Tiling Cohomology
and Quasiperiodic Baked Goods

Lorenzo Sadun
University of Texas

June 8, 2018
Table of Contents

1 Motivation
2 Tiling spaces
3 Inverse limits
4 Pattern-Equivariant Cohomology
5 Shape changes
6 Topological conjugacies
7 Top cohomology, transport, and ergodic averages
Three key questions

For every mathematical concept:

- What is it?
Three key questions

For every mathematical concept:

- What is it?
- How do you compute it?
Three key questions

For every mathematical concept:

- What is it?
- How do you compute it?
- Why in blazes should you care?
Puzzle 1: Mass transport
Musical chairs
Three different mass distributions

- f_1 puts 2 kg on every tile that sits in the standard L configuration, i.e. missing the northeast corner, and no mass on the other three kinds of tiles.
- f_2 puts 1 kg on every tile that is missing a NE or SW corner, and none on tiles that are missing NW or SE corners.
- f_3 puts 1 kg on every tile that is missing a NW or SE corner, and none on tiles that are missing NE or SW corners.
Three different mass distributions

- f_1 puts 2 kg on every tile that sits in the standard L configuration, i.e. missing the northeast corner, and no mass on the other three kinds of tiles.
- f_2 puts 1 kg on every tile that is missing a NE or SW corner, and none on tiles that are missing NW or SE corners.
- f_3 puts 1 kg on every tile that is missing a NW or SE corner, and none on tiles that are missing NE or SW corners.
- All three distributions have overall density 0.5 kg/tile. Which are related by bounded/wPE/sPE transport?
2 kg on the NE chairs
1 kg on the NE and SW chairs
1 kg on the NW and SE chairs
Puzzle 2: Fibonacci shape changes

How are these tilings related? How do their diffraction patterns compare?
Puzzle 3: Penrose shape changes
Rational Penrose

180 Tiles
Squared off Penrose

180 Tiles
Puzzle 4: Ergodic averages

Thue-Morse tiling: $A \rightarrow AB$, $B \rightarrow BA$,

\[\ldots ABBABAAABBAABBAABBAABBA \cdots \]

What are the maximum/minimum number of times that the pattern ABA appears in a sub-word of length N? How does the variation scale with N?
Motivation

Tiling spaces

Inverse limits

Pattern-Equivariant Cohomology

Shape changes

Topological conjugacies

Top cohomology, transport, and ergodic averages

Table of Contents

1 Motivation
2 Tiling spaces
3 Inverse limits
4 Pattern-Equivariant Cohomology
5 Shape changes
6 Topological conjugacies
7 Top cohomology, transport, and ergodic averages
F LC tiling metric

Idea for FLC tilings: Two tilings with the same set of tile types are ϵ close if they agree on $B_{1/\epsilon}$, up to an ϵ translation.
FLC tiling metric

- Idea for FLC tilings: Two tilings with the same set of tile types are ϵ close if they agree on $B_{1/\epsilon}$, up to an ϵ translation.
- If you want to allow rotations, shears, or an infinite variety of tile types, it’s a little more complicated.
Idea for FLC tilings: Two tilings with the same set of tile types are ε close if they agree on $B_{1/\varepsilon}$, up to an ε translation.

If you want to allow rotations, shears, or an infinite variety of tile types, it’s a little more complicated.

(We won’t go there)
Simplest way to build a tiling space:

- Start with an FLC tiling T.

Continuous Hulls
Simplest way to build a tiling space:

- Start with an FLC tiling T.
- Consider the set $\{T - x\}$ of translates of T.
Simplest way to build a tiling space:

- Start with an FLC tiling T.
- Consider the set $\{T - x\}$ of translates of T.
- $\Omega_T = \{T - x\}$. $T' \in \Omega_T$ iff every patch of T' appears somewhere in T.
- Orbit closure of $T = \text{Tiling space of } T = \text{Continuous hull of } T$.
Hulls of periodic tilings

What is Ω_T?
Hulls of periodic tilings

What is Ω_T?

A torus!
A non-periodic example

\[T = \ldots AAAAA.BBBB\ldots = A^\infty.B^\infty. \]

What is \(\Omega_T \)?
A non-periodic example

\[T = \ldots AAAAA.BBBB \ldots \text{“=” } A^\infty . B^\infty. \]

What is \(\Omega_T \)?

- Orbit of \(T \) is copy of \(\mathbb{R} \).
A non-periodic example

\[T = \ldots AAAAA.BBBBB\ldots \quad "\Rightarrow\quad A^\infty.B^\infty.\]

What is \(\Omega_T \)?

- Orbit of \(T \) is copy of \(\mathbb{R} \).
- As \(x \to -\infty \), \(T - x \) approaches periodic \(\ldots AAAAA\ldots \) tiling. Limiting circle.
A non-periodic example

\[T = \ldots AAAA.BBBB \ldots = A^\infty.B^\infty. \]

What is \(\Omega_T \)?

- Orbit of \(T \) is copy of \(\mathbb{R} \).
- As \(x \to -\infty \), \(T - x \) approaches periodic \(\ldots AAAA \ldots \) tiling. Limiting circle.
- As \(x \to \infty \), \(T - x \) approaches periodic \(\ldots BBBBB \ldots \) tiling. Limiting circle.
A non-periodic example

\[T = \ldots AAAAA.BBBB \ldots \ "=\" A^\infty.B^\infty. \]

What is \(\Omega_T \)?

- Orbit of \(T \) is copy of \(\mathbb{R} \).
- As \(x \to -\infty \), \(T - x \) approaches periodic \(\ldots AAAAA \ldots \) tiling. Limiting circle.
- As \(x \to \infty \), \(T - x \) approaches periodic \(\ldots BBBBB \ldots \) tiling. Limiting circle.
- Hull = slinky! Connected but not path-connected.
If T is a tiling, what does an ϵ-neighborhood of T in Ω_T look like?
If T is a tiling, what does an ϵ-neighborhood of T in Ω_T look like?

- Restrict T to $B_{1/\epsilon}$.
- Move T by up to ϵ: continuous degrees of freedom.
- Fill out near ∞. Discrete choices.
- Neighborhood $\sim B_\epsilon \times C$.
Table of Contents

1. **Motivation**
2. **Tiling spaces**
3. **Inverse limits**
4. **Pattern-Equivariant Cohomology**
5. **Shape changes**
6. **Topological conjugacies**
7. **Top cohomology, transport, and ergodic averages**
Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps,

$$X = \lim \leftarrow X_i := \{(x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \\forall n\}.$$
Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps,

$$X = \varprojlim X_i := \{(x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \forall n\}.$$

X_n is called n-th approximant to X, since x_n determines (x_0, \ldots, x_n).

Lorenzo Sadun
Tiling Cohomology
Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps, then

$$X = \lim \leftarrow X_i := \{(x_0, x_1, \ldots) \in \prod X_n \mid \rho_n(x_n) = x_{n-1} \forall n\}.$$

X_n is called the n-th **approximant** to X, since x_n determines (x_0, \ldots, x_n).

X has the product topology. (x_0, x_1, \ldots) is close to (y_0, y_1, \ldots) if $x_i \approx y_i$ for all $i \leq N$. I.e. if $x_N \approx y_N$.

Motivation

Tiling spaces

Inverse limits

Pattern-Equivariant Cohomology

Shape changes

Topological conjugacies

Top cohomology, transport, and ergodic averages

Lorenzo Sadun
Tiling Cohomology
Dyadic Solenoid

Example of inverse limit space. Take

\[X_n = \mathbb{R}/(2^n \mathbb{Z}) \sim S^1. \]
Example of inverse limit space. Take

- $X_n = \mathbb{R}/(2^n \mathbb{Z}) \cong S^1$.
- ρ_n induced by identity on \mathbb{R}. Winds X_n twice around X_{n-1}.
Example of inverse limit space. Take

- $X_n = \mathbb{R}/(2^n \mathbb{Z}) \simeq S^1$.
- ρ_n induced by identity on \mathbb{R}. Winds X_n twice around X_{n-1}.

Diagram:

- Γ_0
- Γ_1
- Γ_2
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, (mostly) same strategy.
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, (mostly) same strategy.
- $\lim\Gamma_n = $ consistent instructions for tiling bigger and bigger regions, i.e. instructions for a complete tiling.
Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, (mostly) same strategy.
- $\varprojlim \Gamma_n = $ consistent instructions for tiling bigger and bigger regions, i.e. instructions for a complete tiling.
- So how do instructions for partial tilings turn into a CW complex?!
Anderson-Putnam Complex

To place a tile at the origin, need:

Choice of tile type t_i.

Choice of point in t_i to associate with origin.

What if origin is on boundary of 2 (or more tiles)? Identify!

$\Gamma_0 = \biguplus_{t_i} / \sim$ is the Anderson-Putnam complex.
To place a tile at the origin, need:

- Choice of tile type t_i.

Anderson-Putnam Complex
To place a tile at the origin, need:

- Choice of tile type \(t_i \).
- Choice of point in \(t_i \) to associate with origin.
To place a tile at the origin, need:

- Choice of tile type t_i.
- Choice of point in t_i to associate with origin.
- What if origin is on boundary of 2 (or more tiles)? Identify!
To place a tile at the origin, need:
- Choice of tile type t_i.
- Choice of point in t_i to associate with origin.
- What if origin is on boundary of 2 (or more tiles)? Identify!
- $\Gamma_0 = \bigsqcup t_i / \sim$ is the Anderson-Putnam complex.
Motivation
Tiling spaces
Inverse limits
Pattern-Equivariant Cohomology
Shape changes
Topological conjugacies
Top cohomology, transport, and ergodic averages

Collared tiles

- Start with a tiling T.
- Equivalent tiles have same label and same pattern of immediate neighbors.
Collared tiles

- Start with a tiling T.
- Equivalent tiles have same label and same pattern of immediate neighbors.
- Equivalence classes are called **collared tiles**.
Collared tiles

- Start with a tiling T.
- Equivalent tiles have same label and same pattern of immediate neighbors.
- Equivalence classes are called **collared tiles**.
- Relabeling tiling with collared tiles is **local** operation. Does not change space.
Collared tiles

- Start with a tiling T.
- Equivalent tiles have same label and same pattern of immediate neighbors.
- Equivalence classes are called **collared tiles**.
- Relabeling tiling with collared tiles is **local** operation. Does not change space.
- Can be repeated to get n-times collared tiles.
Motivation
Tiling spaces
Inverse limits
Pattern-Equivariant Cohomology
Shape changes
Topological conjugacies
Top cohomology, transport, and ergodic averages

Collared Fibonacci

Fibonacci sequence in 1D contains

\[\ldots abaababaabaababaababa \ldots \]
Collared Fibonacci

Fibonacci sequence in 1D contains

\[\ldots abaabaabaababaabaababa\ldots \]

- Only one “b” collared tile: \(B = (a)b(a). \)
Collared Fibonacci

Fibonacci sequence in 1D contains

\[\ldots abaabaabaababaababaabaababa \ldots \]

- Only one “b” collared tile: \(B = (a)b(a) \).
- Three “a” collared tiles: \(A_1 = (b)a(b) \), \(A_2 = (a)a(b) \), \(A_3 = (b)a(a) \).
Collared Fibonacci

Fibonacci sequence in 1D contains

\[\ldots abaababaabaababaababa \ldots \]

- Only one “b” collared tile: \(B = (a)b(a) \).
- Three “a” collared tiles: \(A_1 = (b)a(b), A_2 = (a)a(b), A_3 = (b)a(a) \).
- Sequence becomes

\[\ldots BA_3A_2BA_1BA_3A_2BA_3A_2BA_1BA_3A_2BA_1B \ldots \]
Collared Fibonacci

Fibonacci sequence in 1D contains

\[\ldots abaababaaabababaabaababa \ldots \]

- Only one “b” collared tile: \(B = (a)b(a) \).
- Three “a” collared tiles: \(A_1 = (b)a(b), A_2 = (a)a(b), A_3 = (b)a(a) \).
- Sequence becomes

\[\ldots BA_3A_2BA_1BA_3A_2BA_3A_2BA_1BA_3A_2BA_1B \ldots \]

- Collared tiles have same size as regular tiles, but carry more info.
Gähler’s construction

Let Γ^n be the Anderson-Putnam complex of n-collared tiles.
Let Γ^n be the Anderson-Putnam complex of n-collared tiles. Point in Γ^n describes tile at origin plus nth nearest neighbors.
Let Γ^n be the Anderson-Putnam complex of n-collared tiles.

- Point in Γ^n describes tile at origin plus nth nearest neighbors.
- Edge identification can reduce that to $n - 1$. No sweat.
Gähler’s construction

- Let Γ^n be the Anderson-Putnam complex of n-collared tiles.
- Point in Γ^n describes tile at origin plus nth nearest neighbors.
- Edge identification can reduce that to $n-1$. No sweat.
- $\Omega = \varprojlim \Gamma^n$.

Motivation
- Tiling spaces
- Inverse limits
- Pattern-Equivariant Cohomology
- Shape changes
- Topological conjugacies
- Top cohomology, transport, and ergodic averages

Lorenzo Sadun
Tiling Cohomology
Gähler’s construction

- Let Γ^n be the Anderson-Putnam complex of n-collared tiles.
- Point in Γ^n describes tile at origin plus nth nearest neighbors.
- Edge identification can reduce that to $n - 1$. No sweat.
- $\Omega = \lim_{\leftarrow} \Gamma^n$.
- Conceptually very powerful idea. Great for proving theorems.
Gähler’s construction

- Let Γ^n be the Anderson-Putnam complex of n-collared tiles.
- Point in Γ^n describes tile at origin plus nth nearest neighbors.
- Edge identification can reduce that to $n - 1$. No sweat.
- $\Omega = \lim \Gamma^n$.
- Conceptually very powerful idea. Great for proving theorems.
- Calculationally not so much, since Γ^n’s are all different.
Substitution tilings

1-dimensional example (Fibonacci) : $a \rightarrow ab$, $b \rightarrow a$.
Substitution tilings

1-dimensional example (Fibonacci): $a \rightarrow ab, b \rightarrow a$.

- a
- ab
- $ab.a$
- $ab.a.ab$
- $ab.a.ab.ab.a$
- $ab.a.ab.ab.a.ab.a.ab$
Substitution tilings

1-dimensional example (Fibonacci): \(a \rightarrow ab, \ b \rightarrow a \).

- \(a \)
- \(ab \)
- \(ab.a \)
- \(ab.a.ab \)
- \(ab.a.ab.ab.a \)
- \(ab.a.ab.ab.a.ab.a.ab \)

A word is **legal** if it sits inside one of these patterns.
A bi-infinite word is legal if every sub-word is legal.
Make into self-similar tilings by assigning length \((1 + \sqrt{5})/2\) to \(a \) tile and 1 to \(b \) tile.
Anderson-Putnam inverse limits

- Applies to substitutions that “force the border”.

Let Γ_n be the Anderson-Putnam complex of n-supertiles. A point in Γ_n describes the n-supertile containing the origin. All Γ_n's are the same, up to scale. $\Omega = \lim \xleftarrow{-} (\Gamma_n, \sigma)$. One approximant. One expansive map. To get border forcing, collar once (if necessary).
Anderson-Putnam inverse limits

- Applies to substitutions that “force the border”.
- Let Γ^n be Anderson-Putnam complex of n-supertiles. A point in Γ^n describes the n-supertile containing the origin.
Anderson-Putnam inverse limits

- Applies to substitutions that “force the border”.
- Let Γ^n be Anderson-Putnam complex of n-supertiles. A point in Γ^n describes the n-supertile containing the origin.
- All Γ^n’s are the same, up to scale.
- $\Omega = \lim_{\rightarrow}(\Gamma, \sigma)$. One approximant. One expansive map.
Motivation
Tiling spaces
Inverse limits
Pattern-Equivariant Cohomology
Shape changes
Topological conjugacies
Top cohomology, transport, and ergodic averages

Anderson-Putnam inverse limits

- Applies to substitutions that “force the border”.
- Let Γ^n be Anderson-Putnam complex of n-supertiles. A point in Γ^n describes the n-supertile containing the origin.
- All Γ^n’s are the same, up to scale.
- $\Omega = \lim(\Gamma, \sigma)$. One approximant. One expansive map.
- To get border forcing, collar once (if necessary).
Other techniques

- Various tricks to collar as little as possible.
Other techniques

- Various tricks to collar as little as possible.
- Bellissard-Benedetti-Gambaudo. Aggregate collared tiles into large patches.
Other techniques

- Various tricks to collar as little as possible.
- Bellissard-Benedetti-Gambaudo. Aggregate collared tiles into large patches.
- (Forest-Hunton-Kellendonk have a different sort of inverse limit construction for cut-and-project tilings)
Other techniques

- Various tricks to collar as little as possible.
- Bellissard-Benedetti-Gambaudo. Aggregate collared tiles into large patches.
- (Forest-Hunton-Kellendonk have a different sort of inverse limit construction for cut-and-project tilings)
- Can express tilings with infinite local complexity as inverse limits, too. Details depend on setting.
Table of Contents

1 Motivation
2 Tiling spaces
3 Inverse limits
4 Pattern-Equivariant Cohomology
5 Shape changes
6 Topological conjugacies
7 Top cohomology, transport, and ergodic averages
Pattern-equivariant functions and forms

- Given a tiling T, a function $f(x)$ on \mathbb{R}^n is strongly pattern-equivariant (sPE) if $\exists R > 0$ s.t. x depends only on tiling on $B_R(x)$. (Think: finite range potentials)
- That is, if $T - x$ and $T - y$ agree on $B_R(0)$, then $f(x) = f(y)$.
Given a tiling T, a function $f(x)$ on \mathbb{R}^n is strongly pattern-equivariant (sPE) if $\exists R > 0$ s.t. x depends only on tiling on $B_R(x)$. (Think: finite range potentials)

That is, if $T - x$ and $T - y$ agree on $B_R(0)$, then $f(x) = f(y)$.

Weakly PE functions are uniform limits of sPE functions. For each $\epsilon > 0$ there is an R_ϵ s.t. $f(x)$ is determined to within ϵ by T on $B_{R_\epsilon}(x)$.
Given a tiling T, a function $f(x)$ on \mathbb{R}^n is strongly pattern-equivariant (sPE) if $\exists R > 0$ s.t. x depends only on tiling on $B_R(x)$. (Think: finite range potentials)

That is, if $T-x$ and $T-y$ agree on $B_R(0)$, then $f(x) = f(y)$.

Weakly PE functions are uniform limits of sPE functions. For each $\epsilon > 0$ there is an R_ϵ s.t. $f(x)$ is determined to within ϵ by T on $B_{R_\epsilon}(x)$.

Strongly/weakly PE forms are strongly/weakly PE functions times $dx^i \wedge dx^j \wedge \cdots$.

If α is a PE form, so is $d\alpha$.

$H^k_{\text{PE}}(T) = \text{closed sPE}_k$-forms / d(sPE$_{k-1}$ forms).
Pattern-equivariant functions and forms

- Given a tiling T, a function $f(x)$ on \mathbb{R}^n is **strongly pattern-equivariant** (sPE) if $\exists R > 0$ s.t. x depends only on tiling on $B_R(x)$. (Think: finite range potentials)
- That is, if $T - x$ and $T - y$ agree on $B_R(0)$, then $f(x) = f(y)$.
- Weakly PE functions are uniform limits of sPE functions. For each $\epsilon > 0$ there is an R_ϵ s.t. $f(x)$ is determined to within ϵ by T on $B_{R_\epsilon}(x)$.
- Strongly/weakly PE forms are strongly/weakly PE functions times $dx^i \wedge dx^j \wedge \cdots$.
- If α is a PE form, so is $d\alpha$.
Pattern-equivariant functions and forms

- Given a tiling \(T \), a function \(f(x) \) on \(\mathbb{R}^n \) is strongly pattern-equivariant (sPE) if \(\exists R > 0 \) s.t. \(x \) depends only on tiling on \(B_R(x) \). (Think: finite range potentials)
- That is, if \(T - x \) and \(T - y \) agree on \(B_R(0) \), then \(f(x) = f(y) \).
- Weakly PE functions are uniform limits of sPE functions. For each \(\epsilon > 0 \) there is an \(R_\epsilon \) s.t. \(f(x) \) is determined to within \(\epsilon \) by \(T \) on \(B_{R_\epsilon}(x) \).
- Strongly/weakly PE forms are strongly/weakly PE functions times \(dx^i \wedge dx^j \wedge \cdots \).
- If \(\alpha \) is a PE form, so is \(d\alpha \).
- \(H_{PE}^k(T) = \text{closed sPE } k\text{-forms} / d(\text{sPE } k-1\text{ forms}) \).
A tiling T gives a decomposition of \mathbb{R}^n into vertices, edges, 2-cells, 3-cells, etc. Tiles are n-cells. Orient the cells arbitrarily.

A (real-valued) k-cochain assigns a real number to each oriented k-cell. A mass distribution is just an n-cochain.

k-cochains can be sPE or wPE.

Coboundaries: If α is a k-cochain, and c is a $(k+1)$-cell, then $(\delta \alpha)(c) := \alpha(\partial c)$.

If α is wPE/sPE, so is $\delta \alpha$.

Let Ω^k_w and Ω^k_s denote the weakly and strongly PE k-cochains on T.

Lorenzo Sadun
Tiling Cohomology
A strongly PE cochain α is said to be

- Closed is $\delta \alpha = 0,$
A strongly PE cochain α is said to be

- Closed if $\delta \alpha = 0$,
- Exact if $\alpha = \delta \beta$ for some sPE cochain β,

where δ denotes the coboundary operator.
A strongly PE cochain α is said to be

- Closed if $\delta \alpha = 0$,
- Exact if $\alpha = \delta \beta$ for some sPE cochain β,
- Weakly exact if $\alpha = \delta \gamma$ for some wPE cochain γ.

$H^k_{\text{PE}}(T) =$ Closed k-cochains

Exact k-cochains (Same answer as with forms!)

A cohomology class is asymptotically negligible (AN) if it can be represented by a weakly exact cochain/form.
Strong PE cohomology

A strongly PE cochain α is said to be

- Closed is $\delta \alpha = 0$,
- Exact if $\alpha = \delta \beta$ for some sPE cochain β,
- Weakly exact if $\alpha = \delta \gamma$ for some wPE cochain γ.

$$H^k_{PE}(T) = \frac{\text{Closed } k\text{-cochains}}{\text{Exact } k\text{-cochains}}$$

(Same answer as with forms!)
A strongly PE cochain α is said to be
- Closed is $\delta \alpha = 0$,
- Exact if $\alpha = \delta \beta$ for some sPE cochain β,
- Weakly exact if $\alpha = \delta \gamma$ for some wPE cochain γ.

$$H^k_{PE}(T) = \frac{\text{Closed } k\text{-cochains}}{\text{Exact } k\text{-cochains}}$$ (Same answer as with forms!)

A cohomology class is *asymptotically negligible (AN)* if it can be represented by a weakly exact cochain/form.
Theorem (Kellendonk-Putnam, S)

If T is a repetitive tiling, then H^k_{PE} is canonically isomorphic to the k-th real-valued Čech cohomology $\check{H}^k(\Omega_T)$, where Ω_T is the continuous hull of T. In particular, all tilings in Ω_T have the same PE cohomology.
What the heck is Čech cohomology?!

- Complicated definition involving combinatorics of open covers.
What the heck is Čech cohomology?!

- Complicated definition involving combinatorics of open covers.
- TMI! Just need 2 key properties:
What the heck is Čech cohomology?!

- Complicated definition involving combinatorics of open covers.
- TMI! Just need 2 key properties:
 - If X is a CW complex, $\check{H}^*(X) = H^*(X)$.
 - If $X = \lim X_i$, $\check{H}^*(X) = \lim \check{H}^*(X_i)$.
What the heck is Čech cohomology?!

- Complicated definition involving combinatorics of open covers.
- TMI! Just need 2 key properties:
 - If X is a CW complex, $\tilde{H}^*(X) = H^*(X)$.
 - If $X = \lim X_i$, $\tilde{H}^*(X) = \lim \tilde{H}^*(X_i)$.
- Strategy: Write tiling space Ω as inverse limit of CW complexes Γ_i. Then
What the heck is Čech cohomology?!

- Complicated definition involving combinatorics of open covers.
- TMI! Just need 2 key properties:
 - If X is a CW complex, $\check{H}^*(X) = H^*(X)$.
 - If $X = \lim X_i$, $\check{H}^*(X) = \lim \check{H}^*(X_i)$.
- Strategy: Write tiling space Ω as inverse limit of CW complexes Γ_i. Then
 $$\check{H}^*(\Omega) = \lim \check{H}^*(\Gamma_i) = \lim H^*(\Gamma_i).$$
Complicated definition involving combinatorics of open covers.

TMI! Just need 2 key properties:
- If X is a CW complex, $\check{H}^*(X) = H^*(X)$.
- If $X = \varprojlim X_i$, $\check{H}^*(X) = \varprojlim \check{H}^*(X_i)$.

Strategy: Write tiling space Ω as inverse limit of CW complexes Γ_i. Then

$$\check{H}^*(\Omega) = \varprojlim \check{H}^*(\Gamma_i) = \varprojlim H^*(\Gamma_i).$$

But we already did that!
Motivation
Tiling spaces
Inverse limits
Pattern-Equivariant Cohomology
Shape changes
Topological conjugacies
Top cohomology, transport, and ergodic averages

Fibonacci

$H_1(\Gamma_n) = \mathbb{Z}_2$;
$H_1(\Omega) = \text{lim}(\mathbb{Z}_2, (1 1 1 0)) = \mathbb{Z}_2$.

Lorenzo Sadun

Tiling Cohomology
Motivation
Tiling spaces
Inverse limits
Pattern-Equivariant Cohomology
Shape changes
Topological conjugacies
Top cohomology, transport, and ergodic averages

Lorenzo Sadun
Tiling Cohomology

Fibonacci

\[H^1(\Gamma_n) = \mathbb{Z}^2; \quad H^1(\Omega) = \lim(\mathbb{Z}^2, (\begin{smallmatrix} 1 & 1 \\ 1 & 0 \end{smallmatrix})) = \mathbb{Z}^2. \]
Approximant has $H^1(\Gamma) = \mathbb{Z}^2$, $H^2(\Gamma) = \mathbb{Z}^3$.
Approximant has $H^1(\Gamma) = \mathbb{Z}^2$, $H^2(\Gamma) = \mathbb{Z}^3$.

Substitution acts as $\times 2$ on H^1, as matrix with eigenvalues $4, 2, 2$ on H^2.
Approximant has $H^1(\Gamma) = \mathbb{Z}^2$, $H^2(\Gamma) = \mathbb{Z}^3$.

Substitution acts as $\times 2$ on H^1, as matrix with eigenvalues 4, 2, 2 on H^2.

$H^1(\Omega) = \mathbb{Z}[1/2]^2$,

$H^2(\Omega) = \frac{1}{3} \mathbb{Z}[1/4] \oplus \mathbb{Z}[1/2]^2$.
Approximant has $H^1(\Gamma) = \mathbb{Z}^5$, $H^2(\Gamma) = \mathbb{Z}^8$.
Approximant has $H^1(\Gamma) = \mathbb{Z}^5$, $H^2(\Gamma) = \mathbb{Z}^8$.

Substitution acts by invertible matrices on both H^1 and H^2.
Approximant has $H^1(\Gamma) = \mathbb{Z}^5$, $H^2(\Gamma) = \mathbb{Z}^8$.

Substitution acts by invertible matrices on both H^1 and H^2.

$H^1(\Omega) = \mathbb{Z}^5$, $H^2(\Omega) = \mathbb{Z}^8$.
Table of Contents

1 Motivation
2 Tiling spaces
3 Inverse limits
4 Pattern-Equivariant Cohomology
5 Shape changes
6 Topological conjugacies
7 Top cohomology, transport, and ergodic averages
1D shape changes

Combinatorics of T_1 and T_2 are identical. Dynamics may be different. Some (but not all!) shape changes are topological conjugacies.
Combinatorics of T_1 and T_2 are identical.
1D shape changes

- Combinatorics of T_1 and T_2 are identical.
- Dynamics may be different.
1D shape changes

- Combinatorics of T_1 and T_2 are identical.
- Dynamics may be different.
- Some (but not all!) shape changes are topological conjugacies.
The shape of an n-gon is determined by the n vectors that describe the edges.
The shapes of all the tiles are given by:

- A vector for each edge of each species of tile, such that the vectors around a closed loop must add up to 0. If two tiles share an edge, their edge vectors must match. This is equivalent to a closed vector-valued 1-cochain on the Anderson-Putnam complex.
The shapes of all the tiles are given by:

- A vector for each edge of each species of tile, such that
 - The vectors around a closed loop must add up to 0.
 - If two tiles share an edge, their edge vectors must match.
Parametrizing shape

The shapes of all the tiles are given by:

- A vector for each edge of each species of tile, such that
 - The vectors around a closed loop must add up to 0.
 - If two tiles share an edge, their edge vectors must match.
- But that’s the same as a closed vector-valued 1-cochain on the Anderson-Putnam complex!
We are looking for results mod MLD.

- Can collar before assigning edge vectors, so different collared tiles can have different shape.
More generality with PE

We are looking for results mod MLD.

- Can collar before assigning edge vectors, so different collared tiles can have different shape.
- Consider closed vector-valued cochains on AP complex of any tiling obtained by repeatedly collaring T.
We are looking for results mod MLD.

- Can collar before assigning edge vectors, so different collared tiles can have different shape.
- Consider closed vector-valued cochains on AP complex of any tiling obtained by repeatedly collaring T.
- But that’s the same as a closed sPE cochain on T.
MLD equivalence moves each vertex x by $F(x)$, where $F : \mathbb{R}^n \to \mathbb{R}^n$ is an sPE function.
Modding out by MLD

- MLD equivalence moves each vertex x by $F(x)$, where $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is an sPE function.
- This changes vector of edge e by $F(y) - F(x) = \delta F(e)$.
- MLD changes induced by adding **exact** 1-cochains to shape.
MLD equivalence moves each vertex x by $F(x)$, where $F : \mathbb{R}^n \to \mathbb{R}^n$ is an sPE function.

This changes vector of edge e by $F(y) - F(x) = \delta F(e)$.

MLD changes induced by adding exact 1-cochains to shape.

$$\frac{\text{Shape changes}}{\text{MLD}} = \frac{\text{Closed sPE 1-cochains}}{\delta(\text{sPE 0-cochains})}$$

$$= H^1_{\text{PE}}(T, \mathbb{R}^n) = \tilde{H}^1(\Omega_T, \mathbb{R}^n).$$
Table of Contents

1 Motivation
2 Tiling spaces
3 Inverse limits
4 Pattern-Equivariant Cohomology
5 Shape changes
6 Topological conjugacies
7 Top cohomology, transport, and ergodic averages
Asymptotically negligible classes

Some sPE 1-cochains are not δ of sPE 0-cochains (functions), but are still δ of \textit{weakly} PE 0-cochains. These cochains are called asymptotically negligible (AN).
Asymptotically negligible classes

Some sPE 1-cochains are not δ of sPE 0-cochains (functions), but are still δ of weakly PE 0-cochains. These cochains are called asymptotically negligible (AN).

- Generate subspace H_{AN}^1 of H^1.

Asymptotically negligible classes

Some sPE 1-cochains are not δ of sPE 0-cochains (functions), but are still δ of weakly PE 0-cochains. These cochains are called asymptotically negligible (AN).

- Generate subspace H^1_{AN} of H^1.
- Moving points by wPE amounts induces topological conjugacies, so H^1_{AN} describes shape changes that are topological conjugacies but not MLD.
Asymptotically negligible classes

Some sPE 1-cochains are not δ of sPE 0-cochains (functions), but are still δ of weakly PE 0-cochains. These cochains are called asymptotically negligible (AN).

- Generate subspace H^1_{AN} of H^1.
- Moving points by wPE amounts induces topological conjugacies, so H^1_{AN} describes shape changes that are topological conjugacies but not MLD.
- Theorem (Gottschalk-Hedlund, Kellendonk-S): A closed sPE 1-cochain is AN if and only if its integral is bounded.
Fibonacci is rigid

- Fibonacci tiling has $\phi = (1 + \sqrt{5})/2$ “a” tiles for every “b” tile.
- If $\alpha(a) = 1$ and $\alpha(b) = -\phi$, α is AN.
- $H^1(\Omega_{Fib}, \mathbb{R}) = \mathbb{R}^2 = H^1_{AN} \oplus \mathbb{R}$.
- All shape changes for Fibonacci are a combination of topological conjugacy and overall rescaling.
- Dynamical properties of Fibonacci (e.g. pure point spectrum) unchanged by shape changes.
AN classes for substitutions

Setting: Ω is a substitution tiling space with a substitution map $\sigma : \Omega \rightarrow \Omega$.

- $\tilde{H}^1(\Omega, \mathbb{R}) = \tilde{H}^1(\Omega) \otimes \mathbb{R}$ is a vector space.
AN classes for substitutions

Setting: \(\Omega \) is a substitution tiling space with a substitution map \(\sigma : \Omega \rightarrow \Omega \).

- \(\tilde{H}^1(\Omega, \mathbb{R}) = \tilde{H}^1(\Omega) \otimes \mathbb{R} \) is a vector space.
- \(\sigma^* \) maps \(\tilde{H}^1(\Omega, \mathbb{R}) \) (or \(H^1_{PE}(T, \mathbb{R}) \)) to itself.
AN classes for substitutions

Setting: Ω is a substitution tiling space with a substitution map $\sigma : \Omega \to \Omega$.

- $\check{H}^1(\Omega, \mathbb{R}) = \check{H}^1(\Omega) \otimes \mathbb{R}$ is a vector space.
- σ^* maps $\check{H}^1(\Omega, \mathbb{R})$ (or $H^1_{PE}(T, \mathbb{R})$) to itself.
- $H^1_{AN}(\Omega, \mathbb{R})$ is contracting subspace of $\check{H}^1(\Omega, \mathbb{R})$.
AN classes for substitutions

Setting: Ω is a substitution tiling space with a substitution map $\sigma : \Omega \to \Omega$.

- $\tilde{H}^1(\Omega, \mathbb{R}) = \tilde{H}^1(\Omega) \otimes \mathbb{R}$ is a vector space.
- σ^* maps $\tilde{H}^1(\Omega, \mathbb{R})$ (or $H^1_{PE}(T, \mathbb{R})$) to itself.
- $H^1_{AN}(\Omega, \mathbb{R})$ is contracting subspace of $\tilde{H}^1(\Omega, \mathbb{R})$.
- $H^1_{AN}(\Omega, \mathbb{R}^n) = H^1_{AN}(\Omega, \mathbb{R}) \otimes \mathbb{R}^n$.
Penrose is almost rigid

\[H^1(\Omega_{pen}) = \mathbb{Z}^5, \text{ so } H^1(\Omega_{pen}, \mathbb{R}) = \mathbb{R}^5. \]
Penrose is almost rigid

- \(H^1(\Omega_{\text{pen}}) = \mathbb{Z}^5 \), so \(H^1(\Omega_{\text{pen}}, \mathbb{R}) = \mathbb{R}^5 \).
- Eigenvalues of \(\sigma^* : H^1 \rightarrow H^1 \) are \(\phi \), \(\phi \), \(1 - \phi \), \(1 - \phi \), and -1.
Penrose is almost rigid

- $H^1(\Omega_{pen}) = \mathbb{Z}^5$, so $H^1(\Omega_{pen}, \mathbb{R}) = \mathbb{R}^5$.
- Eigenvalues of $\sigma^* : H^1 \to H^1$ are ϕ, ϕ, $1 - \phi$, $1 - \phi$, and -1.
- Shape changes parametrized by $H^1(\Omega, \mathbb{R}^2) = \mathbb{R}^{10}$.
Penrose is almost rigid

- $H^1(\Omega_{\text{pen}}) = \mathbb{Z}^5$, so $H^1(\Omega_{\text{pen}}, \mathbb{R}) = \mathbb{R}^5$.
- Eigenvalues of $\sigma^* : H^1 \to H^1$ are ϕ, ϕ, $1 - \phi$, $1 - \phi$, and -1.
- Shape changes parametrized by $H^1(\Omega, \mathbb{R}^2) = \mathbb{R}^{10}$.
 - 4-dimensional family, corresponding to e-val ϕ, that are rigid linear transformations.
 - 4-dimensional family, corresponding to e-val $1 - \phi$, that are topological conjugacies.
 - 2-dimensional family, corresponding to e-val -1. These break 180-degree rotational symmetry.
Motivation
Tiling spaces
Inverse limits
Pattern-Equivariant Cohomology
Shape changes
Topological conjugacies
Top cohomology, transport, and ergodic averages

Penrose is almost rigid

- $H^1(\Omega_{pen}) = \mathbb{Z}^5$, so $H^1(\Omega_{pen}, \mathbb{R}) = \mathbb{R}^5$.
- Eigenvalues of $\sigma^* : H^1 \to H^1$ are ϕ, ϕ, $1 - \phi$, $1 - \phi$, and -1.
- Shape changes parametrized by $H^1(\Omega, \mathbb{R}^2) = \mathbb{R}^{10}$.
 - 4-dimensional family, corresponding to e-val ϕ, that are rigid linear transformations.
 - 4-dimensional family, corresponding to e-val $1 - \phi$, that are topological conjugacies.
 - 2-dimensional family, corresponding to e-val -1. These break 180-degree rotational symmetry.
- All shape changes that preserve 180 degree rotational symmetry are combinations of rigid linear transformations and topological conjugacies, and preserve dynamics.
Rational Penrose

180 Tiles
Theorem (Kellendonk-S)

If T is a cut-and-project tiling of dimension n and codimension k, and if the “window” is a finite union of polyhedra, then

$$H_{AN}^1(\Omega_T, \mathbb{R}) = \mathbb{R}^k.$$
AN classes for cut-and-project

Theorem (Kellendonk-S)

If T is a cut-and-project tiling of dimension n and codimension k, and if the “window” is a finite union of polyhedra, then

$$H^1_{AN}(\Omega_T, \mathbb{R}) = \mathbb{R}^k.$$

Roughly speaking, shape conjugacies come from phasons and nothing else.
Theorem (Kellendonk-S)

If T is a cut-and-project tiling of dimension n and codimension k, and if the “window” is a finite union of polyhedra, then $H^1_{AN}(\Omega_T, \mathbb{R}) = \mathbb{R}^k$.

Roughly speaking, shape conjugacies come from phasons and nothing else.

Theorem (Kellendonk-S)

Shape conjugacies of cut-and-project sets with polygonal windows are MLD to “reprojections”. Same total space, lattice, same window, different projection to \mathbb{R}^n.
Cohomology and ergodic averages

- Counting a patch P is the same thing as integrating a cochain (or bump form) that gives 1 every time P appears.
- All n cochains are closed, so this defines a cohomology class $[P]$.

If $H^n(\Omega, R) = R^k$, there are k patches P_1, \ldots, P_k such that

$$\{[P_i]\}$$

generate H^n.

For any other patch P, $[P] = \sum c_j [P_j] + \delta\alpha$.

#(P's in a region R) $= \sum c_j$ #(P_j's in R) + boundary correction.
Cohomology and ergodic averages

- Counting a patch P is the same thing as integrating a cochain (or bump form) that gives 1 every time P appears.
- All n cochains are closed, so this defines a cohomology class $[P]$.
- If $H^n(\Omega, \mathbb{R}) = \mathbb{R}^k$, there are k patches P_1, \ldots, P_k such that $\{[P_i]\}$ generate H^n.
Cohomology and ergodic averages

- Counting a patch P is the same thing as integrating a cochain (or bump form) that gives 1 every time P appears.
- All n cochains are closed, so this defines a cohomology class $[P]$.
- If $H^n(\Omega, \mathbb{R}) = \mathbb{R}^k$, there are k patches P_1, \ldots, P_k such that $\{[P_i]\}$ generate H^n.
- For any other patch P, $[P] = \sum c_j[P_j]$.
- $i_P = \sum c_j i_{P_j} + \delta \alpha$.
Cohomology and ergodic averages

- Counting a patch P is the same thing as integrating a cochain (or bump form) that gives 1 every time P appears.
- All n cochains are closed, so this defines a cohomology class $[P]$.
- If $H^n(\Omega, \mathbb{R}) = \mathbb{R}^k$, there are k patches P_1, \ldots, P_k such that $\{[P_i]\}$ generate H^n.
- For any other patch P, $[P] = \sum c_j [P_j]$.
- $i_P = \sum c_j i_{P_j} + \delta \alpha$.
- $\#(P's \text{ in a region } R) = \sum c_j \#(P_j's \text{ in } R) + \text{boundary correction}$
Frequency of \(aba\) in Thue-Morse

- \(H^1(\Omega_{TM}, \mathbb{R}) = \mathbb{R}^2\). Substitution acts with eigenvalues 2 and \(-1\). \(H^1_{AN}\) is trivial.
Frequency of \textit{aba} in Thue-Morse

\begin{itemize}
\item $H^1(\Omega_{TM}, \mathbb{R}) = \mathbb{R}^2$. Substitution acts with eigenvalues 2 and -1. H^1_{AN} is trivial.
\item $[i_{aba}]$ is a nontrivial linear combination of the two eigenvectors.
\end{itemize}
Frequency of aba in Thue-Morse

- $H^1(\Omega_{TM}, \mathbb{R}) = \mathbb{R}^2$. Substitution acts with eigenvalues 2 and -1. H^1_{AN} is trivial.
- $[i_{aba}]$ is a nontrivial linear combination of the two eigenvectors.
- $[i_{aba}] - c_1 dx$ is not AN.
- Deviations in count of aba are unbounded. (Actually grow as $\ln(N)$.)
Frequency of aba in Thue-Morse

- $H^1(\Omega_{TM}, \mathbb{R}) = \mathbb{R}^2$. Substitution acts with eigenvalues 2 and -1. H^1_{AN} is trivial.
- $[i_{aba}]$ is a nontrivial linear combination of the two eigenvectors.
- $[i_{aba}] - c_1 dx$ is not AN.
- Deviations in count of aba are unbounded. (Actually grow as $\ln(N)$.)
- Nothing special about aba. Same thing applies to almost any pattern. (Just not a or b).
If f_1 and f_2 are mass distributions on T, then f_1 and f_2 are closed and define cohomology classes $[f_1]$ and $[f_2]$. Then

- **Theorem:** There is a bounded transport from f_1 to f_2 if and only if $[f_1 - f_2]$ is well-balanced. (I.e. $\left\| \int_R (f_1 - f_2) \right\| \leq c \| \partial R \|$.)

There is a wPE transport from f_1 to f_2 if and only if $f_1 - f_2$ is weakly exact.

There is a sPE transport from f_1 to f_2 if and only if $f_1 - f_2$ is exact, i.e. if and only if $[f_1] = [f_2]$.
If f_1 and f_2 are mass distributions on T, then f_1 and f_2 are closed and define cohomology classes $[f_1]$ and $[f_2]$. Then

- Theorem: There is a bounded transport from f_1 to f_2 if and only if $[f_1 - f_2]$ is well-balanced. (I.e. $\left\| \int_R f_1 - f_2 \right\| \leq c \| \partial R \|$.)
- There is a wPE transport from f_1 to f_2 if and only if $f_1 - f_2$ is weakly exact.
Cohomological answers to transport questions

If f_1 and f_2 are mass distributions on T, then f_1 and f_2 are closed and define cohomology classes $[f_1]$ and $[f_2]$. Then

- **Theorem:** There is a bounded transport from f_1 to f_2 if and only if $[f_1 - f_2]$ is well-balanced. (I.e. $\left\| \int f_1 - f_2 \right\| \leq c \left\| \partial R \right\|$.)

- There is a wPE transport from f_1 to f_2 if and only if $f_1 - f_2$ is weakly exact.

- There is a sPE transport from f_1 to f_2 if and only if $f_1 - f_2$ is exact, i.e. if and only if $[f_1] = [f_2]$.
2 kg on the NE chairs
Motivation
Tiling spaces
Inverse limits
Pattern-Equivariant Cohomology
Shape changes
Topological conjugacies
Top cohomology, transport, and ergodic averages

1 kg on the NE and SW chairs
1 kg on the NW and SE chairs
Chair answers

- For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.
- One generator counts all tiles equally. Not well-balanced.
For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.

One generator counts all tiles equally. Not well-balanced.

NE + SW - SE - SW is cohomologically trivial. Every 1-supertile has exactly two (NE or SW) and two (NW + SE). To get sPE transport, just move mass within each 1-supertile.
For the chair tiling, \(H^2_{AN} \) is trivial and \(H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3 \).

One generator counts all tiles equally. Not well-balanced.

NE + SW - SE - SW is cohomologically trivial. Every 1-supertile has exactly two (NE or SW) and two (NW + SE). To get sPE transport, just move mass within each 1-supertile.

One generator counts NE minus SW. This is \(f_1 - f_2 \). Not weakly exact, so there is no wPE transport.

(Last generator counts NW minus SE.)
For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.

One generator counts all tiles equally. Not well-balanced.

NE + SW - SE - SW is cohomologically trivial. Every 1-supertile has exactly two (NE or SW) and two (NW + SE). To get sPE transport, just move mass within each 1-supertile.

One generator counts NE minus SW. This is $f_1 - f_2$. Not weakly exact, so there is no wPE transport.

(Last generator counts NW minus SE.)

Remaining question: Is $f_1 - f_2$ well-balanced?
Scaling properties

Under substitution, \(f_1 - f_2 \) doubles at each stage:

\[
\begin{array}{cccc}
1 & 0 & -1 & 0 \\
2 & 0 & -2 & 0 \\
4 & & & \\
\end{array}
\]
On triangle of side length $N = 2^m$, $f_1 - f_2$ goes as $m2^m$.
Tiling spaces are inverse limits.
Summary

- Tiling spaces are inverse limits.
- From inverse limit structure you can compute cohomology.
Summary

- Tiling spaces are inverse limits.
- From inverse limit structure you can compute cohomology.
- $H^1(\Omega, \mathbb{R}^n)$ parametrizes shape changes. H^1_{AN} parametrizes shape conjugacies.

Counting patches is the same as evaluating a top-cochain. Up to boundary terms, the answer only depends on the cohomology class. If you understand the cohomology, you know how all ergodic averages behave.

Mass distributions define classes in H^n. Bounded/wPE/sPE transport correspond to properties of $f_1 - f_2$.

Lots of other applications of cohomology, but we're out of time (and sliced bread).
Summary

- Tiling spaces are inverse limits.
- From inverse limit structure you can compute cohomology.
- \(H^1(\Omega, \mathbb{R}^n) \) parametrizes shape changes. \(H^1_{AN} \) parametrizes shape conjugacies.
- Counting patches is the same as evaluating a top-cochain. Up to boundary terms, the answer only depends on the cohomology class. If you understand the cohomology, you know how all ergodic averages behave.
Tiling spaces are inverse limits.

From inverse limit structure you can compute cohomology.

\(H^1(\Omega, \mathbb{R}^n) \) parametrizes shape changes. \(H_{AN}^1 \) parametrizes shape conjugacies.

Counting patches is the same as evaluating a top-cochain. Up to boundary terms, the answer only depends on the cohomology class. If you understand the cohomology, you know how all ergodic averages behave.

Mass distributions define classes in \(H^n \). Bounded/wPE/sPE transport correspond to properties of \([f_1 - f_2]\).
Summary

- Tiling spaces are inverse limits.
- From inverse limit structure you can compute cohomology.
- $H^1(\Omega, \mathbb{R}^n)$ parametrizes shape changes. H_{AN}^1 parametrizes shape conjugacies.
- Counting patches is the same as evaluating a top-cochain. Up to boundary terms, the answer only depends on the cohomology class. If you understand the cohomology, you know how all ergodic averages behave.
- Mass distributions define classes in H^n. Bounded/wPE/sPE transport correspond to properties of $[f_1 - f_2]$.
- Lots of other applications of cohomology, but we’re out of time (and sliced bread).
Thank You!