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Birkhoff ergodic theorem

Theorem (Birkhoff, 1931)
Let T : X→ X and µ be an ergodic T-invariant probability
measure. If f ∈ L1(µ), then

lim
n→∞

1
n

n−1∑
k=0

f (Tkx) =

∫
f dµ

for µ-almost all x ∈ X.

I The result can be generalized by recalling the Fekete’s lemma
for subadditive sequences (Sn)n∈N: If

Sm+n ≤ Sm + Sn

for all m,n ∈ N, then

lim
n→∞

1
n Sn = inf

n∈N
1
n Sn.
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Kingman’s subadditive ergodic theorem

Theorem (Kingman, 1968)

Let T : X→ X and µ be an ergodic T-invariant probability
measure. If (Sn)n∈N is a subadditive sequence of L1(µ)
functions, i.e.

Sm+n ≤ Sm + Sn ◦ Tm

for all m,n ∈ N, then

lim
n→∞

1
n Sn(x) = lim

n→∞
1
n

∫
Sn dµ = inf

n∈N
1
n

∫
Sn dµ

for µ-almost all x ∈ X.

I If f ∈ L1(µ), then choosing Sn =
∑n−1

k=0 f ◦ Tk above gives the
Birkhoff ergodic theorem.
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Subadditive potential

I Consider the semigroup generated by the matrix tuple
A = (A1, . . . ,AN) ∈ GLd(R)N.

I Let Σ = {1, . . . ,N}N and if i = i1i2 · · · ∈ Σ, then write
i|n = i1 · · · in and Σn = {i|n : i ∈ Σ} for all n ∈ N.

If i ∈ Σn for some n, then we write [i] = {j ∈ Σ : j|n = i}.

We use Σ∗ =
⋃

n∈N Σn to index the elements in the semigroup,
that is, Ai = Ai1 · · ·Ain for all i = i1 · · · in ∈ Σn and n ∈ N.

I Let σ : Σ→ Σ, σ(i1i2i3 · · · ) = i2i3 · · · , be the left-shift, s > 0, and
consider the functions

i 7→ log ‖Ai|n‖
s

for all n ∈ N. The sequence Φs = (log ‖Ai|n‖s)n∈N is subadditive.

Antti Käenmäki Subadditive ergodic theory and applications Edinburgh, 18th June 2018 4/30



Subadditive potential

I Consider the semigroup generated by the matrix tuple
A = (A1, . . . ,AN) ∈ GLd(R)N.

I Let Σ = {1, . . . ,N}N and if i = i1i2 · · · ∈ Σ, then write
i|n = i1 · · · in and Σn = {i|n : i ∈ Σ} for all n ∈ N.

If i ∈ Σn for some n, then we write [i] = {j ∈ Σ : j|n = i}.

We use Σ∗ =
⋃

n∈N Σn to index the elements in the semigroup,
that is, Ai = Ai1 · · ·Ain for all i = i1 · · · in ∈ Σn and n ∈ N.

I Let σ : Σ→ Σ, σ(i1i2i3 · · · ) = i2i3 · · · , be the left-shift, s > 0, and
consider the functions

i 7→ log ‖Ai|n‖
s

for all n ∈ N. The sequence Φs = (log ‖Ai|n‖s)n∈N is subadditive.

Antti Käenmäki Subadditive ergodic theory and applications Edinburgh, 18th June 2018 4/30



Subadditive potential

I Consider the semigroup generated by the matrix tuple
A = (A1, . . . ,AN) ∈ GLd(R)N.

I Let Σ = {1, . . . ,N}N and if i = i1i2 · · · ∈ Σ, then write
i|n = i1 · · · in and Σn = {i|n : i ∈ Σ} for all n ∈ N.

If i ∈ Σn for some n, then we write [i] = {j ∈ Σ : j|n = i}.

We use Σ∗ =
⋃

n∈N Σn to index the elements in the semigroup,
that is, Ai = Ai1 · · ·Ain for all i = i1 · · · in ∈ Σn and n ∈ N.

I Let σ : Σ→ Σ, σ(i1i2i3 · · · ) = i2i3 · · · , be the left-shift, s > 0, and
consider the functions

i 7→ log ‖Ai|n‖
s

for all n ∈ N. The sequence Φs = (log ‖Ai|n‖s)n∈N is subadditive.

Antti Käenmäki Subadditive ergodic theory and applications Edinburgh, 18th June 2018 4/30



Lyapunov exponent

I If µ is a σ-invariant probability measure on Σ, then the number

λ(Φs, µ) = inf
n∈N

1
n

∑
i∈Σn

µ([i]) log ‖Ai‖s = lim
n→∞

1
n

∑
i∈Σn

µ([i]) log ‖Ai‖s

is called the Lyapunov exponent.

I If µ is ergodic and σ-invariant, then Kingman’s subadditive
ergodic theorem implies

lim
n→∞

1
n log ‖Ai|n‖ = λ(Φ1, µ)

for µ-almost all i ∈ Σ.

I The existence of the Lyapunov exponent was proved by
Furstenberg & Kesten (1960). The number describes the growth
rate of ‖Ai|n‖ for a µ-generic i ∈ Σ.
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Thermodynamic formalism

I If Ψ = (Sn)n∈N is a subadditive sequence of L1(µ) functions,
then the pressure of Ψ is defined by

P(Ψ) = lim
n→∞

1
n log

∑
i∈Σn

exp max
j∈[i]

Sn(j).

Recall that the Kolmogorov-Sinai entropy of µ is

h(µ) = − lim
n→∞

1
n

∑
i∈Σn

µ([i]) logµ([i]).

I It is easy to see that P(Φs) ≥ h(µ) + λ(Φs, µ) for all σ-invariant
probability measures µ.

Theorem (K., 2004)
There exists an ergodic σ-invariant probability measure µ such
that P(Φs) = h(µ) + λ(Φs, µ). Any σ-invariant measure
satisfying this equality is called an equilibrium state for Φs.
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Equilibrium states

I It is remarkable to notice that there can be two distinct ergodic
equilibrium states for Φs. For example, let

A1 =

( 1
2 0
0 1

4

)
and A2 =

( 1
4 0
0 1

2

)
,

and choose s > 0 such that 2−s + 4−s = 1. Then the Bernoulli
measures obtained from the probability vectors (2−s, 4−s) and
(4−s, 2−s) are ergodic equilibrium states for Φs.

Theorem (Feng & K., 2011)

If s > 0 and A ∈ GLd(R)N, then the maximum possible number
of distinct ergodic equilibrium states for Φs is d and every
equilibrium state is fully supported.
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Equilibrium states

I A tuple A = (A1, . . . ,AN) ∈ GLd(R)N is irreducible if there is no
non-trivial proper linear subspace V of Rd such that AiV = V
for all i ∈ {1, . . . ,N}; otherwise A is reducible.

I A tuple A ∈ GLd(R)d is strongly irreducible if V above can be
replaced by a finite union of non-trivial proper linear
subspaces.

I The idea of the proof of the previous theorem is to show that
the tuple A is a tuple of block-upper diagonal matrices in some
basis, and then observe that each block in the diagonal is
irreducible and contributes one ergodic equilibrium state.

I To study the properties of equilibrium states, we may thus
assume that the tuple A is irreducible.
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Characterization of equilibrium states

I We say that a probability measure µ on Σ is a Gibbs-type measure
for Φs if there exists a constant C ≥ 1 such that

C−1 ≤ µ([i])

exp
(
−nP(Φs)) + log ‖Ai‖s

) ≤ C

for all i ∈ Σn and n ∈ N.

Theorem (Feng & K., 2011)

If s > 0 and A ∈ GLd(R)N is irreducible, then there is only one
equilibrium state for Φs and it is a Gibbs-type measure for Φs.

Antti Käenmäki Subadditive ergodic theory and applications Edinburgh, 18th June 2018 9/30



Characterization of equilibrium states

I We say that a probability measure µ on Σ is a Gibbs-type measure
for Φs if there exists a constant C ≥ 1 such that

C−1 ≤ µ([i])

exp
(
−nP(Φs)) + log ‖Ai‖s

) ≤ C

for all i ∈ Σn and n ∈ N.

Theorem (Feng & K., 2011)

If s > 0 and A ∈ GLd(R)N is irreducible, then there is only one
equilibrium state for Φs and it is a Gibbs-type measure for Φs.

Antti Käenmäki Subadditive ergodic theory and applications Edinburgh, 18th June 2018 9/30



Characterization of equilibrium states

I Recall that A ∈ GL2(R) is elliptic if there are an invertible
conjugation matrix M and c 6= 0 such that cMAM−1 is an
orthogonal matrix. We say that A ∈ GL2(R)N is strongly elliptic if
all the elements of A are elliptic with respect to the same
conjugation matrix.

I Let RP1 denote the real projective line, which is the set of all
lines through the origin in R2. We call a proper subset C ⊂ RP1

a multicone if it is a finite union of closed projective intervals.
We say that A ⊂ GL2(R) has a strongly invariant multicone if
there exists a multicone C ⊂ RP1 such that AC ⊂ Co for all
A ∈ A.
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Characterization of equilibrium states

I A probability measure µ on Σ is quasi-Bernoulli if there exists a
constant C ≥ 1 such that

C−1µ([i])µ([j]) ≤ µ([ij]) ≤ Cµ([i])µ([j])

for all i,j ∈ Σ∗.

Theorem (Bárány & Morris & K., preprint)

If A ∈ GL2(R)N is irreducible and µ is the equilibrium state for
Φs, then the following are equivalent:

(1) µ is a quasi-Bernoulli measure,
(2) ‖AiAj‖ ≥ c‖Ai‖‖Aj‖ for all i,j ∈ Σ∗,
(3) A = Ae ∪ Ah, where Ae is strongly elliptic and Ah has a

strongly invariant multicone C such that AC = C for all A ∈ Ae.
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Characterization of equilibrium states

I Further, let f : Σ→ R be continous and Ψ = (
∑n−1

k=0 f ◦ σk)n∈N.
Recall that a probability measure µ is a Gibbs measure for f if
there exists a constant C ≥ 1 such that

C−1 ≤ µ([i])

exp
(
−nP(Ψ) +

∑n−1
k=0 f (σkj)

) ≤ C

for all i ∈ Σn, j ∈ [i], and n ∈ N.

Theorem (Bárány & Morris & K., preprint)

If A ∈ GL2(R)N is irreducible and µ is the equilibrium state for
Φs, then the following are equivalent:

(1) µ is a Gibbs measure for a Hölder continuous function,
(2) A has a strongly invariant multicone or A is strongly

elliptic.
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Characterization of equilibrium states

I A probability measure µ on Σ is Bernoulli if

µ([ij]) = µ([i])µ([j])

for all i,j ∈ Σ∗. In other words, µ is Bernoulli if there exists a
probability vector (p1, . . . , pN) such that

µ([i]) = pi1 · · · pin

for all i = i1 · · · in ∈ Σn and n ∈ N.

Theorem (Bárány & Morris & K., preprint)

If A ∈ GL2(R)N is irreducible and µ is the equilibrium state for
Φs, then the following are equivalent:

(1) µ is a Bernoulli measure,
(2) A is strongly elliptic.
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Characterization of equilibrium states

I It can happen that an equilibrium state for Φs is a Gibbs
measure for some Hölder-continuous potential, but is not a
Bernoulli measure: Choose two positive matrices

A1 =

(
2 1
1 1

)
and A2 =

(
2 1
1 2

)
.

Then (A1,A2) is irreducible and has a strongly invariant
multicone (i.e. the union of the first and third quadrants).

I It can happen that an equilibrium state for Φs is a
quasi-Bernoulli measure, but is not a Gibbs measure for any
Hölder-continuous potential: Let A1 and A2 be as above. Then
(A1,A2, I) is irreducible and has an invariant multicone (i.e. the
union of the first and third quadrants).
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Characterization of equilibrium states

I It can happen that an equilibrium state for Φs is a Gibbs-type
measure for Φs, but is not a quasi-Bernoulli measure: Choose
two matrices

A3 =

(
1 0
0 2

)
and A4 =

(
0 1
1 0

)
.

Then (A3,A4) is irreducible, has no invariant multicone, and
does not contain only elliptic matrices.
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Another subadditive potential

I Recall that the singular values ‖A‖ = α1(A) ≥ · · · ≥ αd(A) > 0
of A ∈ GLd(R) are the square roots of the non-negative real
eigenvalues of the positive semidefinite matrix ATA.

I If 0 ≤ s ≤ d and k ≤ s < k + 1, then the singular value function of
A ∈ GLd(R) with parameter s is

ϕs(A) = α1(A) · · ·αk(A)αk+1(A)s−k

= ‖A∧k‖k+1−s‖A∧(k+1)‖s−k.

It follows that ϕs(AB) ≤ ϕs(A)ϕs(B) for all A,B ∈ GLd(R), and
hence, the sequence Φ̂s = (logϕs(Ai|n))n∈N is subadditive.

I Note that all the previous results hold for Φ̂s when d = 2 since

ϕs(A) =

{
‖A‖s, if 0 < s < 1,
|det(A)|s−(d−1)‖A∧(d−1)‖d−s, if d− 1 < s < d.
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I Note that all the previous results hold for Φ̂s when d = 2 since
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Equilibrium states for singular value function

Theorem (Feng & K., 2011)

If 0 < s < 2 and A ∈ GL2(R), then the maximum possible
number of distinct ergodic equilibrium states for Φ̂s is 2 and
every equilibrium state is fully supported.

Theorem (Morris & K., 2018)

If 0 < s < 3 and A ∈ GL3(R)N, then the maximum possible
number of distinct ergodic equilibrium states for Φ̂s is 6, if
1 < s < 2, and 3, if otherwise, and every equilibrium state is
fully supported.

I If s ∈ (0, 1) ∪ (2, 3), then the above result follows from Feng &
K. (2011). The case 1 < s < 2 divides into three further subcases
which are all studied by completely different methods.
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Equilibrium states for singular value function

Theorem (Bochi & Morris, to appear)

If 0 < s < d and A ∈ GLd(R)N, then there are at most finitely
many distinct ergodic equilibrium states for Φ̂s, and every
equilibrium state is fully supported.

Question
What is the maximum possible number of distinct ergodic
equilibrium states for Φs in higher dimensions?

Theorem (Li & K., 2017)

The set {A ∈ GLd(R) : equilibrium state for Φ̂s is not unique} is
contained in a finite union of (d2N − 1)-dimensional algebraic
varieties.
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Self-affine sets

I If f1, . . . , fN : Rd → Rd are affine, i.e. fi(x) = Aix + vi, where
Ai ∈ GLd(R) and vi ∈ Rd, then the tuple (f1, . . . , fN) is called an
affine IFS and there exists a nonempty compact set E ⊂ Rd such
that

E =

N⋃
i=1

fi(E).

I A central problem is to calculate or estimate the dimension of
the self-affine set E.
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Self-affine sets

I In the special case, where each Ai is a scalar multiple of an
isometry, i.e. fi(x) = riOix + vi, then (f1, . . . , fN) is called a
similitude IFS and the set E self-similar.

I IFSs can be considered to be idealized models for the fractal
structure of attractors and repellers of dynamical systems.

From the analysis point of view, IFSs are used to produce
counter-examples and to study sharpness of results.

For example, Bonk & Merenkov (2013) showed that
quasisymmetric maps between two Sierpiński carpets are
isometries.

The most recent advance in the Erdős’ problem is by Shmerkin
(2014). His proof used self-similar sets.

Jordan & Sahlsten (2016) solved the Salem’s problem by using
IFSs.
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(2014). His proof used self-similar sets.

Jordan & Sahlsten (2016) solved the Salem’s problem by using
IFSs.

Antti Käenmäki Subadditive ergodic theory and applications Edinburgh, 18th June 2018 20/30



Self-affine sets

I In the special case, where each Ai is a scalar multiple of an
isometry, i.e. fi(x) = riOix + vi, then (f1, . . . , fN) is called a
similitude IFS and the set E self-similar.

I IFSs can be considered to be idealized models for the fractal
structure of attractors and repellers of dynamical systems.

From the analysis point of view, IFSs are used to produce
counter-examples and to study sharpness of results.

For example, Bonk & Merenkov (2013) showed that
quasisymmetric maps between two Sierpiński carpets are
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Dimension theory of self-similar sets

I If (f1, . . . , fN) is a similitude IFS satisfying the SSC (i.e.
fi(E) ∩ fj(E) = ∅ for i 6= j), then it is a classical result that

dimH(E) = s,

where
∑N

i=1 rs
i = 1 or, equivalently, P(Φs) = 0, where

Φs = (log rs
i|n)n∈N and ri|n = ri1 · · · rin for all i = i1i2 · · · ∈ Σ.

I Without separation the question is difficult. Write
fi = fi1 ◦ · · · ◦ fin for all i = i1 · · · in ∈ Σn and n ∈ N, and say that
E has exact overlaps if fi = fj for some i 6= j.

Theorem (Hochman, 2014)
If the similitude IFS in the real line is defined by algebraic
parameters, then the associated self-similar set E either has
exact overlaps or dimH(E) = min{1, s}, where P(Φs) = 0.
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Dimension theory of self-affine sets

I Although it is easy to find affine IFSs (f1, . . . , fN) satisfying the
SSC such that dimH(E) < s, where P(Φ̂s) = 0, it is still expected
that this s, denoted by dimaff(A), gives the dimension for a large
class of self-affine sets.

I Recall that the singular value function of A with parameter s is

ϕs(A) = α1(A) · · ·αbsc(A)αdse(A)s−bsc,

where αi(A) is the length of the ith semiaxis of A(B(0, 1)).

I For example, if d = 2 and 1 ≤ s < 2, then

ϕs(A) = α1(A)α2(A)s−1 =
α1(A)

α2(A)
α2(A)s,

where α1(A)
α2(A) roughly tells how many balls of radius α2(A) are

needed to cover A(B(0, 1)).
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Dimension theory of self-affine sets

I Assuming d = 2 and 1 ≤ s < 2, we have

Hs(E) . lim
n→∞

∑
i∈Σn

α1(Ai)

α2(Ai)
α2(Ai)s.

Since

P(Φ̂s) = lim
n→∞

1
n log

∑
i∈Σn

α1(Ai)

α2(Ai)
α2(Ai)s

is strictly decreasing in s, we see that dimH(E) ≤ dimaff(A).

I If dimH(E) < dimaff(A), then the covers obtained from the
ellipses are not optimal:

Antti Käenmäki Subadditive ergodic theory and applications Edinburgh, 18th June 2018 23/30



Dimension theory of self-affine sets

I Assuming d = 2 and 1 ≤ s < 2, we have

Hs(E) . lim
n→∞

∑
i∈Σn

α1(Ai)

α2(Ai)
α2(Ai)s.

Since

P(Φ̂s) = lim
n→∞

1
n log

∑
i∈Σn

α1(Ai)

α2(Ai)
α2(Ai)s

is strictly decreasing in s, we see that dimH(E) ≤ dimaff(A).

I If dimH(E) < dimaff(A), then the covers obtained from the
ellipses are not optimal:

Antti Käenmäki Subadditive ergodic theory and applications Edinburgh, 18th June 2018 23/30



Dimension theory of self-affine sets

I Thus far the dimension theory of self-affine sets has focused on
specific subclasses. The problem of finding the dimension can
be make more tractable either by assuming some randomness
in the defining IFS or by imposing special relations between the
affine maps.

I The following theorem is the first dimension result valid for all
(planar) self-affine sets.

Theorem (Bárány & K., 2017)

If µ is a Bernoulli measure on Σ and πµ is a self-affine measure
on a self-affine set E, then πµ is exact-dimensional and satisfies
the so-called Ledrappier-Young formula.

Here π is the canonical projection Σ→ E.
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Dimension theory of self-affine sets

I A classical dimension result for self-affine sets is due to
Falconer. It guarantees that for a random choice of translation
vectors the covers are optimal.

Theorem (Falconer, 1988)

If A = (A1, . . . ,AN) ∈ GLd(R)N satisfies ‖Ai‖ < 1/2 for all i, then

dimH(EA,v) = dimaff(A)

for LdN-almost all v = (v1, . . . , vN) ∈ (Rd)N.

I The proof of the result follows from the existence of an
equilibrium state for Φ̂s and a transversality argument.

Relying also on the Ledrappier-Young formula, one can show
an orthogonal version for Falconer’s result.
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Dimension theory of self-affine sets

Theorem (Bárány & Koivusalo & K., to appear)

If v = (v1, . . . , vN) ∈ (Rd)N is such that vi 6= vj for i 6= j, then

dimH(EA,v) = dimaff(A)

for Ld2N-almost all A = (A1, . . . ,AN) ∈ Av ⊂ GLd(R)N.

In R2, the set Av ⊂ GL2(R)N is the collection of matrix tuples
satisfying the following:
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Dimension theory of self-affine sets

I The planar version of the previous theorem is generalized by
the following theorem.

Theorem (Bárány & Hochman & Rapaport, preprint)

If (f1, . . . , fN) is a planar affine IFS satisfying the SSC such that
the associated matrix tuple A ∈ GL2(R)N is strongly irreducible,
then

dimH(EA,v) = dimaff(A).

I Very roughly speaking, the proof follows from Hochman’s
dimension result for self-similar sets in the real line, the
Ledrappier-Young formula, and the existence of the
equilibrium state for Φ̂s.
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Open questions

Question
Does dimH(EA,v) = dimaff(A) hold without the SSC for strongly
irreducible matrix tuples? Higher dimensions?

I Recall that equilibrium states are fully supported. Relying on
this and the definition of the equilibrium state, it is easy to see
that if A = (A1 . . . ,AN) ∈ GLd(R)N and A′ = (A1 . . . ,AN−1),
then

dimaff(A′) < dimaff(A).

Question
Is dimH(EA′,v′) < dimH(EA,v) for all A and v?
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Open questions

Question
What is the Assouad dimension of the self-affine set?

Question
Is it possible to do multifractal analysis on self-affine sets, in
particular, for local dimension?

Question
What can be said about countable systems?

Question
Is it possible to study dimension theory of nonlinear systems?
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