Symbolic dynamics for non-uniformly hyperbolic systems with singularities

Yuri Lima

Universidade Federal do Ceará (UFC), Fortaleza, Brasil

June, 2018
Part 1: Introduction
Symbolic model for maps

- \(G = (V, E) \) oriented graph with \(V \) countable
- \(\Sigma = \{ \text{Z-indexed paths on } G \} \)
- \(\sigma : \Sigma \rightarrow \Sigma \) left shift
- \((\Sigma, \sigma) \) topological Markov shift (TMS)
- \(\pi : \Sigma \rightarrow M \) coding
- \((\Sigma, \sigma, \pi) \) symbolic model

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)

June, 2018
Symbolic model for maps

- $G = (V, E)$ oriented graph with V countable
○ $G = (V, E)$ oriented graph with V countable
○ $\Sigma = \{\mathbb{Z}$–indexed paths on $G\}$
Symbolic model for maps

- $\mathcal{G} = (V, E)$ oriented graph with V countable
- $\Sigma = \{\mathbb{Z}\text{-indexed paths on } G\}$
- $\sigma : \Sigma \to \Sigma$ left shift
Symbolic model for maps

- $\mathcal{G} = (V, E)$ oriented graph with V countable
- $\Sigma = \{\mathbb{Z}-indexed\ \text{paths on}\ \mathcal{G}\}$
- $\sigma : \Sigma \rightarrow \Sigma$ left shift
- $(\Sigma, \sigma) = \text{topological Markov shift (TMS)}$
Symbolic model for maps

- $G = (V, E)$ oriented graph with V countable
- $\Sigma = \{\mathbb{Z}\text{-indexed paths on } G\}$
- $\sigma : \Sigma \to \Sigma$ left shift
- $(\Sigma, \sigma) = \text{topological Markov shift (TMS)}$
- $\pi : \Sigma \to M$ coding
Symbolic model for maps

- $\mathcal{G} = (V, E)$ oriented graph with V countable
- $\Sigma = \{\mathbb{Z}\text{-indexed paths on } G\}$
- $\sigma : \Sigma \to \Sigma$ left shift
- $(\Sigma, \sigma) = \text{topological Markov shift (TMS)}$
- $\pi : \Sigma \to M$ coding
- (Σ, σ, π) symbolic model
Symbolic models for uniformly hyperbolic systems

- Adler-Weiss 1967: 2–dim hyperbolic toral automorphisms
Symbolic models for uniformly hyperbolic systems

- Adler-Weiss 1967: 2–dim hyperbolic toral automorphisms
- Sinai 1968: Anosov diffeomorphisms
Symbolic models for uniformly hyperbolic systems

- Adler-Weiss 1967: 2–dim hyperbolic toral automorphisms
- Sinai 1968: Anosov diffeomorphisms
- Bowen 1970: Axiom A diffeomorphisms
- Ratner 1973: Anosov flows
- Bowen 1973: Axiom A flows
- Bunimovich-Chernov-Sinai 1990: dispersing billiards and Liouville measure
Symbolic models for uniformly hyperbolic systems

- Adler-Weiss 1967: 2–dim hyperbolic toral automorphisms
- Sinai 1968: Anosov diffeomorphisms
- Bowen 1970: Axiom A diffeomorphisms
- Ratner 1973: Anosov flows
- Bowen 1973: Axiom A flows
- Bunimovich-Chernov-Sinai 1990: dispersing billiards and Liouville measure
Symbolic models for uniformly hyperbolic systems

- Adler-Weiss 1967: 2–dim hyperbolic toral automorphisms
- Sinai 1968: Anosov diffeomorphisms
- Bowen 1970: Axiom A diffeomorphisms
- Ratner 1973: Anosov flows
- Bowen 1973: Axiom A flows
Symbolic models for uniformly hyperbolic systems

- Adler-Weiss 1967: 2–dim hyperbolic toral automorphisms
- Sinai 1968: Anosov diffeomorphisms
- Bowen 1970: Axiom A diffeomorphisms
- Ratner 1973: Anosov flows
- Bowen 1973: Axiom A flows
- Bunimovich-Chernov-Sinai 1990: dispersing billiards and Liouville measure
Examples

○ Hyperbolic toral automorphisms:
○ Geodesic flows on manifolds with negative sectional curvature:
○ Dispersing billiards:
Examples

○ Hyperbolic toral automorphisms:
Examples

- Hyperbolic toral automorphisms:

![Diagram of hyperbolic toral automorphisms]
Examples

- Hyperbolic toral automorphisms:

- Geodesic flows on manifolds with negative sectional curvature:
Examples

- Hyperbolic toral automorphisms:

- Geodesic flows on manifolds with negative sectional curvature:
Examples

- Hyperbolic toral automorphisms:

- Geodesic flows on manifolds with negative sectional curvature:

- Dispersing billiards:
Examples

○ Hyperbolic toral automorphisms:

○ Geodesic flows on manifolds with negative sectional curvature:

○ Dispersing billiards:
Part 2: Non-Uniform Hyperbolicity
Framework

Non-uniform hyperbolicity parameters
Framework

Non-uniform hyperbolicity parameters

- \(f : M \to M \) surface diffeomorphism
Framework
Non-uniform hyperbolicity parameters

- $f : M \rightarrow M$ surface diffeomorphism
- $\chi > 0$
Framework

Non-uniform hyperbolicity parameters

- $f : M \rightarrow M$ surface diffeomorphism
- $\chi > 0$
- $x \in M$ s.t.
Framework
Non-uniform hyperbolicity parameters

- $f : M \rightarrow M$ surface diffeomorphism
- $\chi > 0$
- $x \in M$ s.t. $\exists e_x^s, e_x^u$ transverse with
Framework

Non-uniform hyperbolicity parameters

- $f : M \to M$ surface diffeomorphism
- $\chi > 0$
- $x \in M$ s.t. $\exists e_x^s, e_x^u$ transverse with
 \begin{align*}
 e_x^s & \text{ contraction in future} \\
 e_x^u & \text{ contraction in past}
 \end{align*}
Framework

Non-uniform hyperbolicity parameters

- \(f : M \rightarrow M \) surface diffeomorphism
- \(\chi > 0 \)
- \(x \in M \) s.t. \(\exists e_s^x, e_u^x \) transverse with \(\begin{cases} e_s^x \text{ contraction in future} \\ e_u^x \text{ contraction in past} \end{cases} \)
- Angle parameter:
Framework

Non-uniform hyperbolicity parameters

- $f : M \rightarrow M$ surface diffeomorphism
- $\chi > 0$
- $x \in M$ s.t. $\exists e_x^s, e_x^u$ transverse with $\left\{ \begin{array}{l} e_x^s \text{ contraction in future} \\ e_x^u \text{ contraction in past} \end{array} \right.$
- Angle parameter: $\alpha(x) = \angle (e_x^s, e_x^u)$
Framework

Non-uniform hyperbolicity parameters

- \(f : M \rightarrow M \) surface diffeomorphism
- \(\chi > 0 \)
- \(x \in M \) s.t. \(\exists e_x^s, e_x^u \) transverse with \(\begin{cases} e_x^s \text{ contraction in future} \\ e_x^u \text{ contraction in past} \end{cases} \)
- Angle parameter: \(\alpha(x) = \angle(e^s, e^u) \)
- \(s \)-parameter:
Non-uniform hyperbolicity parameters

- $f : M \to M$ surface diffeomorphism
- $\chi > 0$
- $x \in M$ s.t. $\exists e_x^s, e_x^u$ transverse with
 \begin{align*}
 &e_x^s \text{ contraction in future} \\
 &e_x^u \text{ contraction in past}
 \end{align*}
- Angle parameter: $\alpha(x) = \angle(e^s_x, e^u_x)$
- s–parameter:

$$s(x) = \sqrt{2} \left(\sum_{n \geq 0} e^{2\chi^n} \| df^n e_x^s \|^2 \right)^{1/2}$$
Framework
Non-uniform hyperbolicity parameters

- $f : M \to M$ surface diffeomorphism
- $\chi > 0$
- $x \in M$ s.t. $\exists e^s_x, e^u_x$ transverse with
 \[\begin{align*}
 e^s_x & \text{ contraction in future} \\
 e^u_x & \text{ contraction in past}
 \end{align*} \]
- Angle parameter: $\alpha(x) = \angle(e^s_x, e^u_x)$
- s–parameter:
 \[s(x) = \sqrt{2} \left(\sum_{n \geq 0} e^{2\chi n} \| df^n e^s_x \|^2 \right)^{1/2} \]
- u–parameter:
Framework

Non-uniform hyperbolicity parameters

- $f: M \to M$ surface diffeomorphism
- $\chi > 0$
- $x \in M$ s.t. $\exists e_x^s, e_x^u$ transverse with $\begin{cases} e_x^s \text{ contraction in future} \\ e_x^u \text{ contraction in past} \end{cases}$
- Angle parameter: $\alpha(x) = \angle (e^s, e^u)$
- s–parameter:
 $$s(x) = \sqrt{2} \left(\sum_{n \geq 0} e^{2\chi n} \| df^n e_x^s \|^2 \right)^{1/2}$$
- u–parameter:
 $$u(x) = \sqrt{2} \left(\sum_{n \geq 0} e^{2\chi n} \| df^{-n} e_x^u \|^2 \right)^{1/2}$$
Non-uniformly hyperbolic set NUH_χ

Asymptotic hyperbolicity
Non-uniformly hyperbolic set NUH_χ

Asymptotic hyperbolicity

\[\text{NUH} = \text{NUH}_\chi = \{ x \in M : s(x), u(x) < \infty \} \]
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980: surface diffeo with $h > 0$ has horseshoes of large topological entropy.

Theorem (Sarig 2013)

Let f be a $C^1 + \beta$ surface diffeomorphism. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi : \Sigma \to M$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
2. $\pi[\Sigma]$ contains NUH.
3. Every $x \in NUH$ has finitely many pre-images in Σ.

NUH = recurrent subset of NUH

Σ = recurrent subset of Σ.

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980:

Theorem (Sarig 2013)

Let f be a C^1 surface diffeomorphism. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi : \Sigma \rightarrow M$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
2. $\pi[\Sigma^\#]$ contains NUH$^\#$.
3. Every $x \in NUH^\#$ has finitely many pre-images in $\Sigma^\#$.

NUH$^\#$ = recurrent subset of NUH

$\Sigma^\#$ = recurrent subset of Σ.
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980: surface diffeo with $h > 0$ has horseshoes of large topological entropy.
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980: surface diffeo with $h > 0$ has horseshoes of large topological entropy.

Theorem (Sarig 2013)

Let f be a $C^1 + \beta$ surface diffeomorphism. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi: \Sigma \rightarrow M$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
2. $\pi[\Sigma^\#]$ contains NUH$^\#$.
3. Every $x \in NUH^\#$ has finitely many pre-images in $\Sigma^\#$.

$NUH^\# = \text{recurrent subset of NUH}$

$\Sigma^\# = \text{recurrent subset of } \Sigma$.
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980: surface diffeo with $h > 0$ has horseshoes of large topological entropy.

Theorem (Sarig 2013)

Let f be a $C^{1+\beta}$ surface diffeomorphism.
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980: surface diffeo with \(h > 0 \) has horseshoes of large topological entropy.

Theorem (Sarig 2013)

Let \(f \) be a \(C^{1+\beta} \) surface diffeomorphism. For all \(\chi > 0 \)

\[
\begin{align*}
\text{(1)} & \quad \pi \circ \sigma = f \circ \pi \\
\text{(2)} & \quad \pi[\Sigma^\#] \text{ contains } \text{NUH}^\# \\
\text{(3)} & \quad \text{Every } x \in \text{NUH}^\# \text{ has finitely many pre-images in } \Sigma^\#
\end{align*}
\]

\(\text{NUH}^\# = \text{recurrent subset of NUH} \)\n\(\Sigma^\# = \text{recurrent subset of } \Sigma \)
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980: surface diffeo with $h > 0$ has horseshoes of large topological entropy.

Theorem (Sarig 2013)

Let f be a $C^{1+\beta}$ surface diffeomorphism. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi : \Sigma \to M$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
2. $\pi[\Sigma^\#]$ contains NUH$^\#$.
3. Every $x \in \text{NUH}^\#$ has finitely many pre-images in $\Sigma^\#$.

NUH$^\#$ = recurrent subset of NUH

\[\Sigma^\# = \text{recurrent subset of } \Sigma \]
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980: surface diffeo with \(h > 0 \) has horseshoes of large topological entropy.

Theorem (Sarig 2013)

Let \(f \) be a \(C^{1+\beta} \) surface diffeomorphism. For all \(\chi > 0 \) there is \((\Sigma, \sigma)\) TMS and \(\pi : \Sigma \to M \) Hölder continuous s.t.:

1. \(\pi \circ \sigma = f \circ \pi \).
2. \(\pi[\Sigma^\#] \) contains NUH
3. Every \(x \in \text{NUH}^\# \) has finitely many pre-images in \(\Sigma^\# \).

NUH\(^\#\) = recurrent subset of NUH
\(\Sigma^\# = \) recurrent subset of \(\Sigma \).
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980: surface diffeo with $h > 0$ has horseshoes of large topological entropy.

Theorem (Sarig 2013)

Let f be a $C^{1+\beta}$ surface diffeomorphism. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi : \Sigma \rightarrow M$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
2. $\pi[\Sigma^\#]$ contains $NUH^\#$.

$NUH^\# = \text{recurrent subset of } NUH$

$\Sigma^\# = \text{recurrent subset of } \Sigma$.

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980: surface diffeo with $h > 0$ has horseshoes of large topological entropy.

Theorem (Sarig 2013)

Let f be a $C^{1+\beta}$ surface diffeomorphism. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi : \Sigma \to M$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
2. $\pi[\Sigma^\#]$ contains $NUH^\#$.
3. Every $x \in NUH^\#$ has finitely many pre-images in $\Sigma^\#$.
Symbolic dynamics for NUH surface diffeomorphisms

Katok 1980: surface diffeo with \(h > 0 \) has horseshoes of large topological entropy.

Theorem (Sarig 2013)

Let \(f \) be a \(C^{1+\beta} \) surface diffeomorphism. For all \(\chi > 0 \) there is \((\Sigma, \sigma)\) TMS and \(\pi: \Sigma \rightarrow M \) Hölder continuous s.t.:

1. \(\pi \circ \sigma = f \circ \pi \).
2. \(\pi[\Sigma#] \) contains \(NUH# \).
3. Every \(x \in NUH# \) has finitely many pre-images in \(\Sigma# \).

\(NUH# = \) recurrent subset of NUH
\(\Sigma# = \) recurrent subset of \(\Sigma \).
Main ingredients
(1) **Size of Pesin chart:**
Main ingredients

(1) **Size of Pesin chart:**

\[
Q(x) = \left(\frac{|\sin \alpha(x)|}{\sqrt{s(x)^2 + u(x)^2}} \right)^{\text{Large power}}
\]
Main ingredients

(1) **Size of Pesin chart:**

\[
Q(x) = \left(\frac{\left| \sin \alpha(x) \right|}{\sqrt{s(x)^2 + u(x)^2}} \right)^{\text{Large power}}
\]

(2) **\(\varepsilon\)-double charts** \(\Psi_{x^{ps},p^u}\)
Main ingredients

(1) **Size of Pesin chart:**

\[
Q(x) = \left(\frac{|\sin \alpha(x)|}{\sqrt{s(x)^2 + u(x)^2}} \right)^{\text{Large power}}
\]

(2) **\(\varepsilon\)-double charts** \(\Psi_x^{p^s,p^u} = (\Psi_x \uparrow_{[-p^s,p^s]^2}, \Psi_x \uparrow_{[-p^u,p^u]^2})\)
Main ingredients

(1) **Size of Pesin chart:**

\[Q(x) = \left(\frac{|\sin \alpha(x)|}{\sqrt{s(x)^2 + u(x)^2}} \right)^{\text{Large power}} \]

(2) **\(\varepsilon\)-Double charts** \(\Psi_{x}^{p_{s},p_{u}} = (\Psi_{x} \uparrow [-p_{s},p_{s}]^{2}, \Psi_{x} \uparrow [-p_{u},p_{u}]^{2})\)

(3) **Transition rule:**
Main ingredients

(1) **Size of Pesin chart:**

\[Q(x) = \left(\frac{|\sin \alpha(x)|}{\sqrt{s(x)^2 + u(x)^2}} \right) \]

(2) **\(\varepsilon \)-double charts**

\[\Psi_{x}^{p_s,p_u} = (\Psi_{x} \upharpoonright_{[-p_s,p_s]^2}, \Psi_{x} \upharpoonright_{[-p_u,p_u]^2}) \]

(3) **Transition rule:**

\[\Psi_{x}^{p_s,p_u} \rightarrow \Psi_{y}^{q_s,q_u} \text{ if} \]
Main ingredients

(1) **Size of Pesin chart:**

\[
Q(x) = \left(\frac{|\sin \alpha(x)|}{\sqrt{s(x)^2 + u(x)^2}} \right)^{\text{Large power}}
\]

(2) **\(\varepsilon\)-Double charts** \(\Psi_{x}^{p_{s},p_{u}} = (\Psi_{x} \uparrow [-p_{s},p_{s}]^{2}, \Psi_{x} \uparrow [-p_{u},p_{u}]^{2})\)

(3) **Transition rule:** \(\Psi_{x}^{p_{s},p_{u}} \rightarrow \Psi_{y}^{q_{s},q_{u}}\) if

- **Overlap:**
Main ingredients

(1) **SIZE OF PESIN CHART:**

\[Q(x) = \left(\frac{|\sin \alpha(x)|}{\sqrt{s(x)^2 + u(x)^2}} \right) \text{Large power} \]

(2) **ε–DOUBLE CHARTS**
\[\psi_{x}^{p^{s}, p^{u}} = (\psi_{x} \uparrow_{[-p^{s}, p^{s}]^2}, \psi_{x} \uparrow_{[-p^{u}, p^{u}]^2}) \]

(3) **TRANSITION RULE:**
\[\psi_{x}^{p^{s}, p^{u}} \rightarrow \psi_{y}^{q^{s}, q^{u}} \text{ if} \]

- **OVERLAP:**
\[\psi_{f(x)}^{q^{s} \wedge q^{u}} \approx \psi_{y}^{q^{s} \wedge q^{u}} \]
Main ingredients

(1) **Size of Pesin chart:**

\[
Q(x) = \left(\frac{|\sin \alpha(x)|}{\sqrt{s(x)^2 + u(x)^2}} \right)^{\text{Large power}}
\]

(2) **\(\varepsilon\)-double charts** \(\Psi_{x}^{p_{s},p_{u}} = (\Psi_{x} \uparrow \left[-p_{s}, p_{s} \right], \Psi_{x} \uparrow \left[-p_{u}, p_{u} \right])\)

(3) **Transition rule:** \(\Psi_{x}^{p_{s},p_{u}} \rightarrow \Psi_{y}^{q_{s},q_{u}} \text{ if}\)

- **Overlap:** \(\Psi_{f(x)}^{q_{s} \wedge q_{u}} \approx \Psi_{y}^{q_{s} \wedge q_{u}} \text{ and } \Psi_{x}^{p_{s} \wedge p_{u}} \approx \Psi_{f^{-1}(y)}^{p_{s} \wedge p_{u}}\)
Main ingredients

(1) **Size of Pesin chart:**

\[
Q(x) = \left(\frac{|\sin \alpha(x)|}{\sqrt{s(x)^2 + u(x)^2}} \right)^{\text{Large power}}
\]

(2) **\(\varepsilon\)-double charts** \(\Psi^{p_s,p_u}_x = (\Psi_x \upharpoonright [-p_s,p_s]^2, \Psi_x \upharpoonright [-p_u,p_u]^2)\)

(3) **Transition rule:** \(\Psi^{p_s,p_u}_x \rightarrow \Psi^{q_s,q_u}_y\) if

- **Overlap:** \(\Psi^{q_s,q_u}_f(x) \approx \Psi^{q_s,q_u}_y\) and \(\Psi^{p_s,p_u}_x \approx \Psi^{p_s,p_u}_{f^{-1}(y)}\)
- **Maximality of parameters:**
Main ingredients

(1) **Size of Pesin chart:**

\[Q(x) = \left(\frac{|\sin \alpha(x)|}{\sqrt{s(x)^2 + u(x)^2}} \right) \]

(2) **ε–double charts** \(\Psi_{x}^{p_s, p_u} = (\Psi_{x} \uparrow [-p_s, p_s]^2, \Psi_{x} \uparrow [-p_u, p_u]^2) \)

(3) **Transition rule:** \(\Psi_{x}^{p_s, p_u} \rightarrow \Psi_{y}^{q_s, q_u} \) if

- **Overlap:** \(\Psi_{f(x)}^{q_s \wedge q_u} \approx \Psi_{y}^{q_s \wedge q_u} \) and \(\Psi_{x}^{p_s \wedge p_u} \approx \Psi_{f^{-1}(y)}^{p_s \wedge p_u} \)
- **Maximality of parameters:**

\[
p^s = \min\{ e^\varepsilon q^s, Q(x) \}
\]
\[
q^u = \min\{ e^\varepsilon p^u, Q(y) \}
\]
Transition between ε–double charts
Transition between ε–double charts

$\Psi_{x}^{p_{s}, p_{u}}$

$\Psi_{y}^{q_{s}, q_{u}}$

\mathcal{F}^{s}

\mathcal{F}^{u}
Part 3: Billiards
NUH billiards

Sinai’s billiard table

Bunimovich billiard tables
Framework

Invertible map with singularities
Framework

Invertible map with singularities

○ $T = \text{billiard table}$
Framework

Invertible map with singularities

- $T =$ billiard table
- Phase space $= \partial T \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
Framework

Invertible map with singularities

- $T = $ billiard table
- Phase space = $\partial T \times [-\frac{\pi}{2}, \frac{\pi}{2}]$
- $f = $ derived map
Framework

Invertible map with singularities

- $T =$ billiard table
- Phase space $= \partial T \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
- $f =$ derived map
- Singular set $\mathcal{S} =$
Framework

Invertible map with singularities

- $T = $ billiard table
- Phase space $= \partial T \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
- $f = $ derived map
- Singular set $\mathcal{S} = $ break points
○ $T =$ billiard table
○ Phase space $= \partial T \times \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
○ $f =$ derived map
○ Singular set $\mathcal{S} =$ break points $+$ glancing orbits
Framework

Invertible map with singularities

- $T =$ billiard table
- Phase space $= \partial T \times [-\frac{\pi}{2}, \frac{\pi}{2}]$
- $f =$ derived map
- Singular set $\mathcal{S} =$ break points + glancing orbits
- Behavior near \mathcal{S}:
Invertible map with singularities

- $T =$ billiard table
- Phase space $= \partial T \times [-\frac{\pi}{2}, \frac{\pi}{2}]$
- $f =$ derived map
- Singular set $\mathcal{S} =$ break points $+$ glancing orbits
- Behavior near \mathcal{S}:

$$\text{dist}(x, \mathcal{S})^a \leq \| df_x \| \leq \text{dist}(x, \mathcal{S})^{-a}$$
Non-uniformly hyperbolic set NUH

Asymptotic hyperbolicity
Old NUH
Old NUH

\[\lim_{n \to \pm \infty} \frac{1}{n} \log \text{dist}(f^n(x), \mathcal{S}) = 0 \]
Symbolic dynamics for NUH planar billiards

Theorem (L-Matheus)

Let f be the derived map of a piecewise C^3 table. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi: \Sigma \to \mathcal{M}$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
2. $\pi[\Sigma]$ contains NUH \mathcal{M}.
3. Every $x \in NUH$ has finitely many pre-images in Σ.

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)
June, 2018
Symbolic dynamics for NUH planar billiards

Bunimovich-Chernov-Sinai 1990:

Theorem (L-Matheus)

Let f be the derived map of a piecewise C^3 table. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi: \Sigma \to M$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
2. $\pi[\Sigma]$ contains NUH $\#$.
3. Every $x \in \text{NUH} \#$ has finitely many pre-images in $\Sigma \#$.
Bunimovich-Chernov-Sinai 1990: dispersing billiards with Liouville measure.
Symbolic dynamics for NUH planar billiards

Bunimovich-Chernov-Sinai 1990: dispersing billiards with Liouville measure.

Theorem (L-Matheus)

Let \(f \) be the derived map of a piecewise \(C^3 \) table. For all \(\chi > 0 \) there is \((\Sigma, \sigma) \) TMS and \(\pi: \Sigma \rightarrow M \) Hölder continuous s.t.:

1. \(\pi \circ \sigma = f \circ \pi \).
2. \(\pi[\Sigma^\#] \) contains NUH \(^\# \).
3. Every \(x \in \text{NUH}^\# \) has finitely many pre-images in \(\Sigma^\# \).
Symbolic dynamics for NUH planar billiards

Bunimovich-Chernov-Sinai 1990: dispersing billiards with Liouville measure.

Theorem (L-Matheus)

Let f be the derived map of a piecewise C^3 table.
Symbolic dynamics for NUH planar billiards

Bunimovich-Chernov-Sinai 1990: dispersing billiards with Liouville measure.

Theorem (L-Matheus)

Let f be the derived map of a piecewise C^3 table. For all $\chi > 0$
Symbolic dynamics for NUH planar billiards

Bunimovich-Chernov-Sinai 1990: dispersing billiards with Liouville measure.

Theorem (L-Matheus)

Let f be the derived map of a piecewise C^3 table. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi : \Sigma \to M$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
2. $\pi[\Sigma^\#] \text{ contains NUH}^\#$.
3. Every $x \in \text{NUH}^\#$ has finitely many pre-images in $\Sigma^\#$.
Bunimovich-Chernov-Sinai 1990: dispersing billiards with Liouville measure.

Theorem (L-Matheus)

Let f be the derived map of a piecewise C^3 table. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi : \Sigma \to M$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
Symbolic dynamics for NUH planar billiards

Bunimovich-Chernov-Sinai 1990: dispersing billiards with Liouville measure.

Theorem (L-Matheus)

Let \(f \) be the derived map of a piecewise \(C^3 \) table. For all \(\chi > 0 \) there is \((\Sigma, \sigma)\) TMS and \(\pi : \Sigma \rightarrow M \) Hölder continuous s.t.:

1. \(\pi \circ \sigma = f \circ \pi \).
2. \(\pi[\Sigma^#] \) contains \(NUH^# \).
Symbolic dynamics for NUH planar billiards

Bunimovich-Chernov-Sinai 1990: dispersing billiards with Liouville measure.

Theorem (L-Matheus)

Let f be the derived map of a piecewise C^3 table. For all $\chi > 0$ there is (Σ, σ) TMS and $\pi : \Sigma \to M$ Hölder continuous s.t.:

1. $\pi \circ \sigma = f \circ \pi$.
2. $\pi[\Sigma^\#]$ contains NUH$^\#$.
3. Every $x \in \text{NUH}^\#$ has finitely many pre-images in $\Sigma^\#$.
Bowen’s 17th problem
Bowen’s 17th problem

15. Renewal thm. for dependent r.v.’s
 a. derive via motivation of A, A flows mixingness
 b. how fast is the mixing for A, A flows

16. Brownian motion or diffusion quinoa-flow

17. Symbolic dynamics for billiards

18. Interpret log f(x) as a potential fcn? Kohn, idea on surfaces req. curv.

19. Can you construct some Banach space so that H is an eigenvalue of some coin. operator

20. Oth. systems in stat. mech. — top dyn. formulation?
Proof

Size of Pesin chart:

\[\text{New } Q = \text{Old } Q \times \rho \times \rho \]

where \(\rho \times \rho \) = dist\(\{f^{-1}(x), x, f(x)\}, S\).

Finer local estimates:

estimates from Sarig are uniform, while ours are not ↔ bounded distortion.

Exponential beats polynomial and sub-exponential:

behavior of \(df \) beats explosion of derivative and proximity to \(S \).
(1) **Size of Pesin chart:**

\[\text{Size of Pesin chart: } \]
(1) **Size of Pesin chart:**

\[
\text{New } Q(x) = \text{Old } Q(x)
\]
(1) **Size of Pesin chart:**

\[\text{New } Q(x) = \text{Old } Q(x) \times \rho(x)^{\text{Large power}}, \]

\[\text{dist} \{ f^{-1}(x), x, f(x) \}, S \]
Proof

(1) **Size of Pesin chart:**

\[
\text{New } Q(x) = \text{Old } Q(x) \times \rho(x)^{\text{Large power}},
\]

where \(\rho(x) = \text{dist}(\{f^{-1}(x), x, f(x)\}, \mathcal{I})\).
(1) **Size of Pesin chart:**

\[
\text{New } Q(x) = \text{Old } Q(x) \times \rho(x)^\text{Large power},
\]

where \(\rho(x) = \text{dist}(\{f^{-1}(x), x, f(x)\}, \mathcal{I}) \).

(2) **Finer local estimates:**
(1) **Size of Pesin chart:**

\[\text{New } Q(x) = \text{Old } Q(x) \times \rho(x)^{\text{Large power}}, \]

where \(\rho(x) = \text{dist}(\{f^{-1}(x), x, f(x)\}, \mathcal{S}). \)

(2) **Finer local estimates:** estimates from Sarig are uniform, while ours are not
(1) **Size of Pesin chart:**

\[
\text{New } Q(x) = \text{Old } Q(x) \times \rho(x)^{\text{Large power}},
\]

where \(\rho(x) = \text{dist}\left(\{f^{-1}(x), x, f(x)\}, \mathcal{I}\right)\).

(2) **Finer local estimates:** estimates from Sarig are uniform, while ours are not \(\leftrightarrow\) bounded distortion.
(1) **Size of Pesin chart:**

\[\text{New } Q(x) = \text{Old } Q(x) \times \rho(x)^{\text{Large power}}, \]

where \(\rho(x) = \text{dist}(\{f^{-1}(x), x, f(x)\}, \mathcal{I}) \).

(2) **Finer local estimates:** estimates from Sarig are uniform, while ours are not ↔ bounded distortion.

(3) **Exponential beats polynomial and sub-exponential:**
(1) **Size of Pesin chart:**

\[
\text{New } Q(x) = \text{Old } Q(x) \times \rho(x)^{\text{Large power}},
\]

where \(\rho(x) = \text{dist}(\{f^{-1}(x), x, f(x)\}, \mathcal{I})\).

(2) **Finer local estimates:** estimates from Sarig are uniform, while ours are not \(\leftrightarrow\) bounded distortion.

(3) **Exponential beats polynomial and sub-exponential:** behavior of \(df\) beats explosion of derivative
1. **Size of Pesin chart:**

\[
\text{New } Q(x) = \text{Old } Q(x) \times \rho(x)^{\text{Large power}},
\]

where \(\rho(x) = \text{dist}(\{f^{-1}(x), x, f(x)\}, \mathcal{I}) \).

2. **Finer local estimates:** estimates from Sarig are uniform, while ours are not \(\leftrightarrow\) bounded distortion.

3. **Exponential beats polynomial and sub-exponential:** behavior of \(df\) beats explosion of derivative and proximity to \(\mathcal{I}\).
Part 4: Interval Maps
Non-uniformly expanding maps
Non-invertible map with singularities

- Singular set \(S \) = critical points + discontinuities
- Behavior near \(S \):
 \[
 \text{dist}(x, S) \leq \text{df}_x \leq \text{dist}(x, S) - a
 \]
- Size of inverse branches:
 for \(x \in [0, 1] \) and \(g = \text{inverse branch of } f \) s.t.
 \(g(f(x)) = x \), \(\exists r(x) > \text{dist}\{x, f(x)\} \) s.t.
 \(f^{-1}[x - r(x), x + r(x)] \) and \(g^{-1}[f(x) - r(x), f(x) + r(x)] \) are diffeos onto their images.
Framework

Non-invertible map with singularities

- $f : [0, 1] \rightarrow [0, 1]$ of class $C^{1+\beta}$
Framework

Non-invertible map with singularities

- $f : [0, 1] \rightarrow [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{S} =$
Framework

Non-invertible map with singularities

- $f : [0, 1] \rightarrow [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{S} =$ critical points
Non-invertible map with singularities

- $f : [0, 1] \rightarrow [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{S} = \text{critical points} + \text{discontinuities}$
Framework

Non-invertible map with singularities

- $f : [0, 1] \to [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{I} = \text{critical points} + \text{discontinuities}$
- Behavior near \mathcal{I}:
Non-invertible map with singularities

- $f : [0, 1] \to [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{I} =$ critical points $+$ discontinuities
- Behavior near \mathcal{I}:

$$\text{dist}(x, \mathcal{I})^a \leq \|df_x\| \leq \text{dist}(x, \mathcal{I})^{-a}$$
Non-invertible map with singularities

- $f : [0, 1] \to [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{S} = \text{critical points} + \text{discontinuities}$
- Behavior near \mathcal{S}:
 \[
 \text{dist}(x, \mathcal{S})^a \leq \|df_x\| \leq \text{dist}(x, \mathcal{S})^{-a}
 \]
- Size of inverse branches:
Non-invertible map with singularities

- $f : [0, 1] \to [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{S} = \text{critical points} + \text{discontinuities}$
- Behavior near \mathcal{S}:
 \[
 \text{dist}(x, \mathcal{S})^a \leq \|df_x\| \leq \text{dist}(x, \mathcal{S})^{-a}
 \]
- Size of inverse branches: for $x \in [0, 1]$
Non-invertible map with singularities

- $f : [0, 1] \to [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{S} = \text{critical points} + \text{discontinuities}$
- Behavior near \mathcal{S}:
 \[
 \text{dist}(x, \mathcal{S})^a \leq \|df_x\| \leq \text{dist}(x, \mathcal{S})^{-a}
 \]
- Size of inverse branches: for $x \in [0, 1]$ and $g = \text{inverse branch of } f$ s.t. $g(f(x)) = x$,

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)
Non-invertible map with singularities

- $f : [0, 1] \rightarrow [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{I} = \text{critical points} + \text{discontinuities}$
- Behavior near \mathcal{I}:

 \[\text{dist}(x, \mathcal{I})^a \leq \| df_x \| \leq \text{dist}(x, \mathcal{I})^{-a} \]

- Size of inverse branches: for $x \in [0, 1]$ and $g = \text{inverse branch of } f$ s.t. $g(f(x)) = x$, $\exists r(x) > \text{dist}(\{x, f(x)\}, \mathcal{I})^a$ s.t.
Non-invertible map with singularities

- $f : [0, 1] \to [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{S} = \text{critical points} + \text{discontinuities}$
- Behavior near \mathcal{S}:
 \[
 \text{dist}(x, \mathcal{S})^a \leq \|df_x\| \leq \text{dist}(x, \mathcal{S})^{-a}
 \]
- Size of inverse branches: for $x \in [0, 1]$ and $g = \text{inverse branch of } f$ s.t. $g(f(x)) = x$, $\exists r(x) > \text{dist}({x, f(x)}, \mathcal{S})^a$ s.t. $f \upharpoonright_{[x-r(x), x+r(x)]}$
Non-invertible map with singularities

- $f : [0, 1] \rightarrow [0, 1]$ of class $C^{1+\beta}$
- Singular set $\mathcal{I} = \text{critical points} + \text{discontinuities}$
- Behavior near \mathcal{I}:
 \[\text{dist}(x, \mathcal{I})^a \leq \| df_x \| \leq \text{dist}(x, \mathcal{I})^{-a} \]

- Size of inverse branches: for $x \in [0, 1]$ and $g = \text{inverse branch of } f$ s.t. $g(f(x)) = x$, $\exists r(x) > \text{dist}([x, f(x)], \mathcal{I})^a$ s.t. $f \upharpoonright_{[x-r(x), x+r(x)]}$ and $g \upharpoonright_{[f(x)-r(x), f(x)+r(x)]}$ are diffeos onto their images.
Looking at the past

Natural extension
Looking at the past

Natural extension

\(\hat{M} = \{(\hat{x}_n)_{n \in \mathbb{Z}} : f(\hat{x}_n) = \hat{x}_{n+1}, \forall n \in \mathbb{Z}\}.\)
Looking at the past

Natural extension

- $\hat{M} = \{ \hat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z} \}$.
- $\hat{f} : \hat{M} \rightarrow \hat{M}$ left shift.
Looking at the past

Natural extension

\(\hat{M} = \{\hat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z}\}\).

\(\hat{f} : \hat{M} \to \hat{M}\) left shift.

\(f\)-invariant \(\mu\)
Looking at the past

Natural extension

- $\hat{M} = \{ \hat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z} \}$.
- $\hat{f} : \hat{M} \to \hat{M}$ left shift.
- f–invariant $\mu \leftrightarrow \hat{f}$–invariant $\hat{\mu}$.
Looking at the past

Natural extension

- \(\widehat{M} = \{ \widehat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z} \} \).
- \(\widehat{f} : \widehat{M} \rightarrow \widehat{M} \) left shift.
- \(f \)-invariant \(\mu \) ↔ \(\widehat{f} \)-invariant \(\widehat{\mu} \).
- Unstable manifold of \(x \):

\[u(\widehat{x}) = \sum_{n \geq 0} e^{2n} \chi_{2n} \widehat{df}(x-n) \frac{1}{2} \]
Looking at the past

Natural extension

- \(\hat{M} = \{ \hat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z} \} \).
- \(\hat{f} : \hat{M} \to \hat{M} \) left shift.
- \(f \)-invariant \(\mu \) ↔ \(\hat{f} \)-invariant \(\hat{\mu} \).
- Unstable manifold of \(x \): many
Looking at the past

Natural extension

- \(\hat{M} = \{ \hat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z} \} \).
- \(\hat{f} : \hat{M} \to \hat{M} \) left shift.
- \(f \)-invariant \(\mu \) ↔ \(\hat{f} \)-invariant \(\hat{\mu} \).
- Unstable manifold of \(x \): many ↔ unstable manifold of \(\hat{x} \):
Looking at the past

Natural extension

- $\widehat{M} = \{\widehat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z}\}$.
- $\widehat{f} : \widehat{M} \to \widehat{M}$ left shift.
- f–invariant $\mu \leftrightarrow \widehat{f}$–invariant $\widehat{\mu}$.
- Unstable manifold of x: many \leftrightarrow unstable manifold of \widehat{x}: only one.
Looking at the past

Natural extension

- $\hat{M} = \{ \hat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z} \}$.
- $\hat{f} : \hat{M} \to \hat{M}$ left shift.
- f–invariant $\mu \leftrightarrow \hat{f}$–invariant $\hat{\mu}$.
- Unstable manifold of x: many \leftrightarrow unstable manifold of \hat{x}: only one.
Looking at the past

Natural extension

- $\hat{M} = \{ \hat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z} \}$.
- $\hat{f} : \hat{M} \to \hat{M}$ left shift.
- f–invariant $\mu \leftrightarrow \hat{f}$–invariant $\hat{\mu}$.
- Unstable manifold of x: many \leftrightarrow unstable manifold of \hat{x}: only one.

- Non-invertible cocycle df
Looking at the past

Natural extension

- $\hat{M} = \{ \hat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z} \}$.
- $\hat{f} : \hat{M} \to \hat{M}$ left shift.
- f–invariant $\mu \leftrightarrow \hat{f}$–invariant $\hat{\mu}$.
- Unstable manifold of x: many \leftrightarrow unstable manifold of \hat{x}: only one.

- Non-invertible cocycle $df \leftrightarrow$ Invertible cocycle \hat{df}.
Looking at the past

Natural extension

- $\hat{M} = \{ \hat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z} \}$.
- $\hat{f} : \hat{M} \to \hat{M}$ left shift.
- f–invariant $\mu \leftrightarrow \hat{f}$–invariant $\hat{\mu}$.
- Unstable manifold of x: many \leftrightarrow unstable manifold of \hat{x}: only one.
- Non-invertible cocycle $df \leftrightarrow$ Invertible cocycle \hat{df}.

$$u(\hat{x}) = \left(\sum_{n \geq 0} e^{2n\chi} |\hat{df}|^{-n} \right)^{1/2}.$$
Non-uniformly expanding set NUE

Asymptotic expansion

\(\text{NUE} = \{ \hat{x} \in \hat{M} : u(\hat{x}) < \infty \text{ and } \lim_{n \to \pm\infty} \frac{1}{n} \log \text{dist}(x_n, S) = 0 \} \).
Non-uniformly expanding set NUE

Asymptotic expansion

\[
\text{NUE} = \{ \hat{x} \in \hat{M} : \}
\]
Non-uniformly expanding set $\overline{\text{NUE}}$

Asymptotic expansion

$$\overline{\text{NUE}} = \{ \hat{x} \in \hat{M} : u(\hat{x}) < \infty \}$$
Non-uniformly expanding set \emph{NUE}

Asymptotic expansion

$$\emph{NUE} = \{ \hat{x} \in \hat{M} : u(\hat{x}) < \infty \text{ and } \lim_{n \to \pm \infty} \frac{1}{n} \log \text{dist}(x_n, \mathcal{S}) = 0 \}.$$
Symbolic dynamics for interval maps

Theorem (L)

Let \hat{f} be as above. For all $\chi > 0$ there is $(\hat{\Sigma},\hat{\sigma})$ a TMS and $\hat{\pi} : \hat{\Sigma} \to \mathbb{R}$ such that:

1. $\hat{\pi} \circ \hat{\sigma} = \hat{f} \circ \hat{\pi}$.
2. $\hat{\pi} [\hat{\Sigma}^\#]$ contains $\mathbb{N} U E ^\#$.
3. Every $\hat{x} \in \mathbb{N} U E ^\#$ has finitely many pre-images in $\hat{\Sigma}^\#$.

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)
June, 2018 25 / 27
Theorem (L)

Let \(\hat{f} \) be as above. For all \(\chi > 0 \) there is \((\hat{\Sigma}, \hat{\sigma})\) TMS and \(\hat{\pi} : \hat{\Sigma} \to \mathbb{R} \) Hölder continuous s.t.:

1. \(\hat{\pi} \circ \hat{\sigma} = \hat{f} \circ \hat{\pi} \).
2. \(\hat{\pi}[\hat{\Sigma}_\#] \) contains \(\mathbb{R}^\# \).
3. Every \(\hat{x} \in \mathbb{R}^\# \) has finitely many pre-images in \(\hat{\Sigma}_\# \).
Theorem (L)

Let \(\hat{f} \) be as above.
Theorem (L)

Let \(\hat{f} \) be as above. For all \(\chi > 0 \)
Theorem (L)

Let \(\hat{f} \) be as above. For all \(\chi > 0 \) there is \((\hat{\Sigma}, \hat{\sigma})\) TMS and \(\hat{\pi} : \hat{\Sigma} \rightarrow [0, 1] \) Hölder continuous s.t.:

1. \(\hat{\pi} \circ \hat{\sigma} = \hat{f} \circ \hat{\pi} \).
2. \(\hat{\pi}(\hat{\Sigma}^\#) \) contains \(\mathbb{NUE}^\# \).
3. Every \(\hat{\pi}(\hat{x}) \in \mathbb{NUE}^\# \) has finitely many pre-images in \(\hat{\Sigma}^\# \).
Symbolic dynamics for interval maps

Theorem (L)

Let \(\hat{f} \) be as above. For all \(\chi > 0 \) there is \((\hat{\Sigma}, \hat{\sigma})\) TMS and \(\hat{\pi}: \hat{\Sigma} \to [0, 1] \) Hölder continuous s.t.:

(1) \(\hat{\pi} \circ \hat{\sigma} = \hat{f} \circ \hat{\pi} \).
Theorem (L)

Let \hat{f} be as above. For all $\chi > 0$ there is $(\hat{\Sigma}, \hat{\sigma})$ TMS and $\hat{\pi}: \hat{\Sigma} \to [0, 1]$ Hölder continuous s.t.:

1. $\hat{\pi} \circ \hat{\sigma} = \hat{f} \circ \hat{\pi}$.
2. $\hat{\pi}[\hat{\Sigma}^\#]$ contains $\overline{\text{NUE}^\#}$.
Theorem (L)

Let \(\hat{f} \) be as above. For all \(\chi > 0 \) there is \((\hat{\Sigma}, \hat{\sigma}) \) TMS and \(\hat{\pi} : \hat{\Sigma} \to [0, 1] \) Hölder continuous s.t.:

1. \(\hat{\pi} \circ \hat{\sigma} = \hat{f} \circ \hat{\pi} \).
2. \(\hat{\pi}[\hat{\Sigma}^\#] \) contains \(\overline{\text{NUE}^\#} \).
3. Every \(\hat{x} \in \overline{\text{NUE}^\#} \) has finitely many pre-images in \(\hat{\Sigma}^\# \).
Pesin theory in \hat{M}

$\hat{M} = u(\hat{x}) - \rho(\hat{x})$, where

$\rho(x) = \text{dist}\{x - 1, x_0, x_1\}.$

$\Psi_{p\hat{x}}, 0 < p \le Q(\hat{x})$.

Transition rule:

1. Overlap: $\Psi_{q\hat{f}^{-1}(\hat{x})} \approx \Psi_{q\hat{y}}$.

2. Control of parameters:
 - $\text{dist}(y_1, x_0) < q$.
 - $u(\hat{f}(\hat{y})) u(\hat{x}) = e^{\pm q}$.
 - $p = \min\{e^{\epsilon q}, Q(\hat{x})\}$.

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)

June, 2018 26 / 27
Pesin theory in \hat{M}

- $Q(\hat{x}) = \ldots$
Pesin theory in \hat{M}

- $Q(\hat{x}) = u(\hat{x})^{-\text{Large power}}$
Pesin theory in \hat{M}

- \(Q(\hat{x}) = u(\hat{x})^{-\text{Large power}} \times \rho(\hat{x})^{\text{Large power}} \),
\(Q(\hat{x}) = u(\hat{x})^{-\text{Large power}} \times \rho(\hat{x})^{\text{Large power}}, \) where
\[
\rho(x) = \text{dist}(\{x_{-1}, x_0, x_1\}, S).
\]
Pesin theory in \hat{M}

- $Q(\hat{x}) = u(\hat{x})^{-\text{Large power}} \times \rho(\hat{x})^{\text{Large power}}$, where
 $\rho(x) = \text{dist}(\{ x_{-1}, x_0, x_1 \}, \mathcal{L})$.

- **Pesin chart:**
○ $Q(\hat{x}) = u(\hat{x})^{-\text{Large power}} \times \rho(\hat{x})^{\text{Large power}}$, where
 $\rho(x) = \text{dist}(\{x_{-1}, x_0, x_1\}, S)$.

○ **Pesin chart:** $\Psi^P_{\hat{x}}$, $0 < p \leq Q(\hat{x})$.

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)
June, 2018 26 / 27
Pesin theory in \hat{M}

- $Q(\hat{x}) = u(\hat{x})^{\text{Large power}} \times \rho(\hat{x})^{\text{Large power}}$, where
 $\rho(x) = \text{dist}([x_{-1}, x_0, x_1], S)$.

- **Pesin chart**: $\Psi^p_{\hat{x}}$, $0 < p \leq Q(\hat{x})$.

- **Transition rule**:

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)
June, 2018 26 / 27
Pesin theory in \hat{M}

- $Q(\hat{x}) = u(\hat{x})^{-\text{Large power}} \times \rho(\hat{x})^{\text{Large power}}$, where
 $\rho(x) = \text{dist}(\{x_{-1}, x_0, x_1\}, S)$.

- **Pesin chart**: $\Psi^p_\hat{x}$, $0 < p \leq Q(\hat{x})$.

- **Transition rule**: $\Psi^q_\hat{y} \leftarrow \Psi^p_\hat{x}$ if
 - Overlap: $\Psi^q_\hat{f} - 1(\hat{x}) \approx \Psi^q_\hat{y}$.
 - Control of parameters:
 - $\text{dist}(y_1, x_0) < q$.
 - $u(\hat{f}(\hat{y})) - u(\hat{x}) = e^{\pm q}$.
 - $p = \min\{e^{\epsilon q}, Q(\hat{x})\}$.
Pesin theory in \hat{M}

- $Q(\hat{x}) = u(\hat{x})^{-}\text{Large power} \times \rho(\hat{x})^{\text{Large power}}$, where $\rho(x) = \text{dist}(\{x_{-1}, x_{0}, x_{1}\}, \mathcal{L})$.

- **Pesin chart**: $\psi_{\hat{x}}^{p}$, $0 < p \leq Q(\hat{x})$.

- **Transition rule**: $\psi_{\hat{y}}^{q} \leftarrow \psi_{\hat{x}}^{p}$ if

 (1) **Overlap**:

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)
Pesin theory in \hat{M}

- $Q(\hat{x}) = u(\hat{x})^{\text{Large power}} \times \rho(\hat{x})^{\text{Large power}}$, where
 $\rho(x) = \text{dist}(\{x_{-1}, x_0, x_1\}, S)$.

- **Pesin chart**: $\Psi^p_{\hat{x}}$, $0 < p \leq Q(\hat{x})$.

- **Transition rule**: $\Psi^q_{\hat{y}} \leftarrow \Psi^p_{\hat{x}}$ if

 1. **Overlap**: $\Psi^q_{\hat{f}^{-1}(\hat{x})} \approx \Psi^q_{\hat{y}}$.

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)

June, 2018
○ \(Q(\hat{x}) = u(\hat{x})^{\text{Large power}} \times \rho(\hat{x})^{\text{Large power}} \), where \\
\(\rho(x) = \text{dist}(\{x_{-1}, x_0, x_1\}, \mathcal{S}) \).

○ **Pesin chart:** \(\Psi_x^p \), \(0 < p \leq Q(\hat{x}) \).

○ **Transition rule:** \(\Psi_{\hat{y}}^q \leftarrow \Psi_{\hat{x}}^p \) if

 1. **Overlap:** \(\Psi_{\hat{f}^{-1}(\hat{x})}^q \approx \Psi_{\hat{y}}^q \).

 2. **Control of parameters:**
Pesin theory in \hat{M}

- $Q(\hat{x}) = u(\hat{x})^{-\text{Large power}} \times \rho(\hat{x})^{\text{Large power}}$, where
 $\rho(x) = \text{dist}(\{x_{-1}, x_0, x_1\}, \mathcal{S})$.

- **Pesin chart**: $\Psi^p_{\hat{x}}$, $0 < p \leq Q(\hat{x})$.

- **Transition rule**: $\Psi^q_{\hat{y}} \leftarrow \Psi^p_{\hat{x}}$ if
 1. **Overlap**: $\Psi^q_{\hat{f}^{-1}(\hat{x})} \approx \Psi^q_{\hat{y}}$.
 2. **Control of parameters**:
 - $\text{dist}(y_1, x_0) < q$.
○ $Q(\hat{x}) = u(\hat{x})^{-\text{Large power}} \times \rho(\hat{x})^{\text{Large power}}$, where
 $\rho(x) = \text{dist}(\{x_{-1}, x_0, x_1\}, \mathcal{L})$.

○ **Pesin chart:** $\Psi^p_{\hat{x}}$, $0 < p \leq Q(\hat{x})$.

○ **Transition rule:** $\Psi^q_{\hat{y}} \leftarrow \Psi^p_{\hat{x}}$ if
 (1) **Overlap:** $\Psi^q_{\hat{f}^{-1}(\hat{x})} \approx \Psi^q_{\hat{y}}$.
 (2) **Control of parameters:**
 - $\text{dist}(y_1, x_0) < q$.
 - $\frac{u(\hat{f}(\hat{y}))}{u(\hat{x})} = e^{\pm q}$.
Pesin theory in \hat{M}

- $Q(\hat{x}) = u(\hat{x})^{-}\text{Large power} \times \rho(\hat{x})^{\text{Large power}}$, where $\rho(x) = \text{dist} (\{x_{-1}, x_{0}, x_{1}\}, \mathcal{L})$.

- **Pesin chart**: $\Psi_{\hat{x}}^{p}$, $0 < p \leq Q(\hat{x})$.

- **Transition rule**: $\Psi_{\hat{y}}^{q} \leftarrow \Psi_{\hat{x}}^{p}$ if
 1. **Overlap**: $\Psi_{\hat{f}^{-1}(\hat{x})}^{q} \approx \Psi_{\hat{y}}^{q}$.
 2. **Control of parameters**:
 - $\text{dist}(y_{1}, x_{0}) < q$.
 - $\frac{u(\hat{f}(\hat{y}))}{u(\hat{x})} = e^{\pm q}$.
 - $p = \min \{e^{\epsilon} q, Q(\hat{x})\}$.
Hofbauer tower \times previous theorem
<table>
<thead>
<tr>
<th>Hofbauer tower</th>
<th>Previous theorem</th>
</tr>
</thead>
</table>

Hofbauer tower × previous theorem
<table>
<thead>
<tr>
<th>Hyperbolicity</th>
<th>Hofbauer tower</th>
<th>Previous theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyapunov exponent > 0</td>
<td></td>
<td>Lyapunov exponent $> \chi$</td>
</tr>
<tr>
<td>Hyperbolicity</td>
<td>Hofbauer tower</td>
<td>Previous theorem</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Lyapunov exponent</td>
<td>Lyapunov exponent > 0</td>
<td>Lyapunov exponent > χ</td>
</tr>
<tr>
<td>Description</td>
<td>Combinatorial description</td>
<td>Abstract</td>
</tr>
<tr>
<td></td>
<td>Hofbauer tower</td>
<td>Previous theorem</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Hyperbolicity</td>
<td>Lyapunov exponent > 0</td>
<td>Lyapunov exponent > χ</td>
</tr>
<tr>
<td>Description</td>
<td>Combinatorial description</td>
<td>Abstract</td>
</tr>
<tr>
<td>Higher dimension</td>
<td>Hard</td>
<td>Easier</td>
</tr>
</tbody>
</table>

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)
<table>
<thead>
<tr>
<th></th>
<th>Hofbauer tower</th>
<th>Previous theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperbolicity</td>
<td>Lyapunov exponent > 0</td>
<td>Lyapunov exponent $> \chi$</td>
</tr>
<tr>
<td>Description</td>
<td>Combinatorial description</td>
<td>Abstract</td>
</tr>
<tr>
<td>Higher dimension</td>
<td>Hard</td>
<td>Easier</td>
</tr>
<tr>
<td>Fiber cardinality</td>
<td>Infinite-to-one</td>
<td>Finite-to-one</td>
</tr>
</tbody>
</table>

Yuri Lima (Universidade Federal do Ceará (UFC), Fortaleza, Brasil)
This is the end

Thanks!