Ruelle resonances for pseudo-Anosov maps

Sébastien Gouëzel

CNRS and LMJL, Université de Nantes

June 18, 2018

Notations

- X a compact space
- $T: X \to X$ a continuous map
- μ a probability measure on X, preserved by T

Notations

- X a compact space
- $T: X \to X$ a continuous map
- μ a probability measure on X, preserved by T

T is mixing if
$$\int f \cdot g \circ T^n d\mu \to (\int f d\mu) (\int g d\mu).$$

Notations

- X a compact space
- $T: X \to X$ a continuous map
- μ a probability measure on X, preserved by T

$$T$$
 is mixing if $\int f \cdot g \circ T^n d\mu \to (\int f d\mu) (\int g d\mu).$

Goal: speed of convergence? Asymptotic expansion?

The doubling map

 $T(x) = 2x \mod 1$ on the circle \mathbb{S}^1 μ : Lebesgue measure

Theorem

Assume $f, g \in C^{\infty}(\mathbb{S}^1)$. Then, for any $\epsilon > 0$,

$$\int f \cdot g \circ T^n \, \mathrm{d}\mu = \left(\int f \, \mathrm{d}\mu\right) \left(\int g \, \mathrm{d}\mu\right) + O(\epsilon^n).$$

The doubling map

 $T(x) = 2x \mod 1$ on the circle \mathbb{S}^1 μ : Lebesgue measure

Theorem

Assume $f, g \in C^{\infty}(\mathbb{S}^1)$. Then, for any $\epsilon > 0$,

$$\int f \cdot g \circ T^n \, \mathrm{d}\mu = \left(\int f \, \mathrm{d}\mu\right) \left(\int g \, \mathrm{d}\mu\right) + O(\epsilon^n).$$

Proof.

$$\begin{split} g(x) &= \sum \hat{g}_k e^{2i\pi kx} \\ g(T^n x) &= \sum \hat{g}_k e^{2i\pi k2^n x} \\ \int f \cdot g \circ T^n \, \mathrm{d}\mu &= \hat{f}_0 \overline{\hat{g}_0} + \sum_{k \neq 0} \hat{f}_{2^n k} \overline{\hat{g}_k} \\ \end{split}$$
The Fourier coefficients of f decay faster than any polynomial.

Iterates of the composition operator $Tg = g \circ T$.

Transfer operator
$$\mathcal{L} = \mathcal{T}^*$$
:
 $\int f \cdot g \circ T \, d\mu = \int \mathcal{L}f \cdot g \, d\mu$
 $\mathcal{L}f(x) = \frac{1}{2} \left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) \right).$

Iterates of the composition operator $\mathcal{T}g = g \circ \mathcal{T}.$

Transfer operator
$$\mathcal{L} = \mathcal{T}^*$$
:
 $\int f \cdot g \circ T \, d\mu = \int \mathcal{L}f \cdot g \, d\mu$
 $\mathcal{L}f(x) = \frac{1}{2} \left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) \right).$

Iterates of the composition operator $\mathcal{T}g = g \circ \mathcal{T}.$

Transfer operator
$$\mathcal{L} = \mathcal{T}^*$$
:
 $\int f \cdot g \circ T \, d\mu = \int \mathcal{L}f \cdot g \, d\mu$
 $\mathcal{L}f(x) = \frac{1}{2} \left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) \right).$

Iterates of the composition operator $\mathcal{T}g = g \circ \mathcal{T}.$

Transfer operator
$$\mathcal{L} = \mathcal{T}^*$$
:
 $\int f \cdot g \circ T \, d\mu = \int \mathcal{L}f \cdot g \, d\mu$
 $\mathcal{L}f(x) = \frac{1}{2} \left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) \right).$

If f is C^{∞} and $\int f d\mu = 0$, then $\mathcal{L}^n f$ tends to 0 superexponentially fast in C^{∞} .

If f is C^{∞} and $\int f d\mu = 0$, then $\mathcal{L}^n f$ tends to 0 superexponentially fast in C^{∞} . If $\int g d\mu = 0$, then $\mathcal{T}^n g$ tends to 0 superexponentially fast as a distribution.

$$T : \mathbb{S}^1 \to \mathbb{S}^1$$
 a C^{∞} map, with $T' \ge \beta > 1$.
 μ Lebesgue measure. Assume T preserves μ .

Theorem

Let $f, g \in C^{\infty}$. For all $\epsilon > 0$, there is an expansion

$$\int f \cdot \mathbf{g} \circ \mathcal{T}^n \,\mathrm{d} \mu = \sum_{|\lambda_i| \geqslant \epsilon} \lambda_i^n c_i(f, \mathbf{g}) + o(\epsilon^n),$$

where

- λ_i is a sequence tending to 0 (the Ruelle resonances).
- $c_i(f,g)$ coefficients depending on f and g.

$$T : \mathbb{S}^1 \to \mathbb{S}^1$$
 a C^{∞} map, with $T' \ge \beta > 1$.
 μ Lebesgue measure. Assume T preserves μ .

Theorem

Let $f, g \in C^{\infty}$. For all $\epsilon > 0$, there is an expansion

$$\int f \cdot \mathbf{g} \circ \mathcal{T}^n \,\mathrm{d} \mu = \sum_{|\lambda_i| \geqslant \epsilon} \lambda_i^n c_i(f, \mathbf{g}) + o(\epsilon^n),$$

where

- λ_i is a sequence tending to 0 (the Ruelle resonances).
- $c_i(f,g)$ coefficients depending on f and g.

 $\lambda_0 = 1$ dominating term, with $c_0(f, g) = (\int f \, d\mu) (\int g \, d\mu)$.

 $T : \mathbb{S}^1 \to \mathbb{S}^1$ a C^{∞} map, with $T' \ge \beta > 1$. μ Lebesgue measure. Assume T preserves μ .

Theorem

Let $f, g \in C^{\infty}$. For all $\epsilon > 0$, there is an expansion

$$\int f \cdot \mathbf{g} \circ \mathcal{T}^n \,\mathrm{d} \mu = \sum_{|\lambda_i| \geqslant \epsilon} \lambda_i^n c_i(f, \mathbf{g}) + o(\epsilon^n),$$

where

- λ_i is a sequence tending to 0 (the Ruelle resonances).
- $c_i(f,g)$ coefficients depending on f and g.

 $\lambda_0 = 1$ dominating term, with $c_0(f, g) = (\int f \, d\mu) (\int g \, d\mu)$. In general, c_i are distributions.

$$T : \mathbb{S}^1 \to \mathbb{S}^1$$
 a C^{∞} map, with $T' \ge \beta > 1$.
 μ Lebesgue measure. Assume T preserves μ .

Theorem

Let $f, g \in C^{\infty}$. For all $\epsilon > 0$, there is an expansion

$$\int f \cdot g \circ T^n \, \mathrm{d}\mu = \sum_{|\lambda_i| \ge \epsilon} P_i(n) \lambda_i^n c_i(f,g) + o(\epsilon^n)$$

where

- λ_i is a sequence tending to 0 (the Ruelle resonances).
- $c_i(f,g)$ coefficients depending on f and g.

 $\lambda_0 = 1$ dominating term, with $c_0(f, g) = (\int f \, d\mu) (\int g \, d\mu)$. In general, c_i are distributions.

Just like for powers of matrices, there could be polynomial terms. We ignore them for simplicity.

Let $C \ge 0$. Decompose a function f as

$$f = \sum_{|k| \leqslant C} \hat{f}_k e^{2i\pi kx} + \sum_{|k| > C} \hat{f}_k e^{2i\pi kx} = f_{\leqslant C} + f_{>C}.$$

Then

$$\mathcal{L}f = \mathcal{L}f_{\leq C} + \mathcal{L}f_{>C} = \mathcal{L}_{\leq C}f + \mathcal{L}_{>C}f.$$

Let $C \ge 0$. Decompose a function f as

$$f = \sum_{|k| \leqslant C} \hat{f}_k e^{2i\pi kx} + \sum_{|k| > C} \hat{f}_k e^{2i\pi kx} = f_{\leqslant C} + f_{>C}.$$

Then

$$\mathcal{L}f = \mathcal{L}f_{\leq C} + \mathcal{L}f_{>C} = \mathcal{L}_{\leq C}f + \mathcal{L}_{>C}f.$$

 $\mathcal{L}_{\leq C}$ has finite rank. Spectrum: finite set of eigenvalues, including 0.

Let $C \ge 0$. Decompose a function f as

$$f = \sum_{|k| \leqslant C} \hat{f}_k e^{2i\pi kx} + \sum_{|k| > C} \hat{f}_k e^{2i\pi kx} = f_{\leqslant C} + f_{>C}.$$

Then

$$\mathcal{L}f = \mathcal{L}f_{\leq C} + \mathcal{L}f_{>C} = \mathcal{L}_{\leq C}f + \mathcal{L}_{>C}f.$$

 $\mathcal{L}_{\leq C}$ has finite rank. Spectrum: finite set of eigenvalues, including 0. $\mathcal{L}_{>C}$ is like for $x \mapsto 2x$: its norm on C^r is $\leq \beta^{-r}$.

Let $C \ge 0$. Decompose a function f as

$$f = \sum_{|k| \leqslant C} \hat{f}_k e^{2i\pi kx} + \sum_{|k| > C} \hat{f}_k e^{2i\pi kx} = f_{\leqslant C} + f_{>C}.$$

Then

$$\mathcal{L}f = \mathcal{L}f_{\leq C} + \mathcal{L}f_{>C} = \mathcal{L}_{\leq C}f + \mathcal{L}_{>C}f.$$

 $\mathcal{L}_{\leq C}$ has finite rank. Spectrum: finite set of eigenvalues, including 0. $\mathcal{L}_{>C}$ is like for $x \mapsto 2x$: its norm on C^r is $\leq \beta^{-r}$.

The spectrum of \mathcal{L} is a discrete set of eigenvalues in $\{z : |z| > \beta^{-r}\}$. \Box

Let $C \ge 0$. Decompose a function f as

$$f = \sum_{|k| \leqslant C} \hat{f}_k e^{2i\pi kx} + \sum_{|k| > C} \hat{f}_k e^{2i\pi kx} = f_{\leqslant C} + f_{>C}.$$

Then

$$\mathcal{L}f = \mathcal{L}f_{\leq C} + \mathcal{L}f_{>C} = \mathcal{L}_{\leq C}f + \mathcal{L}_{>C}f.$$

 $\begin{array}{c} \mathcal{L}_{\leqslant C} \text{ has finite rank. Spectrum:} \\ \text{finite set of eigenvalues, including 0.} \\ \mathcal{L}_{>C} \text{ is like for } x \mapsto 2x: \text{ its norm on} \\ C^r \text{ is } \leqslant \beta^{-r}. \\ \text{The spectrum of } \mathcal{L} \text{ is a discrete set} \\ \text{of eigenvalues in } \{z : |z| > \beta^{-r}\}. \end{array}$

One could also do the same with \mathcal{T} acting on $(C^r)^*$.

Definition

A probability-preserving system (X, T, μ) has a Ruelle spectrum $\{\lambda_i\}$ if, for all C^{∞} functions f and g, for all $\epsilon > 0$,

$$\int f \cdot g \circ T^n \,\mathrm{d}\mu = \sum_{|\lambda_i| \ge \epsilon} \lambda_i^n c_i(f,g) + o(\epsilon^n).$$

Definition

A probability-preserving system (X, T, μ) has a Ruelle spectrum $\{\lambda_i\}$ if, for all C^{∞} functions f and g, for all $\epsilon > 0$,

$$\int f \cdot g \circ T^n \,\mathrm{d}\mu = \sum_{|\lambda_i| \ge \epsilon} \lambda_i^n c_i(f,g) + o(\epsilon^n).$$

Theorem

 C^{∞} uniformly expanding maps have a Ruelle spectrum, for any Gibbs measure μ with smooth potential.

Definition

A probability-preserving system (X, T, μ) has a Ruelle spectrum $\{\lambda_i\}$ if, for all C^{∞} functions f and g, for all $\epsilon > 0$,

$$\int f \cdot g \circ T^n \,\mathrm{d}\mu = \sum_{|\lambda_i| \ge \epsilon} \lambda_i^n c_i(f,g) + o(\epsilon^n).$$

Theorem

 C^{∞} uniformly expanding/hyperbolic maps have a Ruelle spectrum, for any Gibbs measure μ with smooth potential.

Definition

A probability-preserving system (X, T, μ) has a Ruelle spectrum $\{\lambda_i\}$ if, for all C^{∞} functions f and g, for all $\epsilon > 0$,

$$\int f \cdot g \circ T^n \,\mathrm{d}\mu = \sum_{|\lambda_i| \geqslant \epsilon} \lambda_i^n c_i(f,g) + o(\epsilon^n).$$

Theorem

 C^{∞} uniformly expanding/hyperbolic maps have a Ruelle spectrum, for any Gibbs measure μ with smooth potential.

Further questions:

- Is the Ruelle spectrum trivial (like for $x \mapsto 2x \mod 1$)?
- Asymptotics of the number of eigenvalues with $|\lambda_i| \ge \epsilon$
- Speed of decay of correlations (i.e., gap between $\lambda_0=1$ and $|\lambda_1|)$
- Compute the Ruelle spectrum in some examples

Ruelle resonances for linear pseudo-Anosov maps

- X: compact connected surface, genus g
- T: linear pseudo-Anosov map, preserving orientations
- $\mu :$ Lebesgue measure

- X: compact connected surface, genus g
- T: linear pseudo-Anosov map, preserving orientations
- $\mu : \ {\rm Lebesgue} \ {\rm measure}$

- X: compact connected surface, genus g
- T: linear pseudo-Anosov map, preserving orientations
- $\mu :$ Lebesgue measure

Theorem (Faure-Gouëzel-Lanneau)

T has Ruelle resonances. They are exactly 1 and $\lambda^{-n}\mu_i$ for $i \in \{1, \dots, 2g - 2\}$ and $n \ge 1$.

- X: compact connected surface, genus g
- T: linear pseudo-Anosov map, preserving orientations
- $\mu :$ Lebesgue measure

Theorem (Faure-Gouëzel-Lanneau)

T has Ruelle resonances. They are exactly 1 (with multiplicity 1) and $\lambda^{-n}\mu_i$ for $i \in \{1, ..., 2g - 2\}$ and $n \ge 1$ (with multiplicity n).

- X: compact connected surface, genus g
- T: linear pseudo-Anosov map, preserving orientations
- $\mu :$ Lebesgue measure

Theorem (Faure-Gouëzel-Lanneau)

T has Ruelle resonances. They are exactly 1 (with multiplicity 1) and $\lambda^{-n}\mu_i$ for $i \in \{1, ..., 2g - 2\}$ and $n \ge 1$ (with multiplicity n).

Example

$$T = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
 the cat map, acting on \mathbb{T}^2 .
Its Ruelle spectrum is $\{1\}$.

Constructing a pseudo-Anosov map

 $T_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ acts on X:

 $T_2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ also acts on X.

 $T_2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ also acts on X.

Compose the above two: one gets a map $T : X \to X$ locally given by the matrix $\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$. This is a linear pseudo-Anosov map.

T linear pseudo-Anosov map, with expansion factor $\lambda > 1$ and spectrum on H^1 : $\{\lambda, \lambda^{-1}, \mu_1, \dots, \mu_{2g-2}\}$.

Theorem (Faure-Gouëzel-Lanneau)

T has Ruelle resonances. They are exactly 1 and $\lambda^{-n}\mu_i$ for $i \in \{1, \ldots, 2g - 2\}$ and $n \ge 1$.

T linear pseudo-Anosov map, with expansion factor $\lambda > 1$ and spectrum on H^1 : $\{\lambda, \lambda^{-1}, \mu_1, \dots, \mu_{2g-2}\}$.

Theorem (Faure-Gouëzel-Lanneau)

T has Ruelle resonances. They are exactly 1 and $\lambda^{-n}\mu_i$ for $i \in \{1, \ldots, 2g - 2\}$ and $n \ge 1$.

Steps of the proof:

- Ruelle resonances make sense
- Ochomology gives rise to Ruelle resonances
- Il Ruelle resonances come from cohomology

Goal: construct a Banach space on which $f \mapsto f \circ T$ has a small essential spectral radius.

Goal: construct a Banach space on which $f \mapsto f \circ T$ has a small essential spectral radius. For expanding maps: distributions For contracting maps: smooth functions Goal: construct a Banach space on which $f \mapsto f \circ T$ has a small essential spectral radius. For expanding maps: distributions For contracting maps: smooth functions In hyperbolic cases, anisotropic space

- smooth in the contracting (vertical) direction
- dual of smooth in the expanding (horizontal) direction

Goal: construct a Banach space on which $f \mapsto f \circ T$ has a small essential spectral radius. For expanding maps: distributions For contracting maps: smooth functions In hyperbolic cases, anisotropic space

• smooth in the contracting (vertical) direction

• dual of smooth in the expanding (horizontal) direction Smoothness indices k_h and k_v . Let L_v be the vertical derivative.

$$\|f\| = \sup_{i \leq k_v} \sup_{\substack{I \text{ horizontal interval} \\ |I| = 1, I \cap \Sigma = \emptyset}} \sup_{\phi \in C_c^{k_h}(I), \|\phi\|_{C^{k_h}} \leq 1} \int_I \phi \cdot L_v^i f \, \mathrm{d}x$$

 $\mathcal{B} = ext{completion of } C^{\infty}_{c}(M - \Sigma) ext{ for } \|\cdot\|.$

 $h = [\omega] \neq 0$ a cohomology class with $T^*h = \mu h$ and $|\mu| \in (\lambda^{-1}, \lambda)$. Goal: construct $f \in \mathcal{B}$ with $\mathcal{T}f = \lambda^{-1}\mu f$, where $\mathcal{T}f = f \circ T$.

 $h = [\omega] \neq 0$ a cohomology class with $T^*h = \mu h$ and $|\mu| \in (\lambda^{-1}, \lambda)$. Goal: construct $f \in \mathcal{B}$ with $\mathcal{T}f = \lambda^{-1}\mu f$, where $\mathcal{T}f = f \circ T$. Decompose $\omega = \omega_x \, dx + \omega_y \, dy$. Then

$$\mu^n \int_{\gamma} \omega = \int_{\gamma} (T^*)^n \omega = \int_{\gamma} \mathcal{T}^n \omega_x \cdot \lambda^n \, \mathrm{d}x + \int_{\gamma} \mathcal{T}^n \omega_y \cdot \lambda^{-n} \, \mathrm{d}y.$$

Therefore,

$$\int_{\gamma} (\mathcal{T}^n \omega_x) \, \mathrm{d}x = (\lambda^{-1} \mu)^n \int_{\gamma} \omega + O(\lambda^{-2n}).$$

 $h = [\omega] \neq 0$ a cohomology class with $T^*h = \mu h$ and $|\mu| \in (\lambda^{-1}, \lambda)$. Goal: construct $f \in \mathcal{B}$ with $\mathcal{T}f = \lambda^{-1}\mu f$, where $\mathcal{T}f = f \circ T$. Decompose $\omega = \omega_x \, dx + \omega_y \, dy$. Then

$$\mu^n \int_{\gamma} \omega = \int_{\gamma} (T^*)^n \omega = \int_{\gamma} \mathcal{T}^n \omega_x \cdot \lambda^n \, \mathrm{d}x + \int_{\gamma} \mathcal{T}^n \omega_y \cdot \lambda^{-n} \, \mathrm{d}y.$$

Therefore,

$$\int_{\gamma} (\mathcal{T}^n \omega_x) \, \mathrm{d}x = (\lambda^{-1} \mu)^n \int_{\gamma} \omega + O(\lambda^{-2n}).$$

Spectral expansion: $\mathcal{T}^n \omega_x = \sum \lambda_i^n f_i + o(\epsilon^n)$. One of the λ_i should coincide with $\lambda^{-1} \mu$.

 $h = [\omega] \neq 0$ a cohomology class with $T^*h = \mu h$ and $|\mu| \in (\lambda^{-1}, \lambda)$. Goal: construct $f \in \mathcal{B}$ with $\mathcal{T}f = \lambda^{-1}\mu f$, where $\mathcal{T}f = f \circ T$. Decompose $\omega = \omega_x \, dx + \omega_y \, dy$. Then

$$\mu^n \int_{\gamma} \omega = \int_{\gamma} (T^*)^n \omega = \int_{\gamma} \mathcal{T}^n \omega_x \cdot \lambda^n \, \mathrm{d}x + \int_{\gamma} \mathcal{T}^n \omega_y \cdot \lambda^{-n} \, \mathrm{d}y.$$

Therefore,

$$\int_{\gamma} (\mathcal{T}^n \omega_x) \, \mathrm{d}x = (\lambda^{-1} \mu)^n \int_{\gamma} \omega + O(\lambda^{-2n}).$$

Spectral expansion: $\mathcal{T}^n \omega_x = \sum \lambda_i^n f_i + o(\epsilon^n)$. One of the λ_i should coincide with $\lambda^{-1} \mu$.

To show that $\lambda^{-n}\mu$, n > 1, is also a Ruelle resonance, use $L_h^{n-1}f$ where f eigenfunction for $\lambda^{-1}\mu$.

Cohomological interpretation of elements of $\mathcal B$

To $f \in \mathcal{B}$, associate the current $f \, \mathrm{d}x$.

Cohomological interpretation of elements of $\mathcal B$

To $f \in \mathcal{B}$, associate the current $f \, dx$. It is closed if $d(f \, dx) = 0$, i.e., $L_v f = 0$. Cohomology class $[f \, dx]$ (or simply [f]) for $f \in \mathcal{B} \cap \ker L_v$. To $f \in \mathcal{B}$, associate the current $f \, dx$. It is closed if $d(f \, dx) = 0$, i.e., $L_v f = 0$. Cohomology class $[f \, dx]$ (or simply [f]) for $f \in \mathcal{B} \cap \ker L_v$.

The current f dx is exact if, additionally, [f] = 0. Then one can write f dx = dg. Automatically, $L_v g = 0$ and $L_h g = f$

To $f \in \mathcal{B}$, associate the current $f \, dx$. It is closed if $d(f \, dx) = 0$, i.e., $L_v f = 0$. Cohomology class $[f \, dx]$ (or simply [f]) for $f \in \mathcal{B} \cap \ker L_v$.

The current $f \, dx$ is exact if, additionally, [f] = 0. Then one can write $f \, dx = dg$. Automatically, $L_v g = 0$ and $L_h g = f$ and moreover $g \in \mathcal{B}$.

To $f \in \mathcal{B}$, associate the current $f \, dx$. It is closed if $d(f \, dx) = 0$, i.e., $L_v f = 0$. Cohomology class $[f \, dx]$ (or simply [f]) for $f \in \mathcal{B} \cap \ker L_v$.

The current $f \, dx$ is exact if, additionally, [f] = 0. Then one can write $f \, dx = dg$. Automatically, $L_v g = 0$ and $L_h g = f$ and moreover $g \in \mathcal{B}$.

Let E_{α} be the eigenspace of \mathcal{T} for the eigenvalue α .

Consider α with $E_{\alpha} \neq 0$. We want to show that $\alpha = 1$, or α is of the form $\lambda^{-n}\mu_i$.

• Start from $f \in E_{\alpha} - \{0\}$.

Consider α with $E_{\alpha} \neq 0$. We want to show that $\alpha = 1$, or α is of the form $\lambda^{-n}\mu_i$.

- Start from $f \in E_{\alpha} \{0\}$.
- k maximal with $L_v^k f \neq 0$. Then $g = L_v^k f \in E_{\lambda^k \alpha}$, and $L_v g = 0$.

Consider α with $E_{\alpha} \neq 0$. We want to show that $\alpha = 1$, or α is of the form $\lambda^{-n}\mu_i$.

- Start from $f \in E_{\alpha} \{0\}$.
- k maximal with $L_v^k f \neq 0$. Then $g = L_v^k f \in E_{\lambda^k \alpha}$, and $L_v g = 0$.
- If $[g] \neq 0$, then $T^* : H^1(M) \to H^1(M)$ has an eigenvalue at $\lambda \cdot \lambda^k \alpha$. We are done (modulo the problem of the eigenvalue λ^{-1} , that we have to exclude harder, ignored in this sketch).

Consider α with $E_{\alpha} \neq 0$. We want to show that $\alpha = 1$, or α is of the form $\lambda^{-n}\mu_i$.

- Start from $f \in E_{\alpha} \{0\}$.
- k maximal with $L_v^k f \neq 0$. Then $g = L_v^k f \in E_{\lambda^k \alpha}$, and $L_v g = 0$.
- If $[g] \neq 0$, then $T^* : H^1(M) \to H^1(M)$ has an eigenvalue at $\lambda \cdot \lambda^k \alpha$. We are done (modulo the problem of the eigenvalue λ^{-1} , that we have to exclude harder, ignored in this sketch).
- If [g] = 0, then $g = L_h g_1$, with $g_1 \in E_{\lambda^{k+1}\alpha} \cap \ker L_\nu$. Repeat, until $[g_\ell] \neq 0$. Then $\lambda^{k+\ell+1}$ is an eigenvalue of T^* .