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Automatic sequences: History and uses. Example |

Example (The Prouhet-Thue-Morse sequence)

The Prouhet-Thue—Morse sequence
T(n)p>0=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,...

is defined as
T(n) = (number of 1s in the base-2 representation of n) mod 2.
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The Prouhet-Thue—Morse sequence
T(n)p>0=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,...

is defined as
T(n) = (number of 1s in the base-2 representation of n) mod 2.

Prouhet’s (1851) on multisets work implicitly used the P-T-M sequence.
Thue's work [1906, 1912] was the starting point of the branch of
combinatorics on words.
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Example (The Prouhet-Thue-Morse sequence)

The Prouhet-Thue—Morse sequence
T(n)p>0=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,...

is defined as
T(n) = (number of 1s in the base-2 representation of n) mod 2.

Prouhet’s (1851) on multisets work implicitly used the P-T-M sequence.
Thue's work [1906, 1912] was the starting point of the branch of
combinatorics on words.

Morse [1921] used the P-T-M sequence to give the first example of a
common situation in symbolic dynamics: the existence of objects that are
uniformly recurrent without being periodic: every word occuring in that
sequence occurs in any large enough window.
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Example (The Rudin-Shapiro sequence )

The Rudin-Shapiro sequence a = (ap)n>0 is defined as a, := (—1)* where
sp= number of (possibly overlapping) occurrences of the block 11 in the

base-2 expansion of n.
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sp= number of (possibly overlapping) occurrences of the block 11 in the
base-2 expansion of n. The R-S sequence is an example of a 2-automatic
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sp= number of (possibly overlapping) occurrences of the block 11 in the
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Example (The Rudin-Shapiro sequence )

The Rudin-Shapiro sequence a = (ap)n>0 is defined as a, := (—1)* where
sp= number of (possibly overlapping) occurrences of the block 11 in the
base-2 expansion of n. The R-S sequence is an example of a 2-automatic
sequence:

@< | @< | @< | @ )
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Given a sequence a = (a,)n>0 € {—1,+1}", consider
Mpy(a) = SUPge(0,21) Z,’YZO 2,e2™%| - then /N < My(a) < N, and for

random a, v/N < My(a) < v/NlogN. Shapiro, 1951, showed that the R-S
sequence also satisfied v/N < Mpy(a) < 5vV/N.
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Example (The Rudin-Shapiro sequence )

The Rudin-Shapiro sequence a = (ap)n>0 is defined as a, := (—1)* where
sp= number of (possibly overlapping) occurrences of the block 11 in the
base-2 expansion of n. The R-S sequence is an example of a 2-automatic
sequence:
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Given a sequence a = (a,)n>0 € {—1,+1}", consider

Mpy(a) = SUPge(0,21) Z,’YZO 2,e2™%| - then /N < My(a) < N, and for
random a, v/N < My(a) < v/NlogN. Shapiro, 1951, showed that the R-S
sequence also satisfied v/N < Mpy(a) < 5vV/N.

A sequence (an)n>0 is k-automatic if there is a DFAO whose output is aj,
when fed the base-k digits of n.
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Characterisations of automatic sequences

Cobham [1972] was the first to systematically study k-automatic sequences.
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If: A — A we call § a length k substitution. We can extend 6 to act
on any finite or infinite word, by concatenation.
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Let A be a finite alphabet.

If: A — A we call § a length k substitution. We can extend 6 to act
on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let 0 : {0,1} — {0,1}? be defined by #(0) = 01, and 0(1) = 10; 6 is the
Thue-Morse substitution.
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Thue-Morse substitution. Then §2(0) = 6(01) = §(0)6(1) = 0110,

T = lim 0"(0) = 0110100110010110...satisfies 0(T) = T.
n—o0

A fixed point for 6 is an infinite sequence u such that 6(u) = u.
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Characterisations of automatic sequences

Cobham [1972] was the first to systematically study k-automatic sequences.
Let A be a finite alphabet.

If: A — A we call § a length k substitution. We can extend 6 to act
on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let 0 : {0,1} — {0,1}? be defined by #(0) = 01, and 0(1) = 10; 6 is the
Thue-Morse substitution. Then §2(0) = 6(01) = §(0)6(1) = 0110,

T = lim 0"(0) = 0110100110010110...satisfies 0(T) = T.
n—o0

A fixed point for 6 is an infinite sequence u such that (u) = u. Defining a

2-DFAO with 6,
_On

we see that T, = (number of 1s in the binary representation of n) mod 2.

v
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Cobham's characterisation

Theorem (Cobham 1972)

Let k > 2. Then a = (an)n>0 is k-automatic if and only if a is the image,
under a coding, of a fixed point of a substitution of length k.

Example

The Rudin Shapiro sequence a is the coding of the fixed point of the
substitution 6(a) = ab, 0(b) = ac, 6(c) = bd and 6(d) = da, with the
coding 7(a) = 7(b) = 1,7(c) = 7(d) = —1.

\
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Eilenberg's characterization

Definition

The k-kernel of the sequence a = (a,)n>0 is defined to be

Ker(a) := {(awinse)n 1 j €N,0 < L < K.
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Ker(a) := {(awinse)n 1 j €N,0 < L < K.

Theorem (Eilenberg 1974)

The sequence a = (an)n>0 is k-automatic if and only if Keri(a) is finite.
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Eilenberg's characterization

Definition
The k-kernel of the sequence a = (a,)n>0 is defined to be

Ker(a) := {(awinse)n 1 j €N,0 < L < K.

Theorem (Eilenberg 1974)
The sequence a = (an)n>0 is k-automatic if and only if Kery(a) is finite.

Example
The 2-kernel of the Thue-Morse sequence T = (T,),>0 consists of two
sequences: T and T +1 mod 2, since we have

Ton=Tpand Tope1 =T, +1 mod 2,

and now apply recursion to show ( Ty, )n is either T or T +1 mod 2.
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Characterisations if k = p", p prime

Let IF, denote the finite field with g = p” elements.
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Let IF, denote the finite field with g = p” elements. Recall definitions of
Fqlt], Fq(t), Fgl[t]], and Fg((t)): polynomials, rational functions, formal
power series, formal Laurent series with coefficients in F respectively.
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Let IF, denote the finite field with g = p” elements. Recall definitions of
Fqlt], Fq(t), Fgl[t]], and Fg((t)): polynomials, rational functions, formal
power series, formal Laurent series with coefficients in F respectively.
Given a sequence a = (an)n>0, let A(x) = >, 50 anx".

Theorem (Christol, Kamae, Mendés-France and Rauzy 1980)

Let (an)n>0 be a sequence of elements in Fq. Then (a,)n>0 is p-automatic
if and only if A(x) = > 7" anx" is algebraic over Fq(x).
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Characterisations if k = p", p prime

Let IF, denote the finite field with g = p” elements. Recall definitions of
Fqlt], Fq(t), Fgl[t]], and Fg((t)): polynomials, rational functions, formal
power series, formal Laurent series with coefficients in F respectively.
Given a sequence a = (an)n>0, let A(x) = >, 50 anx".

Theorem (Christol, Kamae, Mendés-France and Rauzy 1980)

Let (an)n>0 be a sequence of elements in Fq. Then (a,)n>0 is p-automatic
if and only if A(x) = > 7" anx" is algebraic over Fq(x).

The Thue-Morse sequence's generating function is a root of
P(x,y) = (1 +x)3y? + (1 + x)%y + x.
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Example

The Thue-Morse sequence's generating function is a root of
P(x,y) = (1 +x)3y? + (1 + x)%y + x.

A\

Theorem (Furstenberg 1967)

Let (an)n>0 be a sequence in Fq. Then A(x) is algebraic if and only if A(x)

is the diagonal of a rational function A(x) = D( ggi’/g) in Fq(x,y).
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Cellular automata with memory

Definition

Let A a finite alphabet. The shift map o : AZ — A% is defined as
(0(x))n := Xny1. Let X C A” be a closed, o-invariant set. Then (X, o) is
called a shift.
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(0(x))n := Xny1. Let X C A” be a closed, o-invariant set. Then (X, o) is
called a shift.

A cellular automaton is a continuous map ¢ : A% — A% such that
boo=000.

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata June 5th 2018 8/ 20



Cellular automata with memory

Definition

Let A a finite alphabet. The shift map o : AZ — A% is defined as
(0(x))n := Xny1. Let X C A” be a closed, o-invariant set. Then (X, o) is
called a shift.

A cellular automaton is a continuous map ¢ : A% — A% such that
boo=009.

A cellular automaton with memory d is a continuous, o-commuting map
¢ (AT - A7

Here by memory we mean a time memory.
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Cellular automata with memory

Definition

Let A a finite alphabet. The shift map o : AZ — A% is defined as
(0(x))n := Xny1. Let X C A” be a closed, o-invariant set. Then (X, o) is
called a shift.

A cellular automaton is a continuous map ¢ : A% — A% such that
boo=009.

A cellular automaton with memory d is a continuous, o-commuting map
¢ (AT - A7

Here by memory we mean a time memory.

The Curtis—Hedlund—Lyndon theorem tells us that ® is a cellular
automaton with memory d iff there is a local rule ¢ : (A9)+*1 — A such
that for all R € (A%)? and all m € Z,

(P(R))(m) =p(R(m—£),Rlm—£+1),...,R(m+r)). (1)
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Spacetime diagrams and LCA

Definition

If &: (A)%)? — AZ is a cellular automaton with memory d, then a
spacetime diagram for ® with initial conditions Ry, ..., Ry_1 is the
sequence (Rp)n>0 where we inductively define R, := ®(R,—q, ..., Rn—1)
for n > d.

June 5th 2018 9/ 20
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Spacetime diagrams and LCA

Definition
If &: (A)%)? — AZ is a cellular automaton with memory d, then a
spacetime diagram for ® with initial conditions Ry, ..., Ry_1 is the
sequence (R,)n>0 where we inductively define R, := ®(R,_q4, ..., Rn-1)
for n > d.
Example

[ | | ]

Figure : Initial portion of a spacetime diagram of a linear cellular automaton with
memory 12 containing the Thue—Morse sequence as a column.
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Linear cellular automata and asymptotic randomization

If A=F,, then (F)""1 and Fy are F,-vector spaces, we say that the
CA o IF% — IF% is linear if ® is an Fy-linear map.
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Linear cellular automata and asymptotic randomization

If A=F,, then (F)""1 and Fy are F,-vector spaces, we say that the
CA & : FZ — FZ is linear if ® is an Fg-linear map.

Letd=1,¢=0, r =1, A=T>; then the local rule ¢(a,b) = a+ b
defines the Ledrappier CA.
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Linear cellular automata and asymptotic randomization

If A=F,, then (F)""1 and Fy are F,-vector spaces, we say that the
CA & : FZ — FZ is linear if ® is an Fg-linear map.

Letd=1,¢=0, r =1, A=T>; then the local rule ¢(a,b) = a+ b
defines the Ledrappier CA.

Suppose that we start with a "random" initial configuration x = Ry, and
generate a spacetime diagam y = (Rp)nez. As n — oo, what are the rows
R,, random for?
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Linear cellular automata and asymptotic randomization

If A=F,, then (F)""1 and Fy are F,-vector spaces, we say that the
CA & : FZ — FZ is linear if ® is an Fg-linear map.

Letd=1,¢=0, r =1, A=T>; then the local rule ¢(a,b) = a+ b
defines the Ledrappier CA.

Suppose that we start with a "random" initial configuration x = Ry, and
generate a spacetime diagam y = (Rp)nez. As n — oo, what are the rows
R,, random for?

Theorem (Pivato, Y, 2001)

Let A= 7/pZ, and let ® : AZ — A” be a linear cellular automaton. Let 1
be a fully supported N-step Markov measure. Then ®" 1, converges in
density to Haar measure.
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Linear cellular automata and asymptotic randomization

If A=F,, then (F)""1 and Fy are F,-vector spaces, we say that the
CA & : FZ — FZ is linear if ® is an Fg-linear map.

Letd=1,¢=0, r =1, A=T>; then the local rule ¢(a,b) = a+ b
defines the Ledrappier CA.

Suppose that we start with a "random" initial configuration x = Ry, and
generate a spacetime diagam y = (Rp)nez. As n — oo, what are the rows
R,, random for?

Theorem (Pivato, Y, 2001)

Let A= 7/pZ, and let ® : AZ — A” be a linear cellular automaton. Let 1
be a fully supported N-step Markov measure. Then ®" 1, converges in
density to Haar measure.

What happens if we start with a nonrandom initial configuration?
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Spacetime diagrams of LCA with periodic initial conditions

Theorem (Litow and Dumas, 1993

A sequence of elements in Fy is p-automatic if and only if it is a column in
the spacetime diagram of a linear cellular automaton with memory over F
whose initial conditions are eventually periodic in both directions.
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Spacetime diagrams of LCA with periodic initial conditions

Theorem (Litow and Dumas, 1993

A sequence of elements in Fy is p-automatic if and only if it is a column in
the spacetime diagram of a linear cellular automaton with memory over F
whose initial conditions are eventually periodic in both directions.

H
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Figure : Spacetime diagram of a linear cellular automaton with memory 12
containing the Thue—Morse sequence as a column.
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Example: The Rudin-Shapiro sequence

A B

Figure : Spacetime diagram of a linear cellular automaton with memory 20
containing the Rudin-Shapiro sequence as a column.

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata June 5th 2018 12 / 20



Example: The Baum-Sweet sequence

Figure : Spacetime diagram of a linear cellular automaton with memory 27
containing the Baum—Sweet sequence as a column.
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Ingredients in the proof

Christol’s theorem tells us that if a sequence is p-automatic, then its FPS
is algebraic over Fg(x).
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Furstenberg’s theorem tells us that if a FPS is algebraic over Fq(x), then it
is the diagonal of a rational Laurent series in two variables over that field.
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Ingredients in the proof

Christol’s theorem tells us that if a sequence is p-automatic, then its FPS
is algebraic over Fg(x).

Furstenberg’s theorem tells us that if a FPS is algebraic over Fq(x), then it
is the diagonal of a rational Laurent series in two variables over that field.
Thus if (u,) is p-automatic, then (u,) can be realized as the diagonal of a
quarter-lattice array of elements in Fy which is the formal power series

expansion of E(t,x) = g((;)g where P, Q € Fgt, x].
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Christol’s theorem tells us that if a sequence is p-automatic, then its FPS
is algebraic over Fg(x).

Furstenberg’s theorem tells us that if a FPS is algebraic over Fq(x), then it
is the diagonal of a rational Laurent series in two variables over that field.
Thus if (u,) is p-automatic, then (u,) can be realized as the diagonal of a
quarter-lattice array of elements in Fy which is the formal power series

expansion of E(t,x) = g((;)g where P, Q € Fgt, x].
Heuristic: Rotate this quarter array clockwise so that (u,) shows up as a
column in this diagram, and, under suitable choice of the polynomials,
show that you end up with the space-time diagram of a linear cellular

automaton with memory.
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Ingredients in the proof

Christol’s theorem tells us that if a sequence is p-automatic, then its FPS
is algebraic over Fg(x).

Furstenberg’s theorem tells us that if a FPS is algebraic over Fq(x), then it
is the diagonal of a rational Laurent series in two variables over that field.
Thus if (u,) is p-automatic, then (u,) can be realized as the diagonal of a
quarter-lattice array of elements in Fy which is the formal power series

expansion of E(t,x) = CP)((;)S where P, Q € Fgt, x].

Heuristic: Rotate this quarter array clockwise so that (u,) shows up as a
column in this diagram, and, under suitable choice of the polynomials,
show that you end up with the space-time diagram of a linear cellular
automaton with memory.
In particular the proof of Furstenberg's theorem implies that if (uj) is
automatic, uo = 0, P(t, F(t))=0 and Py(0,0) = 22X} (1 £ 0, then
F(t) is the "-2 column" of

Py (t, x)

P(t,x)
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A corollary

Definition

If uc AY, define X, := {o"(u) : n € N}. The dynamical system (X, o) is
called the (one-sided) subshift associated with u.
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A corollary

If uc AY, define X, := {o"(u) : n € N}. The dynamical system (X, o) is
called the (one-sided) subshift associated with u.

| A

Corollary

Let u be p-automatic. Then (Xy, o) is a factor of a subsystem of some
linear cellular automaton ((F3)%, ).
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A helpful referee remark

Theorem (basic model, Allouche, von Haeseler, Peitgen, Skordev

1992-2003)

Suppose that we start with a sequence u in IF% which has finitely many
nonzero entries. Let ® : F% — IF% be a linear cellular automaton with no
right radius. Then the spacetime diagram ST (u) is a p-automatic two

dimensional configuration.
uld s

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata June 5th 2018 16 / 20



Jacking up the complexity

Litow-Dumas:Starting with a finite initial sequence and applying a linear
cellular automaton, any column in the spacetime diagram is
one-dimensional p-automatic.
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Jacking up the complexity

Litow-Dumas:Starting with a finite initial sequence and applying a linear
cellular automaton, any column in the spacetime diagram is
one-dimensional p-automatic.

Rowland-Y: Any one-dimensional p-automatic sequence can be realised as a
column in a spacetime diagram with an eventually periodic initial condition.
Allouche, von Haeseler, Peitgen, Skordev: Any finite initial condition from
Fp and a zero-anticipation linear cellular automaton generates a
two-dimensional p-automatic sequence.

What happens if we move up a level of complexity in the initial conditions,
and we take an initial configuration which is not eventually periodic, but
p-automatic?
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Theorem (Rowland-Y. 2018)

Let & : IF% — IF% be a linear cellular automaton. If u € FZ is such that
(Um)men is p-automatic and up, = 0 for m < —1, then ST¢(u) is
two-dimensional p-automatic.
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Theorem (Rowland-Y. 2018)

Let @ ; IF% — F% be a linear cellular automaton. If u € FZ js such that
(Um)men is p-automatic and uy, = 0 for m < —1, then ST (u) is
two-dimensional p-automatic.

The 2-automatic ST¢(u) for a cellular automaton with generating
polynomial ¢(x) = x~ + x73 4+ x~7. The left half of initial condition
u € F% is identically 0, and the right half is the Thue~Morse sequence.
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Corollary (Rowland-Y. 2018)

Let @ ; IF% — F% be a linear cellular automaton. If u € IF% is such that
both (um)men and (u—m)men are p-automatic, then the left half and the
right half of ST (u) are each two-dimensional p-automatic.

STe(u) for a cellular automaton with generating polynomial
B(x) = x + 1+ x~ 1, where the left half of initial condition u € F% is the
reflection of the Toeplitz sequence, and the right half is the Thue—Morse

ns and linear cellular automata



Work in Progress
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Work in Progress

When is ST¢(u) uniformly, or not uniformly recurrent? (conditions on ¢
and u)

Which 2-dimensional automatic sequences can be realised as STe(u)?
When are the “solid triangles" purely a facet of the Lucas-p property?

What are conditions that give nontrivial measures p which are
asymptotically randomised by ®7
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