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General setting for the talk

@ X = compact metric space
@ T: X — X continuous map

@ Myt = set of T-invariant Borel probability measures
(compact convex)

@ M5 = subset of ergodic measures = ext(Mr).
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Part 1

Commutative ergodic optimization:
Birkhoff averages

References: Surveys by O. Jenkinson.

@ Ergodic Optimization, Discrete and Cont. Dyn.
Sys. A, vol. 15 (2006), pp. 197-224.

@ Ergodic Optimization in Dynamical Systems,
Ergodic Theory Dynam. Systems (2018; online)
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Ergodic optimization of Birkhoff averages

Given a continuous function f: X = R (“potential”),
{ f Fos e Mr| = [a(r), B()

p e Mrs.t. [fdu=p(f) is called a maximizing
measure.

B(F) Hrmax

level sets of y— [ fdu
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Ergodic optimization of Birkhoff averages

Given a continuous function f: X = R (“potential”),

([ rausuente} = 1an 0000

p e Mrs.t. [fdu=p(f) is called a maximizing
measure.

B(F) Hrmax

level sets of y— [ fdu
a(f)

Mmin

Note: Ergodic maximizing measures always exist. In particular,
uniqueness = ergodicity.
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Expressing B(f) in terms of Birkhoff averages

Birkhoff sum f(" = f 4+ foT ++-- 4+ fo T 1

f(M(x)

B(f) = suplimsup

xXeX N—
f(M(x)
= lim sup

n—>(DX€X n
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Ergodic optimization of Birkhoff averages

Meta-Problem
Describe maximizing measures.
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Maximizing measures: Generic uniqueness

Theorem (Conze-Guivarch, Jenkinson, ...)

Let F be any “reasonable”(*) space F of continuous
functions.
For generic f in the maximizing measure is unique.
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Maximizing measures: Generic uniqueness

Theorem (Conze-Guivarch, Jenkinson, ...)

Let F be any “reasonable”(*) space F of continuous
functions.
For generic f in the maximizing measure is unique.

(*) a vector space F continuously and densely embedded in C%(X).

Generic set: intersection of a countable family of open
and dense sets.
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The inverse problem

Theorem (Jenkinson)

Given u e M?rg, there exists f € CO(X) such that u is the
unique maximizing measure for f.
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The inverse problem

Theorem (Jenkinson)

Given u e M?rg, there exists f € CO(X) such that u is the
unique maximizing measure for f.

If u has finite support then f can be taken C*.

How regular f can be taken, in general? Not much...
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Maximizing sets

Suppose:

@ T: X — X is “hyperbolic” (e.g. uniformly
expanding, Anosov);

@ f: X—Ris “regular” (at least Holder).
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Suppose:

@ T: X — X is “hyperbolic” (e.g. uniformly
expanding, Anosov);

@ f: X—Ris “regular” (at least Holder).

Theorem (Subordination principle)

In this good setting, there is a maximizing set: a
T-invariant compact set K € X such that

U is maximizing < suppu € K
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U is maximizing < suppu € K

@ It is false if f is only C? (by the previous theorem)
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Maximizing sets

Suppose:
@ T: X — X is “hyperbolic” (e.g. uniformly
expanding, Anosov);
@ f: X—Ris “regular” (at least Holder).

Theorem (Subordination principle)

In this good setting, there is a maximizing set: a
T-invariant compact set K € X such that

U is maximizing < suppu € K

@ It is false if f is only C? (by the previous theorem)

@ Itis a corollary of the Mainé Lemma (or Revelation Lemma).
Several formulations: Mafié’92, Conze-Guivarc’h’93, Fathi’'97,
Savchenko’99, Bousch’00, Contreras-Lopes-Thieullen'01,
Lopes-Thieullen’03, Pollicott-Sharp’04, Bousch’11).
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Expected panorama for the good setting

Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)
Suppose T: X — X is chaotic

Then for
regular functions f: X - R, the
maximizing measure has low complexity
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Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)

Suppose T: X — X is chaotic (unif. expanding / unif. hyperbolic
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Expected panorama for the good setting

Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)

Suppose T: X — X is chaotic (unif. expanding / unif. hyperbolic
/...).

Then for

regular (Hélder / .../ analytic) functions f: X — R, the
maximizing measure has low complexity (zero topological
entropy / .../ supported on a periodic orbit).
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Expected panorama for the good setting

Meta-Conjecture (~ Hunt-Ott, Phys. Rev. 1996)

Suppose T: X — X is chaotic (unif. expanding / unif. hyperbolic
/...).

Then for

regular (Hélder / .../ analytic) functions f: X — R, the
maximizing measure has low complexity (zero topological
entropy / .../ supported on a periodic orbit).

Many results (Contreras, Lopes, Thieullen’01; Morris'08); the

best one is:

Theorem (Contreras’16)

T unif. expanding = for Lipschitz f's (actually
all f’sin an subset), the maximizing

measure is supported on a periodic orbit.

Only result with a probabilistic notion of typicality (prevalence):
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A nice example

Conze-Guivarch’93, Hunt-0tt’'96, Jenkinson’96,
Bousch’00
T(x) = 2x mod 27 on the circle X :=R/2nz

f = trigonometric polynomial of deg. 1
WLOG, f(x) = fg(Xx) = cos(x — 0)
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Conze-Guivarch’93, Hunt-0tt’'96, Jenkinson’96,
Bousch’00
T(x) = 2x mod 27 on the circle X :=R/2nz

f = trigonometric polynomial of deg. 1
WLOG, f(x) = fg(Xx) = cos(x — 0)

Theorem (Bousch’00)

For every 6 € [0, 27, the function fg has a unique
maximizing measure g, and it has zero entropy
(actually, Sturmian).
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A nice example

Conze-Guivarch’93, Hunt-0tt’'96, Jenkinson’96,
Bousch’00
T(x) = 2x mod 27 on the circle X :=R/2nz

f = trigonometric polynomial of deg. 1
WLOG, f(x) = fg(Xx) = cos(x — 0)

Theorem (Bousch’00)

For every 6 € [0, 27, the function fg has a unique
maximizing measure g, and it has zero entropy
(actually, Sturmian).

Furthermore, for Lebesgue-a.e. 0 (actually, all 6 outside a
set of Hausdorff dim. 0), Ug IS supported on a periodic orbit.
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A more complete picture: Multifractal analysis

Let (T, f) be in the setting of the meta-conjecture.
For t € [a(f), B(f)], let:

He(t) =sup {h(i, T) ; € Mr, [fdu=t}

(concave graph)
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Non-commutative ergodic optimization:
(Top) Lyapunov exponent
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Replace the scalar function f by a matrix-valued
function (“cocycle”):

F: X — Mat(d x d, R) or GL(d, R)
The Birkhoff sums are replaced by products:

FM(x) == F(T"1x) -« F(TX)F(x).
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Replace the scalar function f by a matrix-valued
function (“cocycle”):

F: X — Mat(d x d, R) or GL(d, R)
The Birkhoff sums are replaced by products:
FM(x) == F(T""1x) -+« F(TX)F(x).
Top Lyapunov exponent:
1
A1(F, x) = lim —log IFM )| (if it exists)
— 00 n

For any u € Mr, the limit exists for u-a.e. x € X.

M(F,H) = jmﬁ X) du(x)
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Optimization of the top Lyapunov exponent

a(F) = uler}\ilr)\l(,:' )

B(F) = sup A1(F, 1)
HEMT
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Optimization of the top Lyapunov exponent

a(F) = uler}\ilr)\l(,:'u)
B(F) = sup A1(F,u)
Basic difficulty:

U € Mt — A1(F, 1) is not continuous, in general.
It is upper semi-continuous, at least.
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Optimization of the top Lyapunov exponent

a(F):= inf A1(F,4) & not necessarily attained
HEMT

B(F) = sup A1(F,u) © always attained
HEMT

Basic difficulty:
U € Mt — A1(F, 1) is not continuous, in general.
It is upper semi-continuous, at least.
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Optimization of the top Lyapunov exponent

a(F):= inf A1(F,4) & not necessarily attained
HEMT

B(F) = sup A1(F,u) © always attained
HEMT

Basic difficulty:
U € Mt — A1(F, 1) is not continuous, in general.
It is upper semi-continuous, at least.

Note: For step cocycles, ef(F) is called joint spectral radius -
Rota, Strang’60; Daubechies, Lagarias’92, ...
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Example without A1-minimizing measure

Step cocycle T: {0, 1}N « shift, F(x) = Ax, where
Ao =(§ 1s) and A1 = (2 ).

Claim

a(F) = infuer; A1(F, H) = —log 2, but the inf is not
attained.

]
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[e]e]e] le]e]

Example without A1-minimizing measure

Step cocycle T: {0, 1}N « shift, F(x)

Ao=(§1)s)and Ay =(9).

Claim

= Ay, Where

a(F) = infuer; A1(F, H) = —log 2, but the inf is not

attained.

Un = 6@n1ye | = A1(F, n) = I7+1 log spec. rad. (0 —203")
n+1 |Og det( ) m |Og 2
\ — log 2.
So ’ a(F) < —log2 ‘ Discontinuity: A1(F, limup) # lim A1 (F, ).

L]
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Example without A1-minimizing measure

Step cocycle T: {0, 1}N « shift, F(x) = Ax, where
Ao =(§ 1s) and A1 = (2 ).

Claim
a(F) = infuer; A1(F, H) = —log 2, but the inf is not
attained.
O xFuyraFa) _ (1 <
A1(F, p) > “EHEE22E) - [ 2 log | det F(x)| du(x) = —log2.
SN—_——

>1/4

So ’ a(F)=—log2 \ and therefore ‘ a(F)=—log?2 ‘
Moreover, (2) becomes “=" iff u = §¢=, but then (1) is
“>".So no u attains A1(F, u) = —log 2. O
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Expected panorama for A;-maximization

Meta-Conjecture

Suppose T is chaotic (unif. expanding / unif. hyperbolic /. ..).
Then for

regular (Hélder /. ../ analytic) cocycles F, the
A1-maximizing measure has low complexity (zero
topological entropy / .../ supported on a periodic orbit).
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Some initial results

Similarly to the commutative subordination
principle:

Theorem (Bochi-Garibaldi)

Suppose T is a hyperbolic homeomorphism, and that F
is a (strongly) fiber-bunched cocycle. Then there exists
a maximizing set: a T-invariant compact set K € X
such that

U is A1-maximizing < suppld € K

This is actually a corollary of a version of Mafné Lemma for
cocycles:

J. Bochi, E. Garibaldi. Extremal norms for fiber bunched
cocycles. ArXiv 1806.xxxxx
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Part 3

Non-commutative ergodic optimization:
Full Lyapunov spectra
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The other Lyapunov exponents

T:X— X, F: X— GL(d, R) as before.
Foreachie {1,2,...,d}, and x € X, let

1
Ai(F, x) = _lim Elogs,-(FW(x)) (if it exists)

n—-+4o0o

where s;(-) := i-th singular value.

unit ball )

_
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The other Lyapunov exponents

T:X—=X, F: X— GL(d,R) as before.
Foreachie {1,2,...,d}, and x € X, let

1
Ai(F, x) == lim E|0g5i(F(n)(X)) (if it exists)

n—-+400

For any u € My, these limit exist for u-a.e. x € X.
If u is ergodic, then A;(F, -) is u-a.e. equal to some
constant A;(F, u).
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Lyapunov spectrum of a cocycle

Given (T, F), the Lyapunov vector of u € Merg

X(F, 1) = (A1(F, ), ..., Aa(F, )
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Lyapunov spectrum of a cocycle

Given (T, F), the Lyapunov vector of u € Merg

X(F, 1) = (A1(F, ), ..., Aa(F, )

The Lyapunov spectrum of (T, F) is:
L*(F) = {X(F, 1) : € M7},
which is a subset of the positive chamber:

t={(81....Eq) €RI E1 > -+ > Eq}.
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Lyapunov spectrum of a cocycle

L*(F) == {X(F, ) ; p € MF°}
c at ::{(51,...,5d)en;ed,£12 o> &4}
&2

wall &1 = &>

at (half-plane)
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If F takes values in SL(3, R) then the Lyapunov spectrum
is also contained in the plane

{(81, 82, 83) R’ ; &1+ & + E3 =0}

wall E1 = &3 wall §2 = &3
‘ positive chamber at
wall §1 = &2

Related: Sert’s “Joint spectrum” — other groups; large deviation
results.
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Some good news

Theorem (Kalinin’11)

Suppose T: X — X is hyperbolic, and F: X — GL(d,R) is a
Hoélder-continuous cocycle. Then the Lyapunov vectors
of measures supported on periodic orbits are dense
in the Lyapunov spectra L (F).
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Expected picture of L*(F)

Meta-Conjecture (Typical spectra; part 1)

Suppose T: X — X is hyperbolic, and F: X — GL(d,R) is a
regular cocycle. Then:
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Expected picture of L*(F)

Meta-Conjecture (Typical spectra; part 1)

Suppose T: X — X is hyperbolic, and F: X — GL(d,R) is a
regular cocycle. Then:

© The Lyapunov spectrum L*(F) is a convex set.
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Suppose T: X — X is hyperbolic, and F: X — GL(d,R) is a
regular cocycle. Then:

© The Lyapunov spectrum L*(F) is a convex set.
©Q Its boundary is “fishy”.
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Expected picture of L*(F)

Meta-Conjecture (Typical spectra; part 1)
Suppose T: X — X is hyperbolic, and F: X — GL(d,R) is a
regular cocycle. Then:
© The Lyapunov spectrum L*(F) is a convex set.
©Q Its boundary is “fishy”.

© Every boundary point € outside the walls is
attained as the Lyapunov vector of a unique
ergodic measure Ug; furthermore, ug has low
complexity (zero topological entropy).
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Expected picture of L*(F)

Meta-Conjecture (Typical spectra; part 1)
Suppose T: X — X is hyperbolic, and F: X — GL(d,R) is a
regular cocycle. Then:
© The Lyapunov spectrum L*(F) is a convex set.
©Q Its boundary is “fishy”.

© Every boundary point € outside the walls is
attained as the Lyapunov vector of a unique
ergodic measure Ug; furthermore, ug has low
complexity (zero topological entropy).

© Subordination property: these ug have uniquely
ergodic supports.

Partial result: Bochi-Rams'16.
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Multifractal analysis

=

HF(E) =sup{h(i, T); € M7°, X(F, )= E}

In the setting of the meta-conjecture:
@ Is $Hr well defined in the interior of L*(F)?
@ Is HF continuous and concave there?

@ Are the sup’s attained? What can be said about the
corresponding measures?

Related work: Diaz, Gelfert, Rams; Barany, Jordan, Kdaenmaki,
Rams.
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“Step cocycle” T: {0, 1}N « shift, F(x) = Ay, where
Apg=(331)and A1 =(329). Then:
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A concrete example

“Step cocycle” T: {0, 1}N « shift, F(x) = Ay, where
Apg=(331)and A1 =(329). Then:
@ L*(F) is convex.

@ Its boundary is composed of
a piece of the wall &; = &> us \
and a curve with a dense
subset of corners - “fishy”.

@ Every point in this curve is

attained as the Lyapunov w T J
vector of a unique ergodic B
measure, which is Sturmian.

(Corollary of Hare, Morris, Sidorov, Theys’11; Morris, Sidorov’'13.)
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Commutativity regained

Suppose the matrices F(x) are 2 x 2 and (entrywise)
strictly positive.
Then there is a Holder-continuous invariant splitting:

R2 =Vle V2 such that
X X X
Ai(F, p) = J log [[FOOIvi || du(x),  Vie {1,2}, Vu
fi(x)
=T X

Therefore:
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Commutativity regained

Suppose the matrices F(x) are 2 x 2 and (entrywise)
strictly positive.
Then there is a Holder-continuous invariant splitting:

R2 =V%1e V2 such that
X X X

)\;(F,u):JIog”F(X)lVLH du(x), Vie{l1,2}, Vu
~—_——
=fi(x)

Therefore:

o u -—>X(F ) is continuous.

@ LT(F)= ffdu u € M1}, where f = (f1, f,) (the

Lyapunov spectrum is a “rotation set”.)
@ LT (F) is away from the wall §; = §&5.
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Commutativity regained

Suppose the matrices F(x) are 2 x 2 and (entrywise)
strictly positive.
Then there is a Holder-continuous invariant splitting:

R2 =V%1e V2 such that
X X X

Ai(F, p) = J log ||F()Iv: || du(x),  Vie{1,2}, Yu
~————
=fi(x)
Therefore:
o u -—>X(F ) is continuous.
@ LT(F)= ffdu u € M1}, where f = (f1, f,) (the
Lyapunov spectrum is a “rotation set”.)
@ LT (F) is away from the wall §; = §&5.
Generalization of positivity: strictly invariant fields of cones =
“dominated splittings”.
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Interlude:
Vectorial ergodic optimization
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A step back: vectorial ergodic optimization

The rotation set of a continuous f: X — RY is:
R(f) = U fdu;/.leMr}

It is compact and convex subset of R? (a d-dimensional
projection of Mr).
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Everyone’s favorite example: the fish

T(X)=2x mod 2m on ®B/2nz,  F(X) = (cos X, sin X).
T(z)=z? on S* c C, f(z)=zeC=R?,
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Everyone’s favorite example: the fish

T(X)=2x mod 2m on ®B/2nz,  F(X) = (cos X, sin X).
T(z)=z? on S* c C, f(z)=zeC=R?,

Theorem (Bousch’00, “Le poisson n’a pas d’arétes”)

dR(F) has a dense set of corners. Each point in 3R (F) is
attained by a unique measure, which is Sturmiann. The
corners correspond to the periodic Sturmiann
measures.

dish = proj. of M1(X) @ All the curvature is
fish = R(F) = proj. Mr concentrated on the
corners.
\ @ Sharper corners are
more likely to be
maximizing.
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Everyone’s favorite example: the fish

Appendix D of Jenkinson’s PhD thesis (1996):

Figure 1. The 120 extremal points of 219

PYRTE Rided ®e
0.4}
o
o
e,
.

." 0.2 .,

o o
o' .\
)

4

o 0.2 0.2 ) 0.6 0.8 1

\

0. .’
. .'
. -0.2 .

*
.
‘.
%
“ -0.4
ey e -



Interlude
[e]e]ele] o)

Everyone’s favorite example: the fish

The Birkhoff averages form a sequence of curves that
converges to the fish:
fM(z) z4+224+2% 44227

zeSl — =
n n
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Formulate a meta-conjecture for ergodic optimization of
vectorial functions f: X — R9.




Final part
@00000

Final part:
Back to cocycles
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Back to cocycles: Dominated splittings

Let F: X — GL(d, R) be a cocycle. Consider an
F-invariant splitting:

Rd — VX (5] WX
X
~— ~—
dim=i dim=d—i

F(x)(Vx) = V1x, F(x)(Vx) = Wrx.



Final part
[o] lelelele)

Back to cocycles: Dominated splittings

Let F: X — GL(d, R) be a cocycle. Consider an
F-invariant splitting:

RI= Vi ® Wy F(X)(Vx) = Vrx, F(X)(Vx) = Wrx.

dim=i dim=d—i
It is dominated if 3 £ > 0 s.t. (changing the norm ifnecessary)

IF(x)w|| < e ¢|IF(x)v|| Vx, Yunit vectors v e Vy, w € W.

@ In this case, the Lyapunov spectrum L*(F) is
(e-)away from the wall §; =§;. 1.
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Back to cocycles: Dominated splittings

Let F: X — GL(d, R) be a cocycle. Consider an
F-invariant splitting:

RI= Vi ® Wy F(X)(Vx) = Vrx, F(X)(Vx) = Wrx.
dim=i dim=d—i
It is dominated if 3 £ > 0 s.t. (changing the norm ifnecessary)

IF(x)w|| < e ¢|IF(x)v|| Vx, Yunit vectors v e Vy, w € W.

@ In this case, the Lyapunov spectrum L*(F) is
(e-)away from the wall §; =§;. 1.

@ The converse is false
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Back to cocycles: Dominated splittings

Let F: X — GL(d, R) be a cocycle. Consider an
F-invariant splitting:
RI= Vi ® Wy F(X)(Vx) = Vrx, F(X)(Vx) = Wrx.
dim=i dim=d—i

It is dominated if 3 £ > 0 s.t. (changing the norm ifnecessary)

IF(x)w|| < e ¢|IF(x)v|| Vx, Yunit vectors v e Vy, w € W.

@ In this case, the Lyapunov spectrum L*(F) is
(e-)away from the wall §; =§;. 1.

@ The converse is false (but maybe true for typical
cocycles).
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Finest dominated splitting

Every cocycle admits a finest dominated splitting
RY=V; @V, ®---® Vi (Mmaybe trivial (k = 1)).

If the splitting is simple (k = d) then we recover
commutativity.
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Finest dominated splitting

Every cocycle admits a finest dominated splitting
RY=V; @V, ®---® Vi (Mmaybe trivial (k = 1)).

If the splitting is simple (k = d) then we recover
commutativity.

Possible strategy for the convexity of L (F): use
subsystems with simple dominated splitting?
Compare with Barany, Jordan, Kdenmaki, Rams.
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Extra convexity properties of L*(F)?

Let's add an item:

Meta-Conjecture (Typical Lyapunov spectra)

Suppose T: X — X is hyperbolic, and F: X — GL(d,R) is a
regular cocycle. Then:

@ The Lyapunov spectrum L*(F) is a convex set.
@ /ts boundary is “fishy”.

© Every boundary point € outside the walls is
attained as the Lyapunov vector of a unique
ergodic measure Ug; furthermore, h(ug, T) = 0.

© Subordination property: these ug have uniquely
ergodic supports.

© LT (F) touches the wall §; = &, iff 3 a dominated
splitting with dominating bundle of dim. i.
Furthermore, . ..
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Extra convexity properties of L*(F)?

Meta-Conjecture (Typical Lyapunov spectra)

bla bla . ..

@ LT (F) touches a chamber wall §;=§;,1 iff3 a
dominated splitting with dominating bundle of
dim. i.

Furthermore, there exists a (larger) convex set
M+(F) c RY (Morse set) such that
M*(F)ynat =L"(F)|and M*(F) is invariant by
reflections across the walls it touches.
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Extra convexity properties of L*(F)?

Furthermore, there exists a (larger) convex set
M*(F) c RY (Morse set) such that|MT(F)na® = L*(F)
and M*(F) is invariant by reflections across the walls it
touches.

wall §1 = &2 wall &1 = &2

NO! Yes.
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Extra convexity properties of L*(F)?

Furthermore, there exists a (larger) convex set
M*(F) c RY (Morse set) such that |M*(F)na™ = LT (F)
and M*(F) is invariant by reflections across the walls it
touches.

E1=83 £2=283
a+

E1=8&

(F in SL(3, R); no dominations)
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Extra convexity properties of L*(F)?

Furthermore, there exists a (larger) convex set
M*(F) c RY (Morse set) such that |M*(F)na™ = LT (F)
and M*(F) is invariant by reflections across the walls it
touches.

E1=83 £2 =83

at

E1=86

(F in SL(3, R); no dominations)

Philosophy: Lack of domination should allow us to mix
(make convex combinations) of Lyapunov exponents A;
and Aj;1. (Compare with Bochi, Viana’05; Bochi, Bonatti'12.)
Remark: The terminology Morse set comes from Control Theory:
Colonius, Kliemann'96.
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