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Notations
X a compact space
T : X → X a continuous map
µ a probability measure on X , preserved by T

T is mixing if
∫
f · g ◦ T n dµ→

(∫
f dµ

)(∫
g dµ

)
.

Goal: speed of convergence? Asymptotic expansion?
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The doubling map

T (x) = 2x mod 1 on the circle S1

µ: Lebesgue measure

Theorem

Assume f , g ∈ C∞(S1). Then, for any ε > 0,∫
f · g ◦ T n dµ =

(∫
f dµ

)(∫
g dµ

)
+ O(εn).

Proof.

g(x) =
∑

ĝke
2iπkx .

g(T nx) =
∑

ĝke
2iπk2nx .∫

f · g ◦ T n dµ = f̂0ĝ0 +
∑

k 6=0 f̂2nk ĝk .
The Fourier coefficients of f decay faster than any polynomial.
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ĝke
2iπkx .

g(T nx) =
∑
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Iterates of the composition operator
T g = g ◦ T .

g

Transfer operator L = T ∗:∫
f · g ◦ T dµ =

∫
Lf · g dµ

Lf (x) = 1
2

(
f
(
x
2

)
+ f
(
x+1
2

))
.

If f is C∞ and
∫
f dµ = 0, then Lnf tends to 0 superexponentially

fast in C∞.
If
∫
g dµ = 0, then T ng tends to 0 superexponentially fast as a

distribution.
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Uniformly expanding maps of the circle

T : S1 → S1 a C∞ map, with T ′ > β > 1.
µ Lebesgue measure. Assume T preserves µ.

Theorem
Let f , g ∈ C∞. For all ε > 0, there is an expansion∫

f · g ◦ T n dµ =
∑
|λi |>ε

λni ci (f , g) + o(εn),

where
λi is a sequence tending to 0 (the Ruelle resonances).
ci (f , g) coefficients depending on f and g .

λ0 = 1 dominating term, with c0(f , g) =
(∫

f dµ
)(∫

g dµ
)
.

In general, ci are distributions.
Just like for powers of matrices, there could be polynomial terms.
We ignore them for simplicity.
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Sketch of proof, using the transfer operator L = T ∗

Let C > 0. Decompose a function f as

f =
∑
|k|6C

f̂ke
2iπkx +

∑
|k|>C

f̂ke
2iπkx = f6C + f>C .

Then
Lf = Lf6C + Lf>C = L6C f + L>C f .

L6C has finite rank. Spectrum:
finite set of eigenvalues, including 0.

L>C is like for x 7→ 2x : its norm on
C r is 6 β−r .
The spectrum of L is a discrete set
of eigenvalues in {z : |z | > β−r}.

× ×× ×
×

××

×

×
×

×

×
?

× ×
×

×
×

×

× ×

×

×
?

One could also do the same with T acting on (C r )∗.
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Ruelle resonances: general setting

Definition
A probability-preserving system (X ,T , µ) has a Ruelle spectrum
{λi} if, for all C∞ functions f and g , for all ε > 0,∫

f · g ◦ T n dµ =
∑
|λi |>ε

λni ci (f , g) + o(εn).

Theorem
C∞ uniformly expanding maps have a Ruelle spectrum, for any
Gibbs measure µ with smooth potential.

Further questions:
Is the Ruelle spectrum trivial (like for x 7→ 2x mod 1)?
Asymptotics of the number of eigenvalues with |λi | > ε

Speed of decay of correlations (i.e., gap between λ0 = 1 and
|λ1|)
Compute the Ruelle spectrum in some examples
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Ruelle resonances for linear pseudo-Anosov maps

X : compact connected surface, genus g
T : linear pseudo-Anosov map, preserving orientations
µ: Lebesgue measure

λ > 1: expansion factor of the pseudo-Anosov map
Eigenvalues of T∗ on H1: {λ, λ−1, µ1, . . . , µ2g−2}, with
|µi | ∈ (λ−1, λ).

Theorem (Faure-Gouëzel-Lanneau)

T has Ruelle resonances. They are exactly 1 and λ−nµi for
i ∈ {1, . . . , 2g − 2} and n > 1.

Example

T = ( 2 1
1 1 ) the cat map, acting on T2.

Its Ruelle spectrum is {1}.
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Constructing a pseudo-Anosov map

T1 = ( 1 2
0 1 ) acts on X :

T1

T2 = ( 1 0
2 1 ) also acts on X .

Compose the above two: one gets a map T : X → X locally given
by the matrix ( 5 2

2 1 ). This is a linear pseudo-Anosov map.
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T linear pseudo-Anosov map, with expansion factor λ > 1 and
spectrum on H1 : {λ, λ−1, µ1, . . . , µ2g−2}.

Theorem (Faure-Gouëzel-Lanneau)

T has Ruelle resonances. They are exactly 1 and λ−nµi for
i ∈ {1, . . . , 2g − 2} and n > 1.

Steps of the proof:
1 Ruelle resonances make sense
2 Cohomology gives rise to Ruelle resonances
3 All Ruelle resonances come from cohomology
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Ruelle resonances make sense

Goal: construct a Banach space on which f 7→ f ◦ T has a small
essential spectral radius.

For expanding maps: distributions
For contracting maps: smooth functions
In hyperbolic cases, anisotropic space

smooth in the contracting (vertical) direction
dual of smooth in the expanding (horizontal) direction

Smoothness indices kh and kv . Let Lv be the vertical derivative.

‖f ‖ = sup
i6kv

sup
I horizontal interval
|I |=1,I∩Σ=∅

sup
φ∈C kh

c (I ),‖φ‖
Ckh

61

∫
I
φ · Liv f dx

B = completion of C∞c (M − Σ) for ‖·‖.



Ruelle resonances make sense

Goal: construct a Banach space on which f 7→ f ◦ T has a small
essential spectral radius.
For expanding maps: distributions
For contracting maps: smooth functions

In hyperbolic cases, anisotropic space
smooth in the contracting (vertical) direction
dual of smooth in the expanding (horizontal) direction

Smoothness indices kh and kv . Let Lv be the vertical derivative.

‖f ‖ = sup
i6kv

sup
I horizontal interval
|I |=1,I∩Σ=∅

sup
φ∈C kh

c (I ),‖φ‖
Ckh

61

∫
I
φ · Liv f dx

B = completion of C∞c (M − Σ) for ‖·‖.



Ruelle resonances make sense

Goal: construct a Banach space on which f 7→ f ◦ T has a small
essential spectral radius.
For expanding maps: distributions
For contracting maps: smooth functions
In hyperbolic cases, anisotropic space

smooth in the contracting (vertical) direction
dual of smooth in the expanding (horizontal) direction

Smoothness indices kh and kv . Let Lv be the vertical derivative.

‖f ‖ = sup
i6kv

sup
I horizontal interval
|I |=1,I∩Σ=∅

sup
φ∈C kh

c (I ),‖φ‖
Ckh

61

∫
I
φ · Liv f dx

B = completion of C∞c (M − Σ) for ‖·‖.



Ruelle resonances make sense

Goal: construct a Banach space on which f 7→ f ◦ T has a small
essential spectral radius.
For expanding maps: distributions
For contracting maps: smooth functions
In hyperbolic cases, anisotropic space

smooth in the contracting (vertical) direction
dual of smooth in the expanding (horizontal) direction

Smoothness indices kh and kv . Let Lv be the vertical derivative.

‖f ‖ = sup
i6kv

sup
I horizontal interval
|I |=1,I∩Σ=∅

sup
φ∈C kh

c (I ),‖φ‖
Ckh

61

∫
I
φ · Liv f dx

B = completion of C∞c (M − Σ) for ‖·‖.



Cohomology gives rise to Ruelle resonances

h = [ω] 6= 0 a cohomology class with T ∗h = µh and |µ| ∈ (λ−1, λ).
Goal: construct f ∈ B with T f = λ−1µf , where T f = f ◦ T .

Decompose ω = ωx dx + ωy dy . Then

µn
∫
γ
ω =

∫
γ

(T ∗)nω =

∫
γ
T nωx · λn dx +

∫
γ
T nωy · λ−n dy .

Therefore, ∫
γ

(T nωx) dx = (λ−1µ)n
∫
γ
ω + O(λ−2n).

Spectral expansion: T nωx =
∑
λni fi + o(εn).

One of the λi should coincide with λ−1µ.

To show that λ−nµ, n > 1, is also a Ruelle resonance, use Ln−1
h f

where f eigenfunction for λ−1µ.
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Cohomological interpretation of elements of B

To f ∈ B, associate the current f dx .

It is closed if d(f dx) = 0, i.e., Lv f = 0.
Cohomology class [f dx ] (or simply [f ]) for f ∈ B ∩ ker Lv .

The current f dx is exact if, additionally, [f ] = 0. Then one can
write f dx = dg . Automatically, Lvg = 0 and Lhg = f and
moreover g ∈ B.

Let Eα be the eigenspace of T for the eigenvalue α.

. . . Eλ−2α Eλ−1α Eα Eλα Eλ2α . . .

Lv Lv Lv Lv Lv Lv
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All Ruelle resonances come from cohomology
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Consider α with Eα 6= 0. We want to show that α = 1, or α is of
the form λ−nµi .

Start from f ∈ Eα − {0}.

k maximal with Lkv f 6= 0. Then g = Lkv f ∈ Eλkα, and
Lvg = 0.
If [g ] 6= 0, then T ∗ : H1(M)→ H1(M) has an eigenvalue at
λ · λkα. We are done (modulo the problem of the eigenvalue
λ−1, that we have to exclude – harder, ignored in this sketch).
If [g ] = 0, then g = Lhg1, with g1 ∈ Eλk+1α ∩ ker Lv . Repeat,
until [g`] 6= 0. Then λk+`+1 is an eigenvalue of T ∗.
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