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Notations
@ X a compact space
@ T :X — X a continuous map
@ 1 a probability measure on X, preserved by T

T is mixing if [f-go T"dp— ([ fdu)([gdu).

Goal: speed of convergence? Asymptotic expansion?



T(x) =2x mod 1 on the circle S!
p: Lebesgue measure

Assume f,g € C®(S'). Then, for any ¢ > 0,

/f-goT"duz (/fdu)(/gdﬂ>+0(€")-




The doubling map

T(x) = 2x mod 1 on the circle St
w: Lebesgue measure

Theorem
Assume f,g € C®(St). Then, for any € > 0,

/f.goTnd,u,: </fdu> </gdu> + O(e").
Proof.

g(X) — nge%rkx'

g(T"x) = 3 gre?m 2™, B

[f-goT"du = fogo + Zk;,eo foniBk-

The Fourier coefficients of f decay faster than any polynomial.
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Iterates of the composition operator I T3g=goT3
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Transfer operator £ = T*: £3f
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Iterates of the composition operator | T3g=goT3
Tg=goT.

Transfer operator £ = T*:
Jf-goTdu= [Lf gdu -
L) = 3(F(3) + F(*57))-

C3f

If fis C*° and [ fdu =0, then £"f tends to 0 superexponentially
fast in C°.

If [gdu =0, then T"g tends to 0 superexponentially fast as a
distribution.



Uniformly expanding maps of the circle

T:S' = Sta C*® map, with T" > 3 > 1.
1 Lebesgue measure. Assume T preserves .

Theorem
Let f,g € C*. For all e > 0, there is an expansion

/ fogoTrdu= 3 Na(f,g)+ oe),
[Ai|=e

where
@ )\; is a sequence tending to O (the Ruelle resonances).

e ci(f,g) coefficients depending on f and g.
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Uniformly expanding maps of the circle

T:S' = Sta C*® map, with T" > 3 > 1.
1 Lebesgue measure. Assume T preserves .

Theorem
Let f,g € C*. For all e > 0, there is an expansion

/f goT"du—ZP )ATci(f,g) + o(€"),

[A\i|=e

where
@ )\; is a sequence tending to O (the Ruelle resonances).

e ci(f,g) coefficients depending on f and g.

Ao = 1 dominating term, with co(f,g) = (f fdu) ([ gdu).

In general, ¢; are distributions.

Just like for powers of matrices, there could be polynomial terms.
We ignore them for simplicity.



Sketch of proof, using the transfer operator £L = T*

Let C > 0. Decompose a function f as
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Sketch of proof, using the transfer operator £L = T*

Let C > 0. Decompose a function f as

£ Z fe2imhx | Z fe? ™ — f oy fc.
|kl<C |k|>C

Then
Lf = ﬁfgc + Lfsc = ﬁgcf + Lscf.

L<c has finite rank. Spectrum: X
finite set of eigenvalues, including 0.

is like for x — 2x: its norm on X ?/ ,
Cris< g ". X \& '
The spectrum of L is a discrete set
of eigenvalues in {z : |z| > g~"}. O %

One could also do the same with 7 acting on (C")*.



A probability-preserving system (X, T, i) has a Ruelle spectrum
{Ai} if, for all C* functions f and g, for all ¢ > 0,

/f~go Trdpu= 3" Alci(f,g) + ofe".

|>\,‘|>€




Ruelle resonances: general setting

Definition
A probability-preserving system (X, T, i) has a Ruelle spectrum
{\i} if, for all C* functions f and g, for all € >0,
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Theorem

C®° uniformly expanding maps have a Ruelle spectrum, for any
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Ruelle resonances: general setting

Definition
A probability-preserving system (X, T, i) has a Ruelle spectrum
{\i} if, for all C* functions f and g, for all € >0,

/f-go Trdp= 3" Nei(f,g) +o(e").

[Ai|=e

Theorem

C* uniformly expanding/hyperbolic maps have a Ruelle spectrum,
for any Gibbs measure |1 with smooth potential.

Further questions:
@ Is the Ruelle spectrum trivial (like for x — 2x mod 1)?
e Asymptotics of the number of eigenvalues with |\;| > ¢
@ Speed of decay of correlations (i.e., gap between \g =1 and
|A1])
@ Compute the Ruelle spectrum in some examples



Ruelle resonances for linear pseudo-Anosov maps

X: compact connected surface, genus g
T: linear pseudo-Anosov map, preserving orientations
1. Lebesgue measure



Ruelle resonances for linear pseudo-Anosov maps

X: compact connected surface, genus g

T: linear pseudo-Anosov map, preserving orientations
1. Lebesgue measure

A > 1: expansion factor of the pseudo-Anosov map
Eigenvalues of T, on HY: {\,A71 pa, ..., pog—2}, with
‘/~Li| S ()‘_1’)‘)'



Ruelle resonances for linear pseudo-Anosov maps

X: compact connected surface, genus g

T: linear pseudo-Anosov map, preserving orientations
1. Lebesgue measure

A > 1: expansion factor of the pseudo-Anosov map
Eigenvalues of T, on HY: {\,A71 pa, ..., pog—2}, with
‘/~Li| S ()‘_1’)‘)'

Theorem (Faure-Gouézel-Lanneau)

T has Ruelle resonances. They are exactly 1 and \~"u; for
i€e{l,...,2g—2}andn>1.




Ruelle resonances for linear pseudo-Anosov maps

X: compact connected surface, genus g

T: linear pseudo-Anosov map, preserving orientations
1. Lebesgue measure

A > 1: expansion factor of the pseudo-Anosov map
Eigenvalues of T, on HY: {\A71, pa, ..., pog—2}, with
il € (A1),

Theorem (Faure-Gouézel-Lanneau)

T has Ruelle resonances. They are exactly 1 (with multiplicity 1)
and \™"u; fori € {1,...,2g —2} and n > 1 (with multiplicity n).




Ruelle resonances for linear pseudo-Anosov maps

X: compact connected surface, genus g

T: linear pseudo-Anosov map, preserving orientations
1 Lebesgue measure

A > 1: expansion factor of the pseudo-Anosov map
Eigenvalues of T, on HY: {\A71, pa, ..., pog—2}, with
‘:U’i| € ()‘_17)‘)'

Theorem (Faure-Gouézel-Lanneau)

T has Ruelle resonances. They are exactly 1 (with multiplicity 1)
and \™"u; fori € {1,...,2g —2} and n > 1 (with multiplicity n).

T = (21) the cat map, acting on T2.
Its Ruelle spectrum is {1}.
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Ti=(§%) acts on X:

Ty

T, =(39) also acts on X.




Constructing a pseudo-Anosov map

Ti=(§%) acts on X:

—

T1

N\W

To = (39) also acts on X.

Compose the above two: one gets a map T : X — X locally given
by the matrix (32). This is a linear pseudo-Anosov map.



T linear pseudo-Anosov map, with expansion factor A > 1 and
spectrum on HY 1 {\ A1 u1, ..., piog 2}

T has Ruelle resonances. They are exactly 1 and \™"; for
ie{l,....,.2g—2}andn>1.




T linear pseudo-Anosov map, with expansion factor A > 1 and
spectrum on HY : {\ A1 g, .o pog—at
Theorem (Faure-Gouézel-Lanneau)

T has Ruelle resonances. They are exactly 1 and \™"u; for
i€{l,...,2g—2}andn>1.

Steps of the proof:
© Ruelle resonances make sense
@ Cohomology gives rise to Ruelle resonances

© All Ruelle resonances come from cohomology
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Ruelle resonances make sense

Goal: construct a Banach space on which f — f o T has a small
essential spectral radius.
For expanding maps: distributions
For contracting maps: smooth functions
In hyperbolic cases, anisotropic space
@ smooth in the contracting (vertical) direction
@ dual of smooth in the expanding (horizontal) direction

Smoothness indices kj and k,. Let L, be the vertical derivative.

IIf]| = sup sup sup /gf)- Ll fdx

i<k, | horlzontal |nterva| ¢€Ckh(l) ||¢Hckhgl

=11
B = completion of C°(M — X) for ||-||.



Cohomology gives rise to Ruelle resonances

h = [w] # 0 a cohomology class with T*h = ph and |u| € (A\71, ).
Goal: construct f € B with Tf = A\"1uf, where Tf =fo T.
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Therefore,
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Cohomology gives rise to Ruelle resonances

h = [w] # 0 a cohomology class with T*h = ph and |u| € (A\71, ).
Goal: construct f € B with Tf = A\"1uf, where Tf =fo T.
Decompose w = wy dx 4+ wy, dy. Then

u”/w:/(T*)"w:/T"wx-)\"dx—i—/T”wy-)\"dy.
g gl gl gl

Therefore,
[Ty ax= ot [w+ o0,
Y Y

Spectral expansion: 7w, = > AMfi + o(€").
One of the \; should coincide with A™14. O

To show that A=y, n > 1, is also a Ruelle resonance, use Lz_lf
where f eigenfunction for A1 4.
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Cohomological interpretation of elements of B

To f € B, associate the current f dx.
It is closed if d(fdx) =0, i.e., L,f =0.
Cohomology class [f dx] (or simply [f]) for f € B kerlL,.

The current f dx is exact if, additionally, [f] = 0. Then one can
write f dx = dg. Automatically, L,g =0 and Lpg = f and
moreover g € B.

Let E, be the eigenspace of T for the eigenvalue «.
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All Ruelle resonances come from cohomology
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All Ruelle resonances come from cohomology

Ly Ly Ly Ly Ly L,
— — — — — —
Ex-24 Ex-14 E. Exa Exeq
— — ~ r — ~—
Ly, Ly Ly Ly Ly Ly

Consider a with E, # 0. We want to show that a =1, or « is of
the form A™"u;.
e Start from f € E, — {0}.
o k maximal with LXf #£0. Then g = LXf € E\«,,, and
L,g =0.
o If [g] #0, then T* : HY(M) — H*(M) has an eigenvalue at

A - M. We are done (modulo the problem of the eigenvalue
A~L, that we have to exclude — harder, ignored in this sketch).

e If [g] =0, then g = Lpg1, with g1 € Eyxi1, Nker L,. Repeat,
until [g;] # 0. Then \<T*+1 is an eigenvalue of T*. O



