t) (n — k)! [C("“), gl 7 )\n} , (é 8) i

~1 Vo
(k) ®. 4\ (1 — B [o® 70
2H1(U R ,t)(n k).[c 8] ’V+“”L_k(o 1).

Indeed, the polynomials (qua’ﬁ ’U’k)) are common eigenfuncions of the
n>k

matrix hypergeometric type operator

2

d d
e ) — (G P T T

with diagonal eigenvalue A,,

The fact that the eigenvalue is diagonal implies that the matrix equation
can be written as two vectorial hypergeometric equations as in (Theorem 5, J.
Tirao, The matrix hypergeometric equation, 2003) and the solutions of these

equations are the columns of (R(LO"B ’U’k)) :
n>k

Since the eigenvalues of the matrices C*), 3+« + k and 1 + o + k, are non
negative integers for all £ > 1, then these solutions are hypergeometric vector
functions.



SHIFT OPERATORS

Following the ideas In:

. E.Koelink, A. de los Rios, and P.Roman, Matrix-valued Gegenbauer-type polynomials, Constr.
Approx., 46(3):459--487 (2017).

Consider the sequence of monic polynomials corresponding to the derivative
of order k of the monic polynomial P{*” ’v)(t), for n > k:

k
a,B,v,k e (n Ear k)' d o, B,v
plsn () = ELE pasm g
Consider the monic n-degree polynomials P,,g(j_lf o) (t), n > 0, orthogonal
TN AGE

We use Pearson equation to give explicit lowering and rising operators for

the polynomials (Péi,f ’U’k))
n>0

Moreover, from the existence of the shift operators we deduce a Rodrigues

formula for the sequence of derivatives (quilf ’v’k)> , and we find a matrix-
n>0

valued differential operator for which these matrix-valued polynomials are eigen-
functions in terms of the entries of Pearson equation.



SHIFT OPERATORS Ktptg =atv=Ef.

For any pair of matrix-valued functions P and (), we denote

P.Qy= [ POWD Q@)

Proposition Let 1¥) be the first order matrix-valued right differential
operator

d * *
1 = Z(@® (1) + (89 (1))

e e (WR) — L2 (W*+D) and o* : L2 (WETD) — L2 (W) satisfy

dt
()., =),

lemma The following identity holds true

n— o,B,v,k
In(k—i— i) ,n(k+1)77(k) Rl C§P£+,f )’

((liv,ﬁ+2(]€—|—1—|—n)) 0 \

n > 1, for a given k > 0

R (kv +2(k+1))
Some basic facts: \ (K—v,s +2(k+1)) /
d o,B,v,k o,B,v,k+1 a,B,v,k+1 : : a,B,v,k
%Pviﬂf ; (t) = ”P7§,+if h Wk P7§+,f )n(k) is a multiple of Pf,§+l§ ),



RODRIGUES FORMULA

Theorem

P(aaﬁavak)

The polynomials ( S

) , n > 1, satisty the following Rodrigues
n>0

formula

% n ~1
PO 0= @) (HV o) (O o)

Proof: For any matrix-valued function () we write

k) _ 9Q

(k) (k)
(@M +Q(uM)"

Qn

On has the Pearson equation:

(W (1) B (t))' — Wk O T® (1), k>0

and the identities:

W(a,ﬁ,v,k—H) (t) — W(O%B/U?k) (t) @(k) (t) :

we obtain

ar = (aw) ()

Iterating, it gives
o put et

2 a : L
Q77<k+n b 'U(k+1)77(k) = i (QW(k+ )) (W(k)) : ¢ apply previous lemma



THE DIFFERENTIAL OPERATOR

W(k) (t) — W(O‘7577}7k) (t) — ta—|—k (1 oy t)6+k /M\//'(O{,B,’U,k) (t)
Corollary the differential operator
d d? d
R (e e (R e R O R
1® o 2 = 2 (@W (1) + = (T® (1)
is symmetric with respect to W®*) (¢) for all k € Np.

Moreover, the polynomials (Pfr(ﬁ_lf ’U’k)) are eigenfunctions of the operator
n>0

E®) with eigenvalue

[ fos+2(k+2) \
B :

(k) — Ko,
An(E )—n(n+a+/5’+3+2k) kst 2k +2)

\ : R D N

One also has the associated second order differential operator of hypergeo-
metric type

d? d
IS (] gy %(((ﬂk))* =

dt?
with diagonal eigenvalue A, (D)) O The operators E*) and D*) commute.
~ d
$ The Darboux transform E(¥) = % o n(k) of the

operator E%) is not symmetric with respect to W#),



THE ALGEBRA OF DIFFERENTIAL OPERATORS D(W)

R4v,+83 :oz:I:v:I:b’ :
Coming back to the Jacobl type weight-matrix we are considering; — —

Wb () = ¢ (1 — t)° WAV (1), forte (0,1),
where:
V(Ky,p + 2)
W (@B (4) = Ko,—B
(a+68+2)t—(a+1)

i — (s SR 26 == == 1) (o= G- — (o - 11

e 2 ’
s Mo )t2 — (e A ()

I{_U?_B

We consider the algebra of matrix ditferential operators having as eigentunctions
a sequence of polynomials (F,). -4, orthogonal with respect to the weight matrix

W = Wb je,

T e N (D) B, A (D) € G fonallinie

The definition of D(W') does not depend on the particular sequence of
orthogonal polynomials (Griinbaum-Tirao, 2007).

We show that the dimension of the complex vector space Dy of differential
operators in D(W) of order at most two is dim Dy = 5.



THE ALGEBRA OF DIFFERENTIAL OPERATORS D/W)
R4+v,4+8 :ozj:v:l:[)’ :

We exhibit a set of symmetric operators { D1, Do, D3, Dy, I} which'is a basis
for the differential operators of order at most two in D(W). The corresponding
eigenvalues for the differential operators D¢, Dy, D3 and D, are

B (ko p +2(n 1))k p +2(n+2)] ©
(™ i 0)
S (CIDL 0 — <£(KU75+2) (Ko, +4) 0 )7
0 mM+a+6+3)n
! 0 1
An(Ds) = (kv +2(1+m))(5oup+2(2+n)) <O O)
 (Kep+ 2014 1)) (Ko + 224 1)) (K_v,s +2) Ko g (0 0)
4k_y,—g (Ko,p +2) @)
D — —i(/43_@,5+2(1+n))(/<;_,0,5+2(2+n)) (8 é)

(kv t+2(1+n)) (ko +2(2+n))(kvpg+2)Ku,—p (0 0
4k v, (Ko, +2) L
o The algebra D (W) is not commutative.

¢ There are no operators of order one in the algebra D(W).
The existence of operators of order one associated to a matrix valued weight W(x) was initially
considered by M. C. - A. Grinbaum (J. Nonlinear Math. Phys., 2005) and A. Duran- M. D. de la Iglesia, (J.

Approx Theory, 2008).
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For a given matrix-valued weight W, the analysis of the algebra D(W)
of all differential operators that have a sequence of matrix-valued orthogonal
polynomials with respect to W as eigenfunctions has received much attention
in the literature in the last fifteen years
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FURTHER WORK

To use the family of OP studied here in the context of time-and-band lim-
iting, where the commutativity of the matrix valued eigenvalues A,, could play
an important role.

Consider the sequence of orthonormal polynomials @,, w.r.t. W(z).

One considers the Integral kernel

Kn(z,y) =Y Qu@)0n().

n=0

It defines an integral operator I acting on any function F' € L*(W (z)) as

)= /O Pl i el

One searchs for an operator

such that



FURTHER WORK

The sequence of monic polynomials P\*"") (t), orthogonal w.r.t W (t) satis-
fies the differential equation

According to a result of A, Grunbaum, I. Pacharoni and I. Zurrian, IMRN

(2018)
Assuming the following hypothesis on the weight W and the differential

operator D: i
There exists a matrix M, independent of the variables x,n and the band

parameter {2, but possibly depending on the time parameter /N such that:

S~ I~

(M — z(Any1 + An)W (z) = W(z)(M — 2(An41+ AN))" =0,
then for the time-band-limiting integral operator given by

i ) / ool i Delng

the commuting differential operator can be written as

T=$D+D$—QQD—(/\N_|_1—|—/\N)$—|—]/\Z.

e Do we have such a matrix M in this case”



