Substitutions and linear cellular automata

Eric Rowland¹ & Reem Yassawi²

 $^1 \text{Hofstra}$ University, U.S.A & $^2 \text{Universit\acute{e}}$ Claude Bernard Lyon 1, France

June 5th 2018

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata

The Prouhet-Thue-Morse sequence

$$T(n)_{n\geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, \dots$$

is defined as T(n) = (number of 1s in the base-2 representation of $n) \mod 2$.

The Prouhet-Thue-Morse sequence

 $T(n)_{n\geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, \dots$

is defined as T(n) = (number of 1s in the base-2 representation of $n) \mod 2$.

Prouhet's (1851) on multisets work implicitly used the P-T-M sequence.

The Prouhet-Thue-Morse sequence

 $T(n)_{n\geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, \dots$

is defined as T(n) = (number of 1s in the base-2 representation of n) mod 2.

Prouhet's (1851) on multisets work implicitly used the P-T-M sequence. Thue's work [1906, 1912] was the starting point of the branch of combinatorics on words.

The Prouhet-Thue-Morse sequence

 $T(n)_{n\geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, \dots$

is defined as T(n) = (number of 1s in the base-2 representation of $n) \mod 2$.

Prouhet's (1851) on multisets work implicitly used the P-T-M sequence. Thue's work [1906, 1912] was the starting point of the branch of combinatorics on words.

Morse [1921] used the P-T-M sequence to give the first example of a common situation in symbolic dynamics: the existence of objects that are uniformly recurrent without being periodic: every word occuring in that sequence occurs in any large enough window.

Automatic sequences: History and uses. Example II

Example (The Rudin-Shapiro sequence)

The Rudin-Shapiro sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is defined as $a_n := (-1)^{s_n}$ where $s_n =$ number of (possibly overlapping) occurrences of the block 11 in the base-2 expansion of n.

Example (The Rudin-Shapiro sequence)

The Rudin-Shapiro sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is defined as $a_n := (-1)^{s_n}$ where $s_n =$ number of (possibly overlapping) occurrences of the block 11 in the base-2 expansion of n. The R-S sequence is an example of a 2-automatic sequence:

Automatic sequences: History and uses. Example II

Example (The Rudin-Shapiro sequence)

The Rudin-Shapiro sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is defined as $a_n := (-1)^{s_n}$ where $s_n =$ number of (possibly overlapping) occurrences of the block 11 in the base-2 expansion of n. The R-S sequence is an example of a 2-automatic sequence:

Example (The Rudin-Shapiro sequence)

The Rudin-Shapiro sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is defined as $a_n := (-1)^{s_n}$ where $s_n =$ number of (possibly overlapping) occurrences of the block 11 in the base-2 expansion of n. The R-S sequence is an example of a 2-automatic sequence:

Given a sequence $\mathbf{a} = (a_n)_{n\geq 0} \in \{-1, +1\}^{\mathbb{N}}$, consider $M_N(\mathbf{a}) = \sup_{\theta \in [0,2\pi)} \left| \sum_{n=0}^N a_n e^{2\pi i n \theta} \right|$; then $\sqrt{N} \leq M_N(\mathbf{a}) \leq N$, and for random $\mathbf{a}, \sqrt{N} \leq M_N(\mathbf{a}) \leq \sqrt{N \log N}$. Shapiro, 1951, showed that the R-S sequence also satisfied $\sqrt{N} \leq M_N(\mathbf{a}) \leq 5\sqrt{N}$.

Example (The Rudin-Shapiro sequence)

The Rudin-Shapiro sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is defined as $a_n := (-1)^{s_n}$ where $s_n =$ number of (possibly overlapping) occurrences of the block 11 in the base-2 expansion of n. The R-S sequence is an example of a 2-automatic sequence:

Given a sequence $\mathbf{a} = (a_n)_{n\geq 0} \in \{-1, +1\}^{\mathbb{N}}$, consider $M_N(\mathbf{a}) = \sup_{\theta \in [0, 2\pi)} \left| \sum_{n=0}^{N} a_n e^{2\pi i n \theta} \right|$; then $\sqrt{N} \leq M_N(\mathbf{a}) \leq N$, and for random \mathbf{a} , $\sqrt{N} \leq M_N(\mathbf{a}) \leq \sqrt{N \log N}$. Shapiro, 1951, showed that the R-S sequence also satisfied $\sqrt{N} \leq M_N(\mathbf{a}) \leq 5\sqrt{N}$. A sequence $(a_n)_{n\geq 0}$ is *k*-automatic if there is a DFAO whose output is a_n when fed the base-*k* digits of *n*.

Cobham [1972] was the first to systematically study k-automatic sequences.

Cobham [1972] was the first to systematically study *k*-automatic sequences. Let A be a finite alphabet.

If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Cobham [1972] was the first to systematically study *k*-automatic sequences. Let A be a finite alphabet.

If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0,1\} \to \{0,1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution.

Cobham [1972] was the first to systematically study *k*-automatic sequences. Let A be a finite alphabet.

If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0,1\} \rightarrow \{0,1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$,

Cobham [1972] was the first to systematically study *k*-automatic sequences. Let A be a finite alphabet.

If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0,1\} \rightarrow \{0,1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$,

 $T = \lim_{n \to \infty} \theta^n(0) = 0110100110010110\dots$ satisfies $\theta(T) = T$.

Cobham [1972] was the first to systematically study *k*-automatic sequences. Let A be a finite alphabet.

If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0,1\} \rightarrow \{0,1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$,

 $T = \lim_{n \to \infty} \theta^n(0) = 0110100110010110\dots$ satisfies $\theta(T) = T$.

A fixed point for θ is an infinite sequence **u** such that $\theta(\mathbf{u}) = \mathbf{u}$.

Cobham [1972] was the first to systematically study *k*-automatic sequences. Let A be a finite alphabet.

If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0,1\} \rightarrow \{0,1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$,

 $T = \lim_{n \to \infty} \theta^n(0) = 0110100110010110\dots$ satisfies $\theta(T) = T$.

A fixed point for θ is an infinite sequence **u** such that $\theta(\mathbf{u}) = \mathbf{u}$. Defining a 2-DFAO with θ ,

Cobham [1972] was the first to systematically study *k*-automatic sequences. Let A be a finite alphabet.

If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0,1\} \rightarrow \{0,1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$,

 $T = \lim_{n \to \infty} \theta^n(0) = 0110100110010110\dots$ satisfies $\theta(T) = T$.

A fixed point for θ is an infinite sequence **u** such that $\theta(\mathbf{u}) = \mathbf{u}$. Defining a 2-DFAO with θ ,

Cobham [1972] was the first to systematically study *k*-automatic sequences. Let A be a finite alphabet.

If $\theta : \mathcal{A} \to \mathcal{A}^k$, we call θ a length k substitution. We can extend θ to act on any finite or infinite word, by concatenation.

Example (Thue-Morse substitution)

Let $\theta : \{0,1\} \rightarrow \{0,1\}^2$ be defined by $\theta(0) = 01$, and $\theta(1) = 10$; θ is the Thue-Morse substitution. Then $\theta^2(0) = \theta(01) = \theta(0)\theta(1) = 0110$,

 $T = \lim_{n \to \infty} \theta^n(0) = 0110100110010110\dots$ satisfies $\theta(T) = T$.

A fixed point for θ is an infinite sequence **u** such that $\theta(\mathbf{u}) = \mathbf{u}$. Defining a 2-DFAO with θ ,

we see that $T_n = ($ number of 1s in the binary representation of $n) \mod 2$.

Theorem (Cobham 1972)

Let $k \ge 2$. Then $\mathbf{a} = (a_n)_{n\ge 0}$ is k-automatic if and only if \mathbf{a} is the image, under a coding, of a fixed point of a substitution of length k.

Example

The Rudin Shapiro sequence **a** is the *coding* of the fixed point of the substitution $\theta(a) = ab$, $\theta(b) = ac$, $\theta(c) = bd$ and $\theta(d) = da$, with the coding $\tau(a) = \tau(b) = 1$, $\tau(c) = \tau(d) = -1$.

The k-kernel of the sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is defined to be

$$Ker_k(\mathbf{a}) := \{(a_{k^j n + \ell})_n : j \in \mathbb{N}, 0 \le \ell < k^j\}.$$

The k-kernel of the sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is defined to be

$$Ker_k(\mathbf{a}) := \{ (a_{k^j n + \ell})_n : j \in \mathbb{N}, 0 \le \ell < k^j \}.$$

Theorem (Eilenberg 1974)

The sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is k-automatic if and only if $Ker_k(\mathbf{a})$ is finite.

The k-kernel of the sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is defined to be

$$\mathit{Ker}_k(\mathbf{a}) := \{(a_{k^j n + \ell})_n : j \in \mathbb{N}, 0 \le \ell < k^j\}.$$

Theorem (Eilenberg 1974)

The sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is k-automatic if and only if $Ker_k(\mathbf{a})$ is finite.

Example

The 2-kernel of the Thue-Morse sequence $T = (T_n)_{n \ge 0}$ consists of two sequences: T and $T + 1 \mod 2$, since we have

$$T_{2n} = T_n \text{ and } T_{2n+1} = T_n + 1 \mod 2,$$

and now apply recursion to show $(T_{2^{j}n+\ell})_{n}$ is either T or $T+1 \mod 2$.

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements.

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively.

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively. Given a sequence $\mathbf{a} = (a_n)_{n \ge 0}$, let $A(x) = \sum_{n \ge 0} a_n x^n$.

Theorem (Christol, Kamae, Mendès-France and Rauzy 1980)

Let $(a_n)_{n\geq 0}$ be a sequence of elements in \mathbb{F}_q . Then $(a_n)_{n\geq 0}$ is p-automatic if and only if $A(x) = \sum_{n=0}^{\infty} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively. Given a sequence $\mathbf{a} = (a_n)_{n \ge 0}$, let $A(x) = \sum_{n \ge 0} a_n x^n$.

Theorem (Christol, Kamae, Mendès-France and Rauzy 1980)

Let $(a_n)_{n\geq 0}$ be a sequence of elements in \mathbb{F}_q . Then $(a_n)_{n\geq 0}$ is p-automatic if and only if $A(x) = \sum_{n=0}^{\infty} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Example

The Thue-Morse sequence's generating function is a root of $P(x, y) = (1 + x)^3 y^2 + (1 + x)^2 y + x$.

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively. Given a sequence $\mathbf{a} = (a_n)_{n \ge 0}$, let $A(x) = \sum_{n \ge 0} a_n x^n$.

Theorem (Christol, Kamae, Mendès-France and Rauzy 1980)

Let $(a_n)_{n\geq 0}$ be a sequence of elements in \mathbb{F}_q . Then $(a_n)_{n\geq 0}$ is p-automatic if and only if $A(x) = \sum_{n=0}^{\infty} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Example

The Thue-Morse sequence's generating function is a root of $P(x, y) = (1 + x)^3 y^2 + (1 + x)^2 y + x.$

Theorem (Furstenberg 1967)

Let $(a_n)_{n\geq 0}$ be a sequence in \mathbb{F}_q . Then A(x) is algebraic if and only if A(x) is the diagonal of a rational function $A(x) = \mathcal{D}(\frac{P(x,y)}{Q(x,y)})$ in $\mathbb{F}_q(x,y)$.

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata

7 / 20

Let \mathbb{F}_q denote the finite field with $q = p^n$ elements. Recall definitions of $\mathbb{F}_q[t], \mathbb{F}_q(t), \mathbb{F}_q[[t]]$, and $\mathbb{F}_q((t))$: polynomials, rational functions, formal power series, formal Laurent series with coefficients in \mathbb{F}_q respectively. Given a sequence $\mathbf{a} = (a_n)_{n \ge 0}$, let $A(x) = \sum_{n \ge 0} a_n x^n$.

Theorem (Christol, Kamae, Mendès-France and Rauzy 1980)

Let $(a_n)_{n\geq 0}$ be a sequence of elements in \mathbb{F}_q . Then $(a_n)_{n\geq 0}$ is p-automatic if and only if $A(x) = \sum_{n=0}^{\infty} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Example

The Thue-Morse sequence's generating function is a root of $P(x, y) = (1 + x)^3 y^2 + (1 + x)^2 y + x.$

Theorem (Furstenberg 1967)

Let $(a_n)_{n\geq 0}$ be a sequence in \mathbb{F}_q . Then A(x) is algebraic if and only if A(x) is the diagonal of a rational function $A(x) = \mathcal{D}(\frac{P(x,y)}{Q(x,y)})$ in $\mathbb{F}_q(x,y)$.

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata

7 / 20

Let \mathcal{A} a finite alphabet. The shift map $\sigma : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is defined as $(\sigma(x))_n := x_{n+1}$. Let $X \subset \mathcal{A}^{\mathbb{Z}}$ be a closed, σ -invariant set. Then (X, σ) is called a *shift*.

Let \mathcal{A} a finite alphabet. The shift map $\sigma : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is defined as $(\sigma(x))_n := x_{n+1}$. Let $X \subset \mathcal{A}^{\mathbb{Z}}$ be a closed, σ -invariant set. Then (X, σ) is called a *shift*.

A cellular automaton is a continuous map $\Phi : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ such that $\Phi \circ \sigma = \sigma \circ \Phi$.

Let \mathcal{A} a finite alphabet. The shift map $\sigma : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is defined as $(\sigma(x))_n := x_{n+1}$. Let $X \subset \mathcal{A}^{\mathbb{Z}}$ be a closed, σ -invariant set. Then (X, σ) is called a *shift*.

A cellular automaton is a continuous map $\Phi : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ such that $\Phi \circ \sigma = \sigma \circ \Phi$.

A cellular automaton with memory d is a continuous, σ -commuting map $\Phi : (\mathcal{A}^{\mathbb{Z}})^d \to \mathcal{A}^{\mathbb{Z}}$.

Here by memory we mean a *time memory*.

Let \mathcal{A} a finite alphabet. The shift map $\sigma : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is defined as $(\sigma(x))_n := x_{n+1}$. Let $X \subset \mathcal{A}^{\mathbb{Z}}$ be a closed, σ -invariant set. Then (X, σ) is called a *shift*.

A cellular automaton is a continuous map $\Phi : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ such that $\Phi \circ \sigma = \sigma \circ \Phi$.

A cellular automaton with memory *d* is a continuous, σ -commuting map $\Phi : (\mathcal{A}^{\mathbb{Z}})^d \to \mathcal{A}^{\mathbb{Z}}$.

Here by memory we mean a time memory.

The Curtis–Hedlund–Lyndon theorem tells us that Φ is a cellular automaton with memory d iff there is a local rule $\phi : (\mathcal{A}^d)^{\ell+r+1} \to \mathcal{A}$ such that for all $R \in (\mathcal{A}^{\mathbb{Z}})^d$ and all $m \in \mathbb{Z}$,

$$(\Phi(R))(m) = \phi(R(m-\ell), R(m-\ell+1), \dots, R(m+r)).$$
 (1)

If $\Phi : (\mathcal{A})^{\mathbb{Z}})^d \to \mathcal{A}^{\mathbb{Z}}$ is a cellular automaton with memory d, then a *spacetime diagram* for Φ with initial conditions R_0, \ldots, R_{d-1} is the sequence $(R_n)_{n\geq 0}$ where we inductively define $R_n := \Phi(R_{n-d}, \ldots, R_{n-1})$ for $n \geq d$.

If $\Phi : (\mathcal{A})^{\mathbb{Z}})^d \to \mathcal{A}^{\mathbb{Z}}$ is a cellular automaton with memory d, then a *spacetime diagram* for Φ with initial conditions R_0, \ldots, R_{d-1} is the sequence $(R_n)_{n\geq 0}$ where we inductively define $R_n := \Phi(R_{n-d}, \ldots, R_{n-1})$ for $n \geq d$.

If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{\ell+r+1}$ and \mathbb{F}_q are \mathbb{F}_q -vector spaces, we say that the CA $\Phi : \mathbb{F}_q^{\mathbb{Z}} \to \mathbb{F}_q^{\mathbb{Z}}$ is linear if Φ is an \mathbb{F}_q -linear map.

10 / 20

If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{\ell+r+1}$ and \mathbb{F}_q are \mathbb{F}_q -vector spaces, we say that the CA $\Phi : \mathbb{F}_q^{\mathbb{Z}} \to \mathbb{F}_q^{\mathbb{Z}}$ is linear if Φ is an \mathbb{F}_q -linear map.

Example

Let d = 1, $\ell = 0$, r = 1, $\mathcal{A} = \mathbb{F}_2$; then the local rule $\phi(a, b) = a + b$ defines the Ledrappier CA.

If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{\ell+r+1}$ and \mathbb{F}_q are \mathbb{F}_q -vector spaces, we say that the CA $\Phi : \mathbb{F}_q^{\mathbb{Z}} \to \mathbb{F}_q^{\mathbb{Z}}$ is linear if Φ is an \mathbb{F}_q -linear map.

Example

Let d = 1, $\ell = 0$, r = 1, $\mathcal{A} = \mathbb{F}_2$; then the local rule $\phi(a, b) = a + b$ defines the Ledrappier CA.

Suppose that we start with a "random" initial configuration $x = R_0$, and generate a spacetime diagam $y = (R_n)_{n \in \mathbb{Z}}$. As $n \to \infty$, what are the rows R_n random for?

If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{\ell+r+1}$ and \mathbb{F}_q are \mathbb{F}_q -vector spaces, we say that the CA $\Phi : \mathbb{F}_q^{\mathbb{Z}} \to \mathbb{F}_q^{\mathbb{Z}}$ is linear if Φ is an \mathbb{F}_q -linear map.

Example

Let d = 1, $\ell = 0$, r = 1, $\mathcal{A} = \mathbb{F}_2$; then the local rule $\phi(a, b) = a + b$ defines the Ledrappier CA.

Suppose that we start with a "random" initial configuration $x = R_0$, and generate a spacetime diagam $y = (R_n)_{n \in \mathbb{Z}}$. As $n \to \infty$, what are the rows R_n random for?

Theorem (Pivato, Y, 2001)

Let $\mathcal{A} = \mathbb{Z}/p\mathbb{Z}$, and let $\Phi : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ be a linear cellular automaton. Let μ be a fully supported N-step Markov measure. Then $\Phi^n \mu$ converges in density to Haar measure.

イロト 不得下 イヨト イヨト

If $\mathcal{A} = \mathbb{F}_q$, then $(\mathbb{F}_q^d)^{\ell+r+1}$ and \mathbb{F}_q are \mathbb{F}_q -vector spaces, we say that the CA $\Phi : \mathbb{F}_q^{\mathbb{Z}} \to \mathbb{F}_q^{\mathbb{Z}}$ is linear if Φ is an \mathbb{F}_q -linear map.

Example

Let d = 1, $\ell = 0$, r = 1, $\mathcal{A} = \mathbb{F}_2$; then the local rule $\phi(a, b) = a + b$ defines the Ledrappier CA.

Suppose that we start with a "random" initial configuration $x = R_0$, and generate a spacetime diagam $y = (R_n)_{n \in \mathbb{Z}}$. As $n \to \infty$, what are the rows R_n random for?

Theorem (Pivato, Y, 2001)

Let $\mathcal{A} = \mathbb{Z}/p\mathbb{Z}$, and let $\Phi : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ be a linear cellular automaton. Let μ be a fully supported N-step Markov measure. Then $\Phi^n \mu$ converges in density to Haar measure.

What happens if we start with a nonrandom initial configuration?

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata

Spacetime diagrams of LCA with periodic initial conditions

Theorem (Litow and Dumas, 1993

A sequence of elements in \mathbb{F}_q is p-automatic if and only if it is a column in the spacetime diagram of a linear cellular automaton with memory over \mathbb{F}_q whose initial conditions are eventually periodic in both directions.

Spacetime diagrams of LCA with periodic initial conditions

Theorem (Litow and Dumas, 1993)

A sequence of elements in \mathbb{F}_q is p-automatic if and only if it is a column in the spacetime diagram of a linear cellular automaton with memory over \mathbb{F}_q whose initial conditions are eventually periodic in both directions.

Figure : Spacetime diagram of a linear cellular automaton with memory 12 containing the Thue–Morse sequence as a column.

June 5th 2018 11 / 20

Example: The Rudin-Shapiro sequence

Figure : Spacetime diagram of a linear cellular automaton with memory 20 containing the Rudin–Shapiro sequence as a column.

12 / 20

Example: The Baum-Sweet sequence

Figure : Spacetime diagram of a linear cellular automaton with memory 27 containing the Baum–Sweet sequence as a column.

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata J

Christol's theorem tells us that if a sequence is *p*-automatic, then its FPS is algebraic over $\mathbb{F}_q(x)$.

Christol's theorem tells us that if a sequence is *p*-automatic, then its FPS is algebraic over $\mathbb{F}_q(x)$.

Furstenberg's theorem tells us that if a FPS is algebraic over $\mathbb{F}_q(x)$, then it is the diagonal of a rational Laurent series in two variables over that field.

Christol's theorem tells us that if a sequence is *p*-automatic, then its FPS is algebraic over $\mathbb{F}_q(x)$.

Furstenberg's theorem tells us that if a FPS is algebraic over $\mathbb{F}_q(x)$, then it is the diagonal of a rational Laurent series in two variables over that field. Thus if (u_n) is *p*-automatic, then (u_n) can be realized as the diagonal of a quarter-lattice array of elements in \mathbb{F}_q which is the formal power series expansion of $E(t, x) = \frac{P(t, x)}{Q(t, x)}$, where $P, Q \in \mathbb{F}_q[t, x]$.

Christol's theorem tells us that if a sequence is *p*-automatic, then its FPS is algebraic over $\mathbb{F}_q(x)$.

Furstenberg's theorem tells us that if a FPS is algebraic over $\mathbb{F}_q(x)$, then it is the diagonal of a rational Laurent series in two variables over that field. Thus if (u_n) is *p*-automatic, then (u_n) can be realized as the diagonal of a quarter-lattice array of elements in \mathbb{F}_q which is the formal power series expansion of $E(t, x) = \frac{P(t,x)}{Q(t,x)}$, where $P, Q \in \mathbb{F}_q[t,x]$. Heuristic: Rotate this quarter array clockwise so that (u_n) shows up as a column in this diagram, and, under suitable choice of the polynomials, show that you end up with the space-time diagram of a linear cellular automaton with memory.

Christol's theorem tells us that if a sequence is *p*-automatic, then its FPS is algebraic over $\mathbb{F}_q(x)$.

Furstenberg's theorem tells us that if a FPS is algebraic over $\mathbb{F}_q(x)$, then it is the diagonal of a rational Laurent series in two variables over that field. Thus if (u_n) is *p*-automatic, then (u_n) can be realized as the diagonal of a quarter-lattice array of elements in \mathbb{F}_q which is the formal power series expansion of $E(t, x) = \frac{P(t,x)}{Q(t,x)}$, where $P, Q \in \mathbb{F}_q[t, x]$. Heuristic: Rotate this quarter array clockwise so that (u_n) shows up as a column in this diagram, and, under suitable choice of the polynomials, show that you end up with the space-time diagram of a linear cellular automaton with memory.

In particular the proof of Furstenberg's theorem implies that if (u_n) is automatic, $u_0 = 0$, P(t, F(t))=0 and $P_x(0,0) = \frac{\partial P(t,x)}{\partial x}|_{(0,0)} \neq 0$, then F(t) is the "-2 column" of

$$\frac{P_x(t,x)}{P(t,x)}$$

ヘロト 不得下 不可下 不可下

If $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$, define $X_{\mathbf{u}} := \overline{\{\sigma^n(\mathbf{u}) : \mathbf{n} \in \mathbb{N}\}}$. The dynamical system $(X_{\mathbf{u}}, \sigma)$ is called the (one-sided) subshift associated with \mathbf{u} .

э

If $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$, define $X_{\mathbf{u}} := \overline{\{\sigma^n(\mathbf{u}) : \mathbf{n} \in \mathbb{N}\}}$. The dynamical system $(X_{\mathbf{u}}, \sigma)$ is called the (one-sided) subshift associated with \mathbf{u} .

Corollary

Let **u** be p-automatic. Then $(X_{\mathbf{u}}, \sigma)$ is a factor of a subsystem of some linear cellular automaton $((\mathbb{F}_q^d)^{\mathbb{Z}}, \Phi)$.

June 5th 2018 15

15 / 20

Theorem (basic model, Allouche, von Haeseler, Peitgen, Skordev 1992-2003)

Suppose that we start with a sequence u in $\mathbb{F}_p^{\mathbb{Z}}$ which has finitely many nonzero entries. Let $\Phi : \mathbb{F}_p^{\mathbb{Z}} \to \mathbb{F}_p^{\mathbb{Z}}$ be a linear cellular automaton with no right radius. Then the spacetime diagram $ST_{\Phi}(u)$ is a p-automatic two dimensional configuration.

Rowland-Y: Any one-dimensional *p*-automatic sequence can be realised as a column in a spacetime diagram with an eventually periodic initial condition.

Rowland-Y: Any one-dimensional *p*-automatic sequence can be realised as a column in a spacetime diagram with an eventually periodic initial condition. Allouche, von Haeseler, Peitgen, Skordev: Any finite initial condition from \mathbb{F}_p and a zero-anticipation linear cellular automaton generates a two-dimensional *p*-automatic sequence.

Rowland-Y: Any one-dimensional *p*-automatic sequence can be realised as a column in a spacetime diagram with an eventually periodic initial condition. Allouche, von Haeseler, Peitgen, Skordev: Any finite initial condition from \mathbb{F}_p and a zero-anticipation linear cellular automaton generates a two-dimensional *p*-automatic sequence.

What happens if we move up a level of complexity in the initial conditions, and we take an initial configuration which is not eventually periodic, but *p*-automatic?

Theorem (Rowland-Y. 2018)

Let $\Phi : \mathbb{F}_p^{\mathbb{Z}} \to \mathbb{F}_p^{\mathbb{Z}}$ be a linear cellular automaton. If $u \in \mathbb{F}_p^{\mathbb{Z}}$ is such that $(u_m)_{m \in \mathbb{N}}$ is p-automatic and $u_m = 0$ for $m \leq -1$, then $ST_{\Phi}(u)$ is two-dimensional p-automatic.

Theorem (Rowland-Y. 2018)

Let $\Phi : \mathbb{F}_p^{\mathbb{Z}} \to \mathbb{F}_p^{\mathbb{Z}}$ be a linear cellular automaton. If $u \in \mathbb{F}_p^{\mathbb{Z}}$ is such that $(u_m)_{m \in \mathbb{N}}$ is p-automatic and $u_m = 0$ for $m \leq -1$, then $ST_{\Phi}(u)$ is two-dimensional p-automatic.

The 2-automatic $ST_{\Phi}(u)$ for a cellular automaton with generating polynomial $\phi(x) = x^{-1} + x^{-3} + x^{-7}$. The left half of initial condition $u \in \mathbb{F}_2^{\mathbb{Z}}$ is identically 0, and the right half is the Thue-Morse sequence. Reem Yassawi (UCBL, France) Substitutions and linear cellular automate June 5th 2018 18 / 201

Corollary (Rowland-Y. 2018)

Let $\Phi : \mathbb{F}_p^{\mathbb{Z}} \to \mathbb{F}_p^{\mathbb{Z}}$ be a linear cellular automaton. If $u \in \mathbb{F}_p^{\mathbb{Z}}$ is such that both $(u_m)_{m \in \mathbb{N}}$ and $(u_{-m})_{m \in \mathbb{N}}$ are p-automatic, then the left half and the right half of $ST_{\Phi}(u)$ are each two-dimensional p-automatic.

 $ST_{\Phi}(u)$ for a cellular automaton with generating polynomial $\phi(x) = x + 1 + x^{-1}$, where the left half of initial condition $u \in \mathbb{F}_2^{\mathbb{Z}}$ is the reflection of the Toeplitz sequence, and the right half is the Thue–Morse

sequence.

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata

Reem Yassawi (UCBL, France) Substitutions and linear cellular automata

Image: A matrix and a matrix

3

Work in Progress

When is $ST_{\Phi}(u)$ uniformly, or not uniformly recurrent? (conditions on Φ and u)

Which 2-dimensional automatic sequences can be realised as $ST_{\Phi}(u)$? When are the "solid triangles" purely a facet of the Lucas-*p* property?

What are conditions that give nontrivial measures μ which are asymptotically randomised by Φ ? Reem Yassawi (UCBL, France) Substitutions and linear cellular automata

June 5th 2018

20 / 20