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Some clarifications, added after talk:

In this talk I explained how one may arrive at a notion of an aperiodic space group,
through topology, in particular through the study of homotopical invariants of
associated moduli spaces of patterns. This was a later observation—with our original
and main goal being on the calculation of cohomological invariants—but one that I
thought would be of most interest at this conference.

This meant that, unfortunately, I had overlooked the notion of space group currently
used in the theory of quasicrystals. This is an important concept that has been in
regular usage for some decades, with several important mathematical developments
(such as classification theorems) as well as being of practical importance to
experimentalists.

The title of course was not any sort of statement on this standard usage of ‘space
group’ for quasicrystals, but rather simply the idea that the basic, classical definition
of the space group of a periodic pattern breaks down when applied to an aperiodic
pattern (slide 6), and that this talk discussed one approach (via topology) of how to
recover an interesting extension of this classical idea which applies to aperiodic
patterns too.

Given all of this, clearly the definition of the ‘space group’ of an aperiodic pattern as
used in this talk (and our paper) should be renamed. It would also be interesting to
connect the space pro-group here and the usual space group of a quasicrystal when
considering classes of patterns to which they both apply. After making some progress
on this, it appears that whilst the space pro-group here is more complicated and
captures extra information (which may or may not be a good thing, depending on the
intended application), there is a mechanism with which to compare these invariants.



Joint work with John Hunton, Durham University.

Paper on the arXiv (as of last Tuesday):

J. Hunton and J. Walton, Aperiodic space groups and the
topology of rotational tiling spaces.
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Periodic Patterns

Throughout, T ⊂ Rd is a ‘pattern’ (tiling/Delone set) with FLC.

If T is periodic then it is ‘essentially interchangeable’ (up to MLD)
with its space group:

Γ := {isometries of Rd preserving T},

with group operation given by composition of symmetries.

For example, in R2 there are 17 such wallpaper groups up to
isomorphism. In R3 there are 219 space groups up to
isomorphism.



Point group extension

In this talk, for simplicity, we will only consider orientation-preserving
isometries (i.e., rigid motions: translations + rotations).

The (positive) space group is an extension

Zd → Γ→ G

where G 6 SO(d) is the (positive) point group.

It is the group of ‘rotational parts’ of symmetries of T . E.g., for the
periodic tesselation of squares it’s Z/4.
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Hulls of aperiodic patterns

If T is aperiodic then Γ, as defined earlier, is woefully insufficient (T
doesn’t have many, if any, global symmetries!).

The structure of ‘almost symmetries’ of T can be captured, though, via
topology.

The translational hull:

Ωt := {tilings with same finite patches as T up to translation}

taken with the ‘obvious’ topology.

Example

If T is periodic then the hull consists only of translates of T and
Ωt
∼= Rd/Zd is a d-torus.
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Rotational hulls

The rotational hull:

Ωr := {tilings with same finite patches as T up to rigid motion}

(again, with ‘obvious’ topology).

Example

If T is periodic then Ωr is a manifold of dimension d+ d(d+ 1)/2...
whose topology depends on the rotational symmetries of T !

Example

If T is a Penrose tiling then Ωr is the space of ‘all Penrose tilings’,
constructed from rigid motions of Penrose rhombs fitting together
according to their matching rules.

Question: what do the topologies of the hulls tell us about the tilings?
What can we say about the topologies of the hulls?







Aperiodic point group

There is still a simple notion of the point group G:

Let g ∈ SO(d) be in the point group G if: whenever P is a finite patch
of T then g(P ) also belongs to T , up to a translation.

Example

If T is periodic then G coincides with the standard (positive) point
group.

Example

If T is a Penrose tiling then G ∼= Z/10 (but note: there is no Penrose
tiling with tenfold rotational symmetry).



One last hull

The rotation group G naturally acts on Ωt (by rotating tilings). The
quotient space Ωt/G has been considered before. We consider instead
the homotopy quotient:

ΩG := (Ωt × EG)/G.

Here, EG = contractible space equipped with free G-action.

Also known as the Borel construction. ‘Morally correct’ quotient for
the purposes of homotopy theory.



Spin point groups

We have the spin group Sp(d) given as the universal cover of SO(d).

For d = 2 it is the Z cover R q−→ S1.

For d > 2 the quotient Sp(d)
q−→ SO(d) is a Z/2 cover.

For d = 3, Sp(3) ∼= S3.

We can lift our finite point group G 6 SO(d) to G̃ 6 Sp(d). For
example, for d = 2: G ∼= Z/n and G̃ ∼= Z.

Remark

Sp(d) is convenient from the perspective of homotopy theory: it has
trivial π1 and π2.
For d = 3 the groups G̃ can be better behaved than G. The group
cohomology of G̃ is 4-periodic (but this need not be the case for G,
such as the icosahedral group).
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Homotopical invariants of periodic patterns

Theorem

Let T ⊂ Rd be periodic. Then there exists a natural isomorphism of
extensions (*):

π1(Ωt) π1(ΩG) G

Zd Γ G

∼= ∼=

Theorem

Let T ⊂ Rd be periodic. Then there exists a pullback of extensions:

π1(Ωt) π1(Ωr) G̃

Zd Γ G

∼= q
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So:

1 The space group can be recovered as the fundamental group of the
homotopy quotient ΩG.

2 The fundamental group of Ωr is the ‘spin version’ of Γ (a Z cover
for d = 2, Z/2 cover for d > 2).

What about for aperiodic patterns?

The space group Γ is no longer defined, but the spaces ΩG and Ωr still
are!

Unfortunately the fundamental group is not an appropriate invariant
to apply to an aperiodic tiling space; these are ‘pathological spaces’
(c.f., the Warsaw circle).

But shape theory gives us the correct replacement: the
pro-fundamental group πpro

1 (X).
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Homotopical invariants of aperiodic patterns
Theorem

We have an extension of pro-fundmental groups:

πpro
1 (Ωt)→ πpro

1 (ΩG)→ G

(≡ Zd → Γ→ G for T periodic.)

Theorem

We have a pull-back diagram of extensions of pro-fundamental groups:

πpro
1 (Ωt) πpro

1 (Ωr) G̃

πpro
1 (Ωt) πpro

1 (ΩG) G

q

Definition

We call πpro
1 (ΩG) the space pro-group, and denote it by Γpro.
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Aperiodic space groups

To get an honest group (rather than pro-group), we can pass to the
inverse limit:

Definition

We call the inverse limit Γ := lim←−Γpro the space group of T .

If T is fixed by the full point group (c.f., ‘symmorphic space groups’)
then Γ is an extension (in fact, a split one):

lim←−π
pro
1 (Ωt)→ Γ→ G.



We can calculate Γ precisely in some cases:

Example

Let T = Fibonacci3 ⊂ R3. Then Γ is the semi-direct product of
F2 ⊕ F2 ⊕ F2 and G = the rotational symmetries of a cube (we can
describe the action of G on (F2)3 precisely).

Example

If T ⊂ R2 is a canonical 3→ 2 cut and project tiling (a ‘stepped
surface’) then Γ is the semi-direct project of Z3 and Z/2 (with
non-trivial element acting by x 7→ −x).



Natural fibrations

These results come from some natural (and computationally useful!)
fibre-bundle descriptions of ΩG and Ωr, along with a useful network of
maps connecting them all.

For example: Ωr can be expressed as a fibre bundle:

Ωt → Ωr → SO(d)/G.

These can be useful for cohomology calculations.



We can use the Serre spectral sequence, amongst some other technical
tricks, to compute the cohomology of the 6-manifold of placements of
the cube tessellation in R3:

Theorem

For T ⊂ R3 the periodic tessellation by unit cubes:

Hn(Ωr;Z) =



Z n = 0

0 n = 1

Z/2⊕ Z/2 n = 2

Z2 ⊕ Z/2⊕ Z/4 n = 3

Z/2⊕ Z/4 n = 4

Z/2⊕ Z/2 n = 5

Z n = 6

0 n > 6 .

We also have a calculation for a class of aperiodic examples
(Sturmian3s).



Summary/Further Work

Introduced a new hull ΩG naturally defined in the context of
rotations. We have found a useful system of fibre bundles relating
the topologies of the hulls Ωt, Ωr and ΩG.

Allows us to calculate cohomological invariants (our original goal).
Calculations for Ωr now within reach for 3d tilings (would be nice
to now try an icosahedral example).

Applying all of this to homotopical invariants naturally leads us to
a new notion of space (pro-)group, extending the definition from
the periodic case (question: any correspondence with other current
such notions?).

Cohomology calculations in dimensions > 2 depend heavily on the
group cohomology of G. What are these invariants telling us?
(what about H1? Shape changes?)

Computer aided calculations for substitution tilings/cut and
project tilings?
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