
AN INTRODUCTION TO DIAGRAMMATIC SOERGEL

BIMODULES

AMIT HAZI

1. Motivation

Let g be a semisimple Lie algebra over C, with a Cartan subalgebra h and Borel
subalgebra b and. The Cartan subalgebra h gives rise to a root system Φ ⊂ h∗,
and the choice of Borel subalgebra corresponds to a selection of simple roots Σ and
positive roots Φ+ inside Φ. The root system Φ induces a Weyl group W generated
by the set S of reflections in the simple roots Σ. Inside h∗ we also have

Λ = {λ ∈ h∗ : 〈α∨, λ〉 ∈ Z for all α ∈ Σ}(1.1)

⊂

Λ+ = {λ ∈ h∗ : 〈α∨, λ〉 ∈ Z≥0 for all α ∈ Σ}(1.2)

Finally let Ug denote the universal enveloping algebra of g. We will consider g-
modules and Ug-modules interchangeably.

For each λ ∈ Λ, define the Verma module M(λ) = Ug⊗UbCλ. (Here Ub denotes
the universal enveloping algebra of b, while Cλ denotes the 1-dimensional b-module

given by b → h
λ−→ C.) Each Verma module M(λ) has a unique simple quotient

L(λ), which is the unique simple weight module of highest weight λ. The simple
module L(λ) is finite dimensional if and only if λ ∈ Λ+. However, for general λ
both M(λ) and L(λ) are usually infinite-dimensional.

The category Ug−mod of all Ug-modules is too large to be useful. Instead we
restrict our attention to a smaller category which contains Verma modules and
highest weight simple modules.

Definition 1.1. Let λ ∈ Λ+, and write Ug−modUh−ss for the category of g-
modules which are semisimple as h-modules. (In other words, Ug−modUh−ss is
the category of weight modules). We define Oλ to be the minimal full subcategory
of Ug−modUh−ss which contains M(λ) and is closed under submodules, quotients,
and extensions.

It is obvious that Oλ is an abelian category. It is somewhat less obvious that
Oλ is in fact a finite abelian category, with finite length objects, finitely many
isomorphism classes of simple objects, and finite-dimensional Hom-spaces.

Remark 1.2. The above definition ofOλ is non-standard. Most treatments (e.g. [10])
first define the BGG category O which contains all Verma modules and all highest
weight simple modules. Then Oλ is defined for arbitrary λ ∈ h∗ as a subcategory of
O with a certain prescribed action of the centre Zg of Ug. In general Oλ is a union
of blocks of O, and when λ ∈ Λ+, one can show that Oλ is the block containing
L(λ).

Example 1.3. Suppose g = sl2. The corresponding root system Φ is of Dynkin
type A1, with Weyl group W = {1, s}. Within h∗ there are obvious identifications
Λ ∼= Z and Λ+ ∼= Z≥0. Let n ∈ Z≥0. The indecomposable objects in On are L(n),
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L(−n− 2) = M(−n− 2), M(n) = P (n), and P (−n− 2). The structure of the last
two modules are given by the exact sequences

0 L(−n− 2) M(n) L(n) 0

0 M(n) P (−n− 2) M(−n− 2) 0

Let ρ = 1
2

∑
α∈Φ+ α be the half-sum of the positive roots. For w ∈W and λ ∈ h∗

we define the following shift

(1.3) w · λ = w(λ+ ρ)− ρ

of the usual Weyl group action, called the dot action. The dot action parametrises
several sets of modules in Oλ.

Theorem 1.4. There are bijections

{simple modules in Oλ} 3 L(w · λ)

w ∈W {Verma modules in Oλ} 3M(w · λ)

{projective objects in Oλ} 3 P (w · λ)

Here P (w · λ) denotes the projective cover of L(w · λ) in Oλ.

We can say a little more about the structure of the projectives.

Proposition 1.5. For w ∈W there is a sequence of submodules

0 = P0 < P1 < · · · < Pn = P (w · λ)

with Pi/Pi−1 isomorphic to a Verma module and in particular Pn/Pn−1
∼= M(w ·λ).

Since Oλ is a finite abelian category, it is equivalent to a category of modules
over some finite-dimensional algebra.

Theorem 1.6. There is a finite-dimensional algebra A such that for any λ ∈ Λ+,
Oλ ' A−modfd.

A natural problem is to find a concrete presentation of the algebra A. The
algebra A is Morita equivalent to

EndOλ

(⊕
w∈W

P (w · λ)

)
,

so this problem is equivalent (in some sense) to understanding projectives and mor-
phisms between them. Counter-intuitively, it turns out to be more effective to
investigate functors acting on the category of projectives and morphisms (i.e. nat-
ural transformations) between them.

Proposition 1.7. Let s ∈ S. There is an exact selfadjoint functor θs : Oλ −→ Oλ
which preserves projectives. Moreover if w ∈W with `(ws) > `(w) there is an exact
sequence

0 M(w · λ) θs(M(w · λ)) ∼= θs(M(ws · λ)) M(ws · λ) 0 .

Finally, if st · · ·u is a reduced expression for w−1 in terms of simple reflections in
S, then P (w · λ) is a direct summand of θsθt · · · θu(M(λ)).
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Thus every natural transformation

θsθt · · · θu −→ θs′θt′ · · · θu′

for reduced expressions st · · ·u and s′t′ · · ·u′ induces a homomorphism

θsθt · · · θu(M(λ)) −→ θs′θt′ · · · θu′(M(λ))

of projectives. In fact, it can be shown that all such homomorphisms of projectives
are induced in this way [10, Theorem 10.7].

Theorem 1.8 ([14, 16]). The space Hom(θsθt · · · θu, θs′ , θt′ · · · θu′) can be described
entirely in terms of bimodules over C[h].

More precisely, there are C[h]-bimodules Bs, Bt, Bu, . . . such that

Hom(θsθt · · · θu, θs′θt′θu′) ∼= C⊗HomC[h]⊗C[h](Bs⊗Bt⊗· · ·⊗Bu, Bs′⊗Bt′⊗· · ·⊗Bu′).

Such bimodules are today called (classical) Soergel bimodules, and can be used to
give a presentation of A as follows. Fix a reduced expression for each w ∈W . Then
A is Morita equivalent to⊕

w,w′∈W
w=st···u

w′=s′t′···u′

C⊗HomC[h]⊗C[h](Bs ⊗Bt ⊗ · · · ⊗Bu, Bs′ ⊗Bt′ ⊗ · · · ⊗Bu′),

where st · · ·u and s′t′ · · ·u′ are reduced expressions.
It is an amazing fact that Soergel bimodules make sense for arbitrary Coxeter

groups, not just Weyl groups. This suggests that we should define “category Oλ”
for arbitrary Coxeter groups in terms of Soergel bimodules.

Theorem 1.9 ([12], [6, 5, 9]). The monoidal category of Soergel bimodules has an
explicit diagrammatic presentation.

Equivalently, the finite-dimensional algebra A above has a presentation as a
diagram algebra. In this context, a diagrammatic presentation means a presentation
of a (strict) monoidal category using string diagrams. The essence of this approach
is summarized in Table 1. In short, a morphism in a monoidal category corresponds
to a diagram or a linear combination of diagrams. The sequence of colours of
the edges which meet the bottom and top of the diagram give the domain and
codomain of the corresponding morphism respectively. Vertical concatenation of
diagrams corresponds to composition of morphisms, while horizontal concatenation
corresponds to the tensor product of morphisms.

There are several advantages of the diagrammatic approach to Soergel bimodules
over classical Soergel bimodules. In general, presenting a monoidal category dia-
grammatically makes bifunctoriality of the tensor product visually obvious through
rectilinear isotopy of diagrams. In the specific case of Soergel bimodules, there are
several other “visually intuitive” relations which we will see later. More impor-
tantly, classical Soergel bimodules sometimes behave poorly over fields of positive
characteristic, while diagrammatic Soergel bimodules remain well behaved. For
applications to modular representation theory it is therefore easiest to work in the
diagrammatic category.
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Table 1. A summary of the diagrammatic approach to monoidal categories.



DIAGRAMMATIC SOERGEL BIMODULES 5

2. The diagrammatic category D of Soergel bimodules

Let (W,S) be a Coxeter system. In other words, W is a group with a presentation

W = 〈S | ∀s, t ∈ S, (st)mst = 1〉

for certain positive integers mst, with mst = mts and mss = 1 for all s, t ∈ S.

Definition 2.1. Let k be a field of characteristic 6= 2. A realization of (W,S) over
k consists of a free, finite rank k-module h along with subsets {α∨s : s ∈ S} ⊂ h and
{αs : s ∈ S} ⊂ h∗ such that

(i) 〈α∨s , αs〉 = 2 for all s ∈ S;
(ii) the assignment

s(λ) = λ− 〈α∨s , λ〉αs
for all s ∈ S and λ ∈ h∗ defines a representation of W on h∗.

(iii) the technical condition [9, (3.3)] is satisfied.

Example 2.2.

(1) Let g be a complex semisimple Lie algebra, and let b be a choice of Borel
subalgebra. The Cartan subalgebra h with the usual simple roots and
coroots is a C-realization of the Weyl group W .

(2) Let k be an algebraically closed field of characteristic p > 0, and let G be
a semisimple algebraic group over k with maximal torus T and cocharacter
group X(T ) = Hom(Gm, T ). The space h = k⊗ZX(T ), with the images of
the usual roots and coroots, is a k-realization of the Weyl group W .

Definition 2.3 (D̃BS : generators). Let h be a k realization of (W,S). Set R =

Sym(h∗), the symmetric algebra of h∗, with deg h∗ = 2. The category D̃BS is the
k-linear graded strict monoidal category defined as follows.

• The objects of D̃BS are the formal (tensor) products of form Bs⊗Bt⊗· · ·⊗
Bu for s, t, . . . , u ∈ S.

• The morphisms in D̃BS are generated (under k-linear combinations, com-
positions, and tensor products) by the following elementary morphisms.

– For each homogeneous f ∈ R, there is a morphism

f : 1 −→ 1

f

of degree deg(f).
– For each s ∈ S there are morphisms

dots : Bs −→ 1, dots : 1 −→ Bs

of degree 1 and

forks : Bs ⊗Bs −→ Bs, forks : Bs −→ Bs ⊗Bs

of degree −1.
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– For each pair (s, t) ∈ S × S with s 6= t and mst < ∞, there is a
morphism

braidst : Bs ⊗Bt ⊗Bs ⊗ · · · ⊗Bs︸ ︷︷ ︸
mst

−→ Bt ⊗Bs ⊗Bt ⊗ · · · ⊗Bt︸ ︷︷ ︸
mst

· · ·

· · ·

when mst is odd, or

braidst : Bs ⊗Bt ⊗Bs ⊗ · · · ⊗Bt︸ ︷︷ ︸
mst

−→ Bt ⊗Bs ⊗Bt ⊗ · · · ⊗Bs︸ ︷︷ ︸
mst

· · ·

· · ·

when mst is even, of degree 0.
These morphisms are subject to a number of relations, which can be found
in [1, §2.2], or (in a slightly different form) [9, (5.1)–(5.12)].

For convenience we will also use the following shorthand

caps = dots ◦ forks : Bs ⊗Bs −→ 1,

=

cups = forks ◦ dots : 1 −→ Bs ⊗Bs.

=

Definition 2.4. The diagrammatic category of Bott–Samelson bimodules is the
k-linear monoidal category DBS defined as follows.

• The objects of DBS are the formal symbols B(m), for B ∈ Obj D̃BS and
m ∈ Z, with tensor product B(m)⊗B′(n) = (B ⊗B′)(m+ n).
• The morphisms in DBS are given by

HomDBS(B(m), B′(n)) = Homn−m
D̃BS

(B,B′),

with composition and tensor product defined via D̃BS.

Definition 2.5. The diagrammatic category D of Soergel bimodules is the Karoubi
envelope of DBS. In other words D is the closure of DBS with respect to all finite
direct sums and all direct summands of objects and morphisms in DBS.

In the remainder of these lectures we will investigate a subset of the relations

which define D̃BS.

3. Some diagrammatic relations

Polynomial relations. Regions labelled by polynomials add and multiply in the
usual way, i.e. for any f, g ∈ R we have

(3.1)

f + g = f + g , f ⊗ g = fg ,

f ◦ g = fg .

(Here we use a dashed circle to denote an invisible border around a region in a
diagram without strings.)
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For each s ∈ S we also have

(3.2) = αs ,

(3.3) f − s(f) = ∂s(f) ,

where ∂s(f) = αs
−1(f − s(f)).

One-colour relations. For each s ∈ S we have

= = , = = ,(3.4)

(3.5) = = ,

(3.6) = 0.

These relations give all the relations defining D̃BS in a few special cases.

Definition 3.1 (D̃BS: relations). Suppose (W,S) is a Coxeter system with no finite
dihedral parabolic subgroups (i.e. mst =∞ whenever s 6= t). Then (3.1)–(3.6) is a

full list of relations defining D̃BS.

Thus we have defined enough relations to understand Soergel bimodules for the
smallest Lie algebra sl2 (W = {1, s}).

Other diagrammatic relations. In general, the definition of D̃BS requires more
diagrammatic relations than (3.1)–(3.6). Perhaps unsurprisingly, the remaining
relations all involve the morphism braidst, which only exists when mst <∞. They
come in two flavours, depending on how many colours of strings appear in the
diagrams.

The 2-colour relations are defined for all distinct s, t ∈ S such that mst < ∞,
i.e. whenever braidst exists. The most important of these, the Jones–Wenzl relation,
is closely related to the Temperley–Lieb algebra.

The 3-colour relations are defined for all distinct s, t, u ∈ S which generate a
finite parabolic subgroup. These relations involve three different kinds of braids,
but on other generating morphisms. The form of the relation also only depends on
the Coxeter type of the resulting parabolic subgroup The most complicated forms
(in types A3, B3, and H3) are sometimes called the Zamalodchikov relations.

4. Some consequences and applications

Proposition 4.1. Any two diagrams which are isotopic correspond to equal mor-

phisms in D̃BS. In other words, we may freely deform the edges of any diagram

without changing the morphism in D̃BS.

Proof (Sketch). We first show that

= =
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and then we show that

= =

and

�

Lemma 4.2. For s ∈ S we have an idempotent decomposition

Proof. First, we show that each of the terms on the right-hand side are idempotents:

Next, we verify the decomposition by applying the relations:

�
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From this lemma we immediately obtain the following (cf. the natural isomor-
phism θsθs ∼= θs.)

Theorem 4.3. Suppose W = {1, s} and h is 1-dimensional. Then the split Grothendieck
ring [D] of D (i.e. the ring of isomorphism classes of objects of D) is isomorphic
to the following:

[D] −→ H(S2) = Z[v±1][bs]/(bs
2 − (v + v−1)bs)

[1(1)] 7−→ v

[Bs] 7−→ bs

Remark 4.4. There is a generalization of Theorem 4.3 to all Coxeter systems known
as Soergel’s categorification theorem. It states that (under some very mild assump-
tions on the realization h) the split Grothendieck ring [D] is isomorphic to the
Iwahori–Hecke algebra H(W ). In the setting of classical Soergel bimodules, this
result was proven by Soergel in [16, Satz 1.10] for suitably ‘nice’ realizations, and
in the diagrammatic setting it was proven more generally by Elias–Williamson [9,
Corollary 6.27].

We conclude with some applications and references.

(1) The original motivating application for Soergel was the Kazhdan–Lusztig
conjectures, which describe the characters of the simple modules of Oλ
in terms of Kazhdan–Lusztig polynomials. This was originally proven
in the 1980s by Beilinson–Bernstein [2] (and independently by Brylinski–
Kashiwara [4]) using highly geometric techniques. In the 1990s Soergel
suggested an alternative proof based on decomposing Bs ⊗ Bt ⊗ · · · ⊗ Bu
into a direct sum of indecomposable Soergel bimodules [14]. Soergel’s proof
was substantially more algebraic, but relied crucially on an important geo-
metric result called the Decomposition Theorem. In [8] Elias–Williamson
removed this dependence to produce an entirely algebraic proof (for a more
readable introduction, see also [17, 7]).

(2) A similar character-theoretic conjecture in modular representation theory
is Lusztig’s conjecture, which describes the characters of simple modules for
a semisimple algebraic group G over a field of characteristic p > 0. Soergel
showed that Soergel bimodules for the Weyl group in characteristic p give
an analogous description of “modular category O” [15], a subquotient of the
category of rational G-modules. In the celebrated paper [18] Williamson
used this framework to show that Lusztig’s conjecture is in fact false, except
when p is extremely large!

(3) Soergel’s categorification theorem provides another way to think about
the above results wholly within the context of Soergel bimodules. To be
more precise, Soergel showed in [14] that the Kazhdan–Lusztig conjectures
hold if and only if a statement known as Soergel’s conjecture holds. So-
ergel’s conjecture states that the indecomposable Soergel bimodules cor-
respond to the Kazhdan–Lusztig basis of the corresponding Hecke alge-
bra. This is difficult to prove because the Kazhdan–Lusztig basis is de-
fined ‘combinatorially’ with no reference to the morphisms in D. Elias–
Williamson [8] proved Soergel’s conjecture algebraically in characteristic 0,
while Williamson [18] found counterexamples to Soergel’s conjecture in pos-
itive characteristic. These counterexamples suggest defining the p-canonical
basis or p-Kazhdan–Lusztig basis to be the basis of the Hecke algebra corre-
sponding to the indecomposable Soergel bimodules in characteristic p [11].
Unlike the ordinary Kazhdan–Lusztig basis, the p-Kazhdan–Lusztig basis
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is not combinatorial and requires understanding of the morphisms in D in
general.

(4) Achar et al. have shown that the p-Kazhdan–Lusztig basis for the corre-
sponding affine Weyl group in characteristic p give the characters of tilting
modules (another class of G-modules parametrized by highest weight) [1].
This fits in with a conjectured categorical equivalence involving the func-
tors {θs} in characteristic p [13], similar to Theorem 1.8. In type A these
decompositions also give the simple characters of the symmetric group.
More recently the author (together with Chris Bowman and Anton Cox)
has given an alternative, more direct proof of the symmetric group result
[3].
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