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Automatic sequences: History and uses. Example I

Example (The Prouhet-Thue-Morse sequence)
The Prouhet-Thue–Morse sequence

T (n)n≥0 = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .

is defined as
T (n) = (number of 1s in the base-2 representation of n) mod 2.

Prouhet’s (1851) on multisets work implicitly used the P-T-M sequence.
Thue’s work [1906, 1912] was the starting point of the branch of
combinatorics on words.
Morse [1921] used the P-T-M sequence to give the first example of a
common situation in symbolic dynamics: the existence of objects that are
uniformly recurrent without being periodic: every word occuring in that
sequence occurs in any large enough window.
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Automatic sequences: History and uses. Example II

Example (The Rudin-Shapiro sequence )
The Rudin-Shapiro sequence a = (an)n≥0 is defined as an := (−1)sn where
sn= number of (possibly overlapping) occurrences of the block 11 in the
base-2 expansion of n.

The R-S sequence is an example of a 2-automatic
sequence:

0

1

0

1

1

0

1

0a/1 b/1 c/-1 d/-1

Given a sequence a = (an)n≥0 ∈ {−1,+1}N, consider
MN(a) = supθ∈[0,2π)

∣∣∣∑N
n=0 ane

2πinθ
∣∣∣ ; then

√
N ≤ MN(a) ≤ N, and for

random a,
√
N ≤ MN(a) ≤

√
NlogN. Shapiro, 1951, showed that the R-S

sequence also satisfied
√
N ≤ MN(a) ≤ 5

√
N.

A sequence (an)n≥0 is k-automatic if there is a DFAO whose output is an
when fed the base-k digits of n.
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Characterisations of automatic sequences

Cobham [1972] was the first to systematically study k-automatic sequences.

Let A be a finite alphabet.
If θ : A → Ak , we call θ a length k substitution. We can extend θ to act
on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let θ : {0, 1} → {0, 1}2 be defined by θ(0) = 01, and θ(1) = 10; θ is the
Thue-Morse substitution. Then θ2(0) = θ(01) = θ(0)θ(1) = 0110,

T = lim
n→∞

θn(0) = 0110100110010110 . . . satisfies θ(T ) = T .

A fixed point for θ is an infinite sequence u such that θ(u) = u. Defining a
2-DFAO with θ,

0

1
0

1
0 1

we see that Tn = (number of 1s in the binary representation of n) mod 2.
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Cobham’s characterisation

Theorem (Cobham 1972)
Let k ≥ 2. Then a = (an)n≥0 is k-automatic if and only if a is the image,
under a coding, of a fixed point of a substitution of length k .

Example

0

1

0

1

1

0

1

0a/1 b/1 c/-1 d/-1

The Rudin Shapiro sequence a is the coding of the fixed point of the
substitution θ(a) = ab, θ(b) = ac , θ(c) = bd and θ(d) = da, with the
coding τ(a) = τ(b) = 1, τ(c) = τ(d) = −1.
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Eilenberg’s characterization

Definition
The k-kernel of the sequence a = (an)n≥0 is defined to be

Kerk(a) := {(ak jn+`)n : j ∈ N, 0 ≤ ` < k j}.

Theorem (Eilenberg 1974)
The sequence a = (an)n≥0 is k-automatic if and only if Kerk(a) is finite.

Example
The 2-kernel of the Thue-Morse sequence T = (Tn)n≥0 consists of two
sequences: T and T + 1 mod 2 , since we have

T2n = Tn and T2n+1 = Tn + 1 mod 2,

and now apply recursion to show (T2jn+`)n is either T or T + 1 mod 2.
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Characterisations if k = pn, p prime

Let Fq denote the finite field with q = pn elements.

Recall definitions of
Fq[t],Fq(t),Fq[[t]], and Fq((t)): polynomials, rational functions, formal
power series, formal Laurent series with coefficients in Fq respectively.
Given a sequence a = (an)n≥0, let A(x) =

∑
n≥0 anx

n.

Theorem (Christol, Kamae, Mendès-France and Rauzy 1980)
Let (an)n≥0 be a sequence of elements in Fq. Then (an)n≥0 is p-automatic
if and only if A(x) =

∑∞
n=0 anx

n is algebraic over Fq(x).

Example
The Thue-Morse sequence’s generating function is a root of
P(x , y) = (1 + x)3y2 + (1 + x)2y + x .

Theorem (Furstenberg 1967)
Let (an)n≥0 be a sequence in Fq. Then A(x) is algebraic if and only if A(x)

is the diagonal of a rational function A(x) = D(P(x ,y)
Q(x ,y) ) in Fq(x , y).
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P(x , y) = (1 + x)3y2 + (1 + x)2y + x .

Theorem (Furstenberg 1967)
Let (an)n≥0 be a sequence in Fq. Then A(x) is algebraic if and only if A(x)

is the diagonal of a rational function A(x) = D(P(x ,y)
Q(x ,y) ) in Fq(x , y).
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Cellular automata with memory

Definition
Let A a finite alphabet. The shift map σ : AZ → AZ is defined as
(σ(x))n := xn+1. Let X ⊂ AZ be a closed, σ-invariant set. Then (X , σ) is
called a shift.

A cellular automaton is a continuous map Φ : AZ → AZ such that
Φ ◦ σ = σ ◦ Φ.
A cellular automaton with memory d is a continuous, σ-commuting map
Φ : (AZ)d → AZ.
Here by memory we mean a time memory.
The Curtis–Hedlund–Lyndon theorem tells us that Φ is a cellular
automaton with memory d iff there is a local rule φ : (Ad)`+r+1 → A such
that for all R ∈ (AZ)d and all m ∈ Z,

(Φ(R))(m) = φ(R(m − `),R(m − `+ 1), . . . ,R(m + r)) . (1)
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Spacetime diagrams and LCA

Definition
If Φ : (A)Z)d → AZ is a cellular automaton with memory d , then a
spacetime diagram for Φ with initial conditions R0, . . . ,Rd−1 is the
sequence (Rn)n≥0 where we inductively define Rn := Φ(Rn−d , . . . ,Rn−1)
for n ≥ d .

Example

Figure : Initial portion of a spacetime diagram of a linear cellular automaton with
memory 12 containing the Thue–Morse sequence as a column.
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Linear cellular automata and asymptotic randomization

If A = Fq, then (Fd
q)`+r+1 and Fq are Fq-vector spaces, we say that the

CA Φ : FZ
q → FZ

q is linear if Φ is an Fq-linear map.

Example
Let d = 1, ` = 0, r = 1,A = F2; then the local rule φ(a, b) = a + b
defines the Ledrappier CA.

Suppose that we start with a "random" initial configuration x = R0, and
generate a spacetime diagam y = (Rn)n∈Z. As n→∞, what are the rows
Rn random for?

Theorem (Pivato, Y, 2001)

Let A = Z/pZ, and let Φ : AZ → AZ be a linear cellular automaton. Let µ
be a fully supported N-step Markov measure. Then Φnµ converges in
density to Haar measure.

What happens if we start with a nonrandom initial configuration?
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Spacetime diagrams of LCA with periodic initial conditions

Theorem (Litow and Dumas, 1993 Rowland and Y 2014)
A sequence of elements in Fq is p-automatic if and only if it is a column in
the spacetime diagram of a linear cellular automaton with memory over Fq

whose initial conditions are eventually periodic in both directions.

Figure : Spacetime diagram of a linear cellular automaton with memory 12
containing the Thue–Morse sequence as a column.
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Example: The Rudin-Shapiro sequence

Figure : Spacetime diagram of a linear cellular automaton with memory 20
containing the Rudin–Shapiro sequence as a column.
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Example: The Baum-Sweet sequence

Figure : Spacetime diagram of a linear cellular automaton with memory 27
containing the Baum–Sweet sequence as a column.
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Ingredients in the proof

Christol’s theorem tells us that if a sequence is p-automatic, then its FPS
is algebraic over Fq(x).

Furstenberg’s theorem tells us that if a FPS is algebraic over Fq(x), then it
is the diagonal of a rational Laurent series in two variables over that field.
Thus if (un) is p-automatic, then (un) can be realized as the diagonal of a
quarter-lattice array of elements in Fq which is the formal power series
expansion of E (t, x) = P(t,x)

Q(t,x) , where P, Q ∈ Fq[t, x ].
Heuristic: Rotate this quarter array clockwise so that (un) shows up as a
column in this diagram, and, under suitable choice of the polynomials,
show that you end up with the space-time diagram of a linear cellular
automaton with memory.
In particular the proof of Furstenberg’s theorem implies that if (un) is
automatic, u0 = 0, P(t,F (t))=0 and Px(0, 0) = ∂P(t,x)

∂x |(0,0) 6= 0, then
F (t) is the "-2 column" of

Px(t, x)

P(t, x)
.
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A corollary

Definition

If u ∈ AN, define Xu := {σn(u) : n ∈ N}. The dynamical system (Xu, σ) is
called the (one-sided) subshift associated with u.

Corollary
Let u be p-automatic. Then (Xu, σ) is a factor of a subsystem of some
linear cellular automaton ((Fd

q)Z,Φ).
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A helpful referee remark

Theorem (basic model, Allouche, von Haeseler, Peitgen, Skordev
1992-2003)

Suppose that we start with a sequence u in FZ
p which has finitely many

nonzero entries. Let Φ : FZ
p → FZ

p be a linear cellular automaton with no
right radius. Then the spacetime diagram STΦ(u) is a p-automatic two
dimensional configuration.

Binomial coefficients modulo 2 are two-dimensional p-automatic.Reem Yassawi (UCBL, France) Substitutions and linear cellular automata June 5th 2018 16 / 20



Jacking up the complexity

Litow-Dumas:Starting with a finite initial sequence and applying a linear
cellular automaton, any column in the spacetime diagram is
one-dimensional p-automatic.

Rowland-Y: Any one-dimensional p-automatic sequence can be realised as a
column in a spacetime diagram with an eventually periodic initial condition.
Allouche, von Haeseler, Peitgen, Skordev: Any finite initial condition from
Fp and a zero-anticipation linear cellular automaton generates a
two-dimensional p-automatic sequence.

What happens if we move up a level of complexity in the initial conditions,
and we take an initial configuration which is not eventually periodic, but
p-automatic?
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Theorem (Rowland-Y. 2018)

Let Φ : FZ
p → FZ

p be a linear cellular automaton. If u ∈ FZ
p is such that

(um)m∈N is p-automatic and um = 0 for m ≤ −1, then STΦ(u) is
two-dimensional p-automatic.

The 2-automatic STΦ(u) for a cellular automaton with generating
polynomial φ(x) = x−1 + x−3 + x−7. The left half of initial condition
u ∈ FZ

2 is identically 0, and the right half is the Thue–Morse sequence.
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Corollary (Rowland-Y. 2018)

Let Φ : FZ
p → FZ

p be a linear cellular automaton. If u ∈ FZ
p is such that

both (um)m∈N and (u−m)m∈N are p-automatic, then the left half and the
right half of STΦ(u) are each two-dimensional p-automatic.

STΦ(u) for a cellular automaton with generating polynomial
φ(x) = x + 1 + x−1, where the left half of initial condition u ∈ FZ

2 is the
reflection of the Toeplitz sequence, and the right half is the Thue–Morse
sequence.
Reem Yassawi (UCBL, France) Substitutions and linear cellular automata June 5th 2018 19 / 20



Work in Progress

When is STΦ(u) uniformly, or not uniformly recurrent? (conditions on Φ
and u)
Which 2-dimensional automatic sequences can be realised as STΦ(u)?
When are the “solid triangles" purely a facet of the Lucas-p property?

What are conditions that give nontrivial measures µ which are
asymptotically randomised by Φ?

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata June 5th 2018 20 / 20



Work in Progress

When is STΦ(u) uniformly, or not uniformly recurrent? (conditions on Φ
and u)
Which 2-dimensional automatic sequences can be realised as STΦ(u)?
When are the “solid triangles" purely a facet of the Lucas-p property?

What are conditions that give nontrivial measures µ which are
asymptotically randomised by Φ?
Reem Yassawi (UCBL, France) Substitutions and linear cellular automata June 5th 2018 20 / 20


