Substitutions and linear cellular automata

Eric Rowland1 & Reem Yassawi2

1Hofstra University, U.S.A & 2Université Claude Bernard Lyon 1, France

June 5th 2018
Example (The Prouhet-Thue-Morse sequence)

The Prouhet-Thue–Morse sequence

\[T(n)_{n \geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, \ldots \]

is defined as

\[T(n) = \text{(number of 1s in the base-2 representation of } n) \mod 2. \]
Example (The Prouhet-Thue-Morse sequence)

The Prouhet-Thue–Morse sequence

\[T(n)_{n \geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, \ldots \]

is defined as

\[T(n) = (\text{number of 1s in the base-2 representation of } n) \mod 2. \]

Prouhet’s (1851) on multisets work implicitly used the P-T-M sequence.
Example (The Prouhet-Thue-Morse sequence)

The Prouhet-Thue–Morse sequence

\[T(n)_{n \geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, \ldots \]

is defined as

\[T(n) = (\text{number of 1s in the base-2 representation of } n) \mod 2. \]

Prouhet’s (1851) on multisets work implicitly used the P-T-M sequence.
Thue’s work [1906, 1912] was the starting point of the branch of combinatorics on words.
Example (The Prouhet-Thue-Morse sequence)

The Prouhet-Thue–Morse sequence

\[T(n)^{n \geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, \ldots \]

is defined as

\[T(n) = (\text{number of 1s in the base-2 representation of } n) \mod 2. \]

Prouhet’s (1851) on multisets work implicitly used the P-T-M sequence. Thue’s work [1906, 1912] was the starting point of the branch of combinatorics on words. Morse [1921] used the P-T-M sequence to give the first example of a common situation in symbolic dynamics: the existence of objects that are uniformly recurrent without being periodic: every word occurring in that sequence occurs in any large enough window.
The Rudin-Shapiro sequence $a = (a_n)_{n \geq 0}$ is defined as $a_n := (-1)^{s_n}$ where $s_n =$ number of (possibly overlapping) occurrences of the block 11 in the base-2 expansion of n.
Example (The Rudin-Shapiro sequence)

The Rudin-Shapiro sequence $a = (a_n)_{n \geq 0}$ is defined as $a_n := (-1)^{s_n}$ where $s_n = \text{number of (possibly overlapping) occurrences of the block 11 in the base-2 expansion of } n$. The R-S sequence is an example of a 2-automatic sequence:
Example (The Rudin-Shapiro sequence)

The Rudin-Shapiro sequence $a = (a_n)_{n \geq 0}$ is defined as $a_n := (-1)^{s_n}$ where s_n is the number of (possibly overlapping) occurrences of the block 11 in the base-2 expansion of n. The R-S sequence is an example of a 2-automatic sequence:

![Diagram of the Rudin-Shapiro sequence automaton]

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata June 5th 2018 3 / 20
Example (The Rudin-Shapiro sequence)

The Rudin-Shapiro sequence \(a = (a_n)_{n \geq 0} \) is defined as \(a_n := (-1)^{s_n} \) where \(s_n \) is the number of (possibly overlapping) occurrences of the block 11 in the base-2 expansion of \(n \). The R-S sequence is an example of a 2-automatic sequence:

![Diagram of the Rudin-Shapiro sequence]

Given a sequence \(a = (a_n)_{n \geq 0} \in \{-1, +1\}^N \), consider

\[
M_N(a) = \sup_{\theta \in [0,2\pi]} \left| \sum_{n=0}^{N} a_n e^{2\pi i n \theta} \right| ; \text{ then } \sqrt{N} \leq M_N(a) \leq N, \text{ and for random } a, \sqrt{N} \leq M_N(a) \leq \sqrt{N \log N}. \text{ Shapiro, 1951, showed that the R-S sequence also satisfied } \sqrt{N} \leq M_N(a) \leq 5\sqrt{N}. \]
The **Rudin-Shapiro sequence** \(a = (a_n)_{n \geq 0} \) is defined as \(a_n := (-1)^{s_n} \) where \(s_n \) is the number of (possibly overlapping) occurrences of the block 11 in the base-2 expansion of \(n \). The R-S sequence is an example of a 2-automatic sequence:

A sequence \((a_n)_{n \geq 0} \) is **\(k \)-automatic** if there is a DFAO whose output is \(a_n \) when fed the base-\(k \) digits of \(n \).
Cobham [1972] was the first to systematically study k-automatic sequences.

Let A be a finite alphabet. If $\theta : A \to A^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0, 1\} \to \{0, 1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$.

$T = \lim_{n \to \infty} \theta^n(0) = 0110100110010110...$ satisfies $\theta(T) = T$.

A fixed point for θ is an infinite sequence u such that $\theta(u) = u$.

With a 2-DFAO with θ, we see that $T_n = (\text{number of 1s in the binary representation of } n \text{ mod 2})$.
Cobham [1972] was the first to systematically study k-automatic sequences. Let \mathcal{A} be a finite alphabet. If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0, 1\} \to \{0, 1\}$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta_2(0) = \theta(\theta(01)) = \theta(0)\theta(1) = 0110$.

Let $T = \lim_{n \to \infty} \theta^n(0) = 0110100110010110 \ldots$ satisfies $\theta(T) = T$.

A fixed point for θ is an infinite sequence u such that $\theta(u) = u$.
Cobham [1972] was the first to systematically study k-automatic sequences. Let \mathcal{A} be a finite alphabet. If $\theta : \mathcal{A} \rightarrow \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0, 1\} \rightarrow \{0, 1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution.
Cobham [1972] was the first to systematically study k-automatic sequences. Let A be a finite alphabet. If $\theta : A \rightarrow A^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0, 1\} \rightarrow \{0, 1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$, ...
Cobham [1972] was the first to systematically study k-automatic sequences. Let \mathcal{A} be a finite alphabet. If $\theta : \mathcal{A} \rightarrow \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0, 1\} \rightarrow \{0, 1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$,

$$T = \lim_{n \rightarrow \infty} \theta^n(0) = 0110100110010110 \ldots$$ satisfies $\theta(T) = T$.
Cobham [1972] was the first to systematically study k-automatic sequences. Let \mathcal{A} be a finite alphabet. If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0, 1\} \to \{0, 1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$,

$$T = \lim_{n \to \infty} \theta^n(0) = 0110100110010110 \ldots$$

$satisfies$ $\theta(T) = T$.

A fixed point for θ is an infinite sequence u such that $\theta(u) = u$.
Cobham [1972] was the first to systematically study k-automatic sequences. Let A be a finite alphabet. If $\theta : A \rightarrow A^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0, 1\} \rightarrow \{0, 1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$,

$$T = \lim_{n \rightarrow \infty} \theta^n(0) = 0110100110010110 \ldots$$ satisfies $\theta(T) = T$.

A fixed point for θ is an infinite sequence u such that $\theta(u) = u$. Defining a 2-DFAO with θ,
Cobham [1972] was the first to systematically study k-automatic sequences. Let \mathcal{A} be a finite alphabet. If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0, 1\} \to \{0, 1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110,$

$$T = \lim_{n \to \infty} \theta^n(0) = 0110100110010110 \ldots$$ satisfies $\theta(T) = T.$

A fixed point for θ is an infinite sequence u such that $\theta(u) = u$. Defining a 2-DFAO with θ,

\[
\begin{array}{c}
0 \\
\circ \\
\rightarrow \\
\downarrow \\
0 \\
\circ \\
\rightarrow \\
1
\end{array}
\]
Cobham [1972] was the first to systematically study k-automatic sequences. Let \mathcal{A} be a finite alphabet. If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0, 1\} \to \{0, 1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$,

$$T = \lim_{n \to \infty} \theta^n(0) = 0110100110010110 \ldots$$ satisfies $\theta(T) = T$.

A **fixed point** for θ is an infinite sequence u such that $\theta(u) = u$. Defining a 2-DFAO with θ,

we see that $T_n = \left(\text{number of 1s in the binary representation of } n \right) \mod 2$.
Cobham’s characterisation

Theorem (Cobham 1972)

Let \(k \geq 2 \). Then \(a = (a_n)_{n \geq 0} \) is \(k \)-automatic if and only if \(a \) is the image, under a coding, of a fixed point of a substitution of length \(k \).

Example

The Rudin Shapiro sequence \(a \) is the *coding* of the fixed point of the substitution \(\theta(a) = ab, \theta(b) = ac, \theta(c) = bd \) and \(\theta(d) = da \), with the coding \(\tau(a) = \tau(b) = 1, \tau(c) = \tau(d) = -1 \).
Eilenberg’s characterization

Definition

The k-kernel of the sequence $a = (a_n)_{n \geq 0}$ is defined to be

$$Ker_k(a) := \{(a_{kn+\ell})_n : j \in \mathbb{N}, 0 \leq \ell < k^j\}.$$
Eilenberg’s characterization

Definition

The k-kernel of the sequence $a = (a_n)_{n \geq 0}$ is defined to be

$$\text{Ker}_k(a) := \{(a_{kj n + \ell})_n : j \in \mathbb{N}, 0 \leq \ell < k^j\}.$$

Theorem (Eilenberg 1974)

The sequence $a = (a_n)_{n \geq 0}$ is k-automatic if and only if $\text{Ker}_k(a)$ is finite.
Eilenberg’s characterization

Definition

The \(k \)-kernel of the sequence \(a = (a_n)_{n \geq 0} \) is defined to be

\[
Ker_k(a) := \{(a_{kn+\ell})_n : j \in \mathbb{N}, 0 \leq \ell < k^j \}.
\]

Theorem (Eilenberg 1974)

The sequence \(a = (a_n)_{n \geq 0} \) is \(k \)-automatic if and only if \(Ker_k(a) \) is finite.

Example

The 2-kernel of the Thue-Morse sequence \(T = (T_n)_{n \geq 0} \) consists of two sequences: \(T \) and \(T + 1 \mod 2 \), since we have

\[
T_{2n} = T_n \quad \text{and} \quad T_{2n+1} = T_n + 1 \mod 2,
\]

and now apply recursion to show \((T_{2jn+\ell})_n \) is either \(T \) or \(T + 1 \mod 2 \).
Characterisations if $k = p^n$, p prime

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements.
Characterisations if $k = p^n$, p prime

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]],$ and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively.
Characterisations if $k = p^n$, p prime

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]],$ and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively.

Given a sequence $a = (a_n)_{n \geq 0}$, let $A(x) = \sum_{n \geq 0} a_n x^n$.

Theorem (Christol, Kamae, Mendès-France and Rauzy 1980)

Let $(a_n)_{n \geq 0}$ be a sequence of elements in \mathbb{F}_q. Then $(a_n)_{n \geq 0}$ is p-automatic if and only if $A(x) = \sum_{n=0}^{\infty} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Example

The Thue-Morse sequence's generating function is a root of

$$P(x, y) = (1 + x)^3 y^2 + (1 + x)^2 y + x.$$
Characterisations if $k = p^n$, p prime

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively. Given a sequence $a = (a_n)_{n \geq 0}$, let $A(x) = \sum_{n \geq 0} a_n x^n$.

Theorem (Christol, Kamae, Mendès-France and Rauzy 1980)

Let $(a_n)_{n \geq 0}$ be a sequence of elements in \mathbb{F}_q. Then $(a_n)_{n \geq 0}$ is p-automatic if and only if $A(x) = \sum_{n=0}^{\infty} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Example

The Thue-Morse sequence’s generating function is a root of $P(x, y) = (1 + x)^3 y^2 + (1 + x)^2 y + x$.
Characterisations if $k = p^n$, p prime

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively.

Given a sequence $a = (a_n)_{n \geq 0}$, let $A(x) = \sum_{n \geq 0} a_n x^n$.

Theorem (Christol, Kamae, Mendès-France and Rauzy 1980)

Let $(a_n)_{n \geq 0}$ be a sequence of elements in \mathbb{F}_q. Then $(a_n)_{n \geq 0}$ is p-automatic if and only if $A(x) = \sum_{n=0}^{\infty} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Example

The Thue-Morse sequence’s generating function is a root of $P(x, y) = (1 + x)^3 y^2 + (1 + x)^2 y + x$.

Theorem (Furstenberg 1967)

Let $(a_n)_{n \geq 0}$ be a sequence in \mathbb{F}_q. Then $A(x)$ is algebraic if and only if $A(x)$ is the diagonal of a rational function $A(x) = D\left(\frac{P(x,y)}{Q(x,y)}\right)$ in $\mathbb{F}_q(x, y)$.

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata June 5th 2018 7 / 20
Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]],$ and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively. Given a sequence $a = (a_n)_{n \geq 0}$, let $A(x) = \sum_{n \geq 0} a_n x^n$.

Theorem (Christol, Kamae, Mendès-France and Rauzy 1980)

Let $(a_n)_{n \geq 0}$ be a sequence of elements in \mathbb{F}_q. Then $(a_n)_{n \geq 0}$ is p-automatic if and only if $A(x) = \sum_{n=0}^{\infty} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Example

The Thue-Morse sequence’s generating function is a root of $P(x, y) = (1 + x)^3 y^2 + (1 + x)^2 y + x$.

Theorem (Furstenberg 1967)

Let $(a_n)_{n \geq 0}$ be a sequence in \mathbb{F}_q. Then $A(x)$ is algebraic if and only if $A(x)$ is the diagonal of a rational function $A(x) = D(\frac{P(x,y)}{Q(x,y)})$ in $\mathbb{F}_q(x, y)$.
Definition

Let A a finite alphabet. The shift map $\sigma : A^\mathbb{Z} \to A^\mathbb{Z}$ is defined as $(\sigma(x))_n := x_{n+1}$. Let $X \subset A^\mathbb{Z}$ be a closed, σ-invariant set. Then (X, σ) is called a shift.
A cellular automaton is a continuous map $\Phi : \mathcal{A}^\mathbb{Z} \rightarrow \mathcal{A}^\mathbb{Z}$ such that $\Phi \circ \sigma = \sigma \circ \Phi$.

A cellular automaton with memory d is a continuous, σ-commuting map $\Phi : (\mathcal{A}^\mathbb{Z})^d \rightarrow \mathcal{A}^\mathbb{Z}$. Here by memory we mean a time memory.

The Curtis–Hedlund–Lyndon theorem tells us that Φ is a cellular automaton with memory d iff there is a local rule $\phi : ((\mathcal{A}^d)^\ell + r + 1) \rightarrow \mathcal{A}$ such that for all $R \in (\mathcal{A}^\mathbb{Z})^d$ and all $m \in \mathbb{Z}$, $(\Phi(R))(m) = \phi(R(m - \ell), R(m - \ell + 1), ..., R(m + r))$. (1)
Cellular automata with memory

Definition

Let A a finite alphabet. The shift map $\sigma : A^\mathbb{Z} \to A^\mathbb{Z}$ is defined as $(\sigma(x))_n := x_{n+1}$. Let $X \subset A^\mathbb{Z}$ be a closed, σ-invariant set. Then (X, σ) is called a *shift*.

A cellular automaton is a continuous map $\Phi : A^\mathbb{Z} \to A^\mathbb{Z}$ such that $\Phi \circ \sigma = \sigma \circ \Phi$.

A cellular automaton with memory d is a continuous, σ-commuting map $\Phi : (A^\mathbb{Z})^d \to A^\mathbb{Z}$.

Here by memory we mean a *time memory*.
Cellular automata with memory

Definition

Let \mathcal{A} a finite alphabet. The shift map $\sigma : \mathcal{A}^\mathbb{Z} \to \mathcal{A}^\mathbb{Z}$ is defined as $(\sigma(x))_n := x_{n+1}$. Let $X \subset \mathcal{A}^\mathbb{Z}$ be a closed, σ-invariant set. Then (X, σ) is called a shift.

A cellular automaton is a continuous map $\Phi : \mathcal{A}^\mathbb{Z} \to \mathcal{A}^\mathbb{Z}$ such that $\Phi \circ \sigma = \sigma \circ \Phi$.

A cellular automaton with memory d is a continuous, σ-commuting map $\Phi : (\mathcal{A}^\mathbb{Z})^d \to \mathcal{A}^\mathbb{Z}$.

Here by memory we mean a time memory.

The Curtis–Hedlund–Lyndon theorem tells us that Φ is a cellular automaton with memory d iff there is a local rule $\phi : (\mathcal{A}^d)^{\ell+r+1} \to \mathcal{A}$ such that for all $R \in (\mathcal{A}^\mathbb{Z})^d$ and all $m \in \mathbb{Z}$,

$$(\Phi(R))(m) = \phi(R(m - \ell), R(m - \ell + 1), \ldots, R(m + r)). \quad (1)$$
Spacetime diagrams and LCA

Definition

If $\Phi : (A^\mathbb{Z})^d \rightarrow A^\mathbb{Z}$ is a cellular automaton with memory d, then a spacetime diagram for Φ with initial conditions R_0, \ldots, R_{d-1} is the sequence $(R_n)_{n \geq 0}$ where we inductively define $R_n := \Phi(R_{n-d}, \ldots, R_{n-1})$ for $n \geq d$.

Example

Figure: Initial portion of a spacetime diagram of a linear cellular automaton with memory 12 containing the Thue–Morse sequence as a column.
Definition

If $\Phi : (\mathcal{A})^d \rightarrow \mathcal{A}^d$ is a cellular automaton with memory d, then a spacetime diagram for Φ with initial conditions R_0, \ldots, R_{d-1} is the sequence $(R_n)_{n \geq 0}$ where we inductively define $R_n := \Phi(R_{n-d}, \ldots, R_{n-1})$ for $n \geq d$.

Example

Figure: Initial portion of a spacetime diagram of a linear cellular automaton with memory 12 containing the Thue–Morse sequence as a column.
If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{\ell+r+1}$ and \mathbb{F}_q are \mathbb{F}_q-vector spaces, we say that the CA $\Phi : \mathbb{F}_q^\mathbb{Z} \rightarrow \mathbb{F}_q^\mathbb{Z}$ is linear if Φ is an \mathbb{F}_q-linear map.
If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{\ell+r+1}$ and \mathbb{F}_q are \mathbb{F}_q-vector spaces, we say that the CA $\Phi : \mathbb{F}_q^\mathbb{Z} \to \mathbb{F}_q^\mathbb{Z}$ is linear if Φ is an \mathbb{F}_q-linear map.

Example

Let $d = 1$, $\ell = 0$, $r = 1$, $\mathcal{A} = \mathbb{F}_2$; then the local rule $\phi(a, b) = a + b$ defines the Ledrappier CA.
If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{\ell+r+1}$ and \mathbb{F}_q are \mathbb{F}_q-vector spaces, we say that the CA $\Phi : \mathbb{F}_q^\mathbb{Z} \to \mathbb{F}_q^\mathbb{Z}$ is linear if Φ is an \mathbb{F}_q-linear map.

Example

Let $d = 1$, $\ell = 0$, $r = 1$, $\mathcal{A} = \mathbb{F}_2$; then the local rule $\phi(a, b) = a + b$ defines the Ledrappier CA.

Suppose that we start with a "random" initial configuration $x = R_0$, and generate a spacetime diagram $y = (R_n)_{n \in \mathbb{Z}}$. As $n \to \infty$, what are the rows R_n random for?
If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{\ell+r+1}$ and \mathbb{F}_q are \mathbb{F}_q-vector spaces, we say that the CA $\Phi : \mathbb{F}_q^\mathbb{Z} \rightarrow \mathbb{F}_q^\mathbb{Z}$ is linear if Φ is an \mathbb{F}_q-linear map.

Example

Let $d = 1$, $\ell = 0$, $r = 1$, $\mathcal{A} = \mathbb{F}_2$; then the local rule $\phi(a, b) = a + b$ defines the Ledrappier CA.

Suppose that we start with a "random" initial configuration $x = R_0$, and generate a spacetime diagram $y = (R_n)_{n \in \mathbb{Z}}$. As $n \rightarrow \infty$, what are the rows R_n random for?

Theorem (Pivato, Y, 2001)

Let $\mathcal{A} = \mathbb{Z}/p\mathbb{Z}$, and let $\Phi : \mathcal{A}^\mathbb{Z} \rightarrow \mathcal{A}^\mathbb{Z}$ be a linear cellular automaton. Let μ be a fully supported N-step Markov measure. Then $\Phi^n \mu$ converges in density to Haar measure.
If $A = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{\ell+r+1}$ and \mathbb{F}_q are \mathbb{F}_q-vector spaces, we say that the CA $\Phi : \mathbb{F}_q^\mathbb{Z} \rightarrow \mathbb{F}_q^\mathbb{Z}$ is linear if Φ is an \mathbb{F}_q-linear map.

Example

Let $d = 1$, $\ell = 0$, $r = 1$, $A = \mathbb{F}_2$; then the local rule $\phi(a, b) = a + b$ defines the Ledrappier CA.

Suppose that we start with a "random" initial configuration $x = R_0$, and generate a spacetime diagram $y = (R_n)_{n \in \mathbb{Z}}$. As $n \rightarrow \infty$, what are the rows R_n random for?

Theorem (Pivato, Y, 2001)

Let $A = \mathbb{Z}/p\mathbb{Z}$, and let $\Phi : A^\mathbb{Z} \rightarrow A^\mathbb{Z}$ be a linear cellular automaton. Let μ be a fully supported N-step Markov measure. Then $\Phi^n \mu$ converges in density to Haar measure.

What happens if we start with a nonrandom initial configuration?
Theorem (Litow and Dumas, 1993 Rowland and Y 2014)

A sequence of elements in \mathbb{F}_q is p-automatic if and only if it is a column in the spacetime diagram of a linear cellular automaton with memory over \mathbb{F}_q whose initial conditions are eventually periodic in both directions.
Theorem (Litow and Dumas, 1993 Rowland and Y 2014)

A sequence of elements in \mathbb{F}_q is p-automatic if and only if it is a column in the spacetime diagram of a linear cellular automaton with memory over \mathbb{F}_q whose initial conditions are eventually periodic in both directions.

Figure: Spacetime diagram of a linear cellular automaton with memory containing the Thue–Morse sequence as a column.
Example: The Rudin-Shapiro sequence

Figure: Spacetime diagram of a linear cellular automaton with memory 20 containing the Rudin–Shapiro sequence as a column.
Example: The Baum-Sweet sequence

Figure: Spacetime diagram of a linear cellular automaton with memory 27 containing the Baum–Sweet sequence as a column.
Ingredients in the proof

Christol’s theorem tells us that if a sequence is p-automatic, then its FPS is algebraic over $\mathbb{F}_q(x)$.
Ingredients in the proof

Christol’s theorem tells us that if a sequence is p-automatic, then its FPS is algebraic over $\mathbb{F}_q(x)$.

Furstenberg’s theorem tells us that if a FPS is algebraic over $\mathbb{F}_q(x)$, then it is the diagonal of a rational Laurent series in two variables over that field.
Ingredients in the proof

Christol’s theorem tells us that if a sequence is p-automatic, then its FPS is algebraic over $\mathbb{F}_q(x)$.

Furstenberg’s theorem tells us that if a FPS is algebraic over $\mathbb{F}_q(x)$, then it is the diagonal of a rational Laurent series in two variables over that field. Thus if (u_n) is p-automatic, then (u_n) can be realized as the diagonal of a quarter-lattice array of elements in \mathbb{F}_q which is the formal power series expansion of $E(t, x) = \frac{P(t,x)}{Q(t,x)}$, where $P, Q \in \mathbb{F}_q[t, x]$.
Ingredients in the proof

Christol’s theorem tells us that if a sequence is p-automatic, then its FPS is algebraic over $\mathbb{F}_q(x)$.

Furstenberg’s theorem tells us that if a FPS is algebraic over $\mathbb{F}_q(x)$, then it is the diagonal of a rational Laurent series in two variables over that field. Thus if (u_n) is p-automatic, then (u_n) can be realized as the diagonal of a quarter-lattice array of elements in \mathbb{F}_q which is the formal power series expansion of $E(t, x) = \frac{P(t,x)}{Q(t,x)}$, where $P, Q \in \mathbb{F}_q[t, x]$.

Heuristic: Rotate this quarter array clockwise so that (u_n) shows up as a column in this diagram, and, under suitable choice of the polynomials, show that you end up with the space-time diagram of a linear cellular automaton with memory.
Christol’s theorem tells us that if a sequence is \(p \)-automatic, then its FPS is algebraic over \(\mathbb{F}_q(x) \).

Furstenberg’s theorem tells us that if a FPS is algebraic over \(\mathbb{F}_q(x) \), then it is the diagonal of a rational Laurent series in two variables over that field. Thus if \((u_n)\) is \(p \)-automatic, then \((u_n)\) can be realized as the diagonal of a quarter-lattice array of elements in \(\mathbb{F}_q \) which is the formal power series expansion of

\[
E(t, x) = \frac{P(t, x)}{Q(t, x)},
\]

where \(P, Q \in \mathbb{F}_q[t, x] \).

Heuristic: Rotate this quarter array clockwise so that \((u_n)\) shows up as a column in this diagram, and, under suitable choice of the polynomials, show that you end up with the space-time diagram of a linear cellular automaton with memory.

In particular the proof of Furstenberg’s theorem implies that if \((u_n)\) is automatic, \(u_0 = 0, P(t, F(t))=0 \) and \(P_x(0, 0) = \frac{\partial P(t, x)}{\partial x}|_{(0,0)} \neq 0 \), then \(F(t) \) is the "-2 column" of

\[
\frac{P_x(t, x)}{P(t, x)}.
\]
A corollary

Definition

If \(u \in A^\mathbb{N} \), define \(X_u := \{ \sigma^n(u) : n \in \mathbb{N} \} \). The dynamical system \((X_u, \sigma)\) is called the (one-sided) subshift associated with \(u \).
A corollary

Definition

If \(u \in \mathcal{A}^\mathbb{N} \), define \(X_u := \{ \sigma^n(u) : n \in \mathbb{N} \} \). The dynamical system \((X_u, \sigma)\) is called the (one-sided) subshift associated with \(u \).

Corollary

Let \(u \) be \(p \)-automatic. Then \((X_u, \sigma)\) is a factor of a subsystem of some linear cellular automaton \(((\mathbb{F}_q^d)^\mathbb{Z}, \Phi)\).

Suppose that we start with a sequence u in $\mathbb{F}_p^\mathbb{Z}$ which has finitely many nonzero entries. Let $\Phi : \mathbb{F}_p^\mathbb{Z} \rightarrow \mathbb{F}_p^\mathbb{Z}$ be a linear cellular automaton with no right radius. Then the spacetime diagram $\text{ST}_\Phi(u)$ is a p-automatic two dimensional configuration.
Litow-Dumas: Starting with a finite initial sequence and applying a linear cellular automaton, any column in the spacetime diagram is one-dimensional p-automatic.
Litow-Dumas: Starting with a finite initial sequence and applying a linear cellular automaton, any column in the spacetime diagram is one-dimensional p-automatic.

Rowland-Y: Any one-dimensional p-automatic sequence can be realised as a column in a spacetime diagram with an eventually periodic initial condition.
Litow-Dumas: Starting with a finite initial sequence and applying a linear cellular automaton, any column in the spacetime diagram is one-dimensional p-automatic.

Rowland-Y: Any one-dimensional p-automatic sequence can be realised as a column in a spacetime diagram with an eventually periodic initial condition.

Allouche, von Haeseler, Peitgen, Skordev: Any finite initial condition from \mathbb{F}_p and a zero-anticipation linear cellular automaton generates a two-dimensional p-automatic sequence.
Jacking up the complexity

Litow-Dumas: Starting with a finite initial sequence and applying a linear cellular automaton, any column in the spacetime diagram is one-dimensional p-automatic.

Rowland-Y: Any one-dimensional p-automatic sequence can be realised as a column in a spacetime diagram with an eventually periodic initial condition.

Allouche, von Haeseler, Peitgen, Skordev: Any finite initial condition from \mathbb{F}_p and a zero-anticipation linear cellular automaton generates a two-dimensional p-automatic sequence.

What happens if we move up a level of complexity in the initial conditions, and we take an initial configuration which is not eventually periodic, but p-automatic?
Theorem (Rowland-Y. 2018)

Let $\Phi : \mathbb{F}_p^\mathbb{Z} \rightarrow \mathbb{F}_p^\mathbb{Z}$ be a linear cellular automaton. If $u \in \mathbb{F}_p^\mathbb{Z}$ is such that $(u_m)_{m \in \mathbb{N}}$ is p-automatic and $u_m = 0$ for $m \leq -1$, then $ST_\Phi(u)$ is two-dimensional p-automatic.
Theorem (Rowland-Y. 2018)

Let $\Phi : \mathbb{F}_p^\mathbb{Z} \to \mathbb{F}_p^\mathbb{Z}$ be a linear cellular automaton. If $u \in \mathbb{F}_p^\mathbb{Z}$ is such that $(u_m)_{m \in \mathbb{N}}$ is p-automatic and $u_m = 0$ for $m \leq -1$, then $\text{ST}_\Phi(u)$ is two-dimensional p-automatic.

The 2-automatic $\text{ST}_\Phi(u)$ for a cellular automaton with generating polynomial $\phi(x) = x^{-1} + x^{-3} + x^{-7}$. The left half of initial condition $u \in \mathbb{F}_2^\mathbb{Z}$ is identically 0, and the right half is the Thue–Morse sequence.
Corollary (Rowland-Y. 2018)

Let $\Phi : \mathbb{F}_p^\mathbb{Z} \to \mathbb{F}_p^\mathbb{Z}$ be a linear cellular automaton. If $u \in \mathbb{F}_p^\mathbb{Z}$ is such that both $(u_m)_{m \in \mathbb{N}}$ and $(u-m)_{m \in \mathbb{N}}$ are p-automatic, then the left half and the right half of $\text{ST}_\Phi(u)$ are each two-dimensional p-automatic.

$\text{ST}_\Phi(u)$ for a cellular automaton with generating polynomial $\phi(x) = x + 1 + x^{-1}$, where the left half of initial condition $u \in \mathbb{F}_2^\mathbb{Z}$ is the reflection of the Toeplitz sequence, and the right half is the Thue–Morse sequence.
When is $\Sigma^\infty (u)$ uniformly, or not uniformly recurrent? (conditions on Σ and u)

Which 2-dimensional automatic sequences can be realised as $\Sigma^\infty (u)$?

When are the "solid triangles" purely a facet of the Lucas-p property?

What are conditions that give nontrivial measures μ which are asymptotically randomised by Σ?
When is $ST_{\Phi}(u)$ uniformly, or not uniformly recurrent? (conditions on Φ and u)

Which 2-dimensional automatic sequences can be realised as $ST_{\Phi}(u)$?

When are the “solid triangles” purely a facet of the Lucas-p property?

What are conditions that give nontrivial measures μ which are asymptotically randomised by Φ?