Convolution semigroups on quantum groups and non-commutative Dirichlet forms

Ami Viselter

University of Haifa

Quantum Homogeneous Spaces ICMS, Edinburgh, 14.6.2018

Joint work with Adam Skalski to appear in Journal de Mathématiques Pures et Appliquées

Definition (Kustermans-Vaes, '00)

A locally compact quantum group is a pair $G = (M, \Delta)$ such that:

- M is a von Neumann algebra
- ② $\Delta : M \to M \overline{\otimes} M$ is a co-multiplication: a normal, faithful, unital ∗-homomorphism which is co-associative, i.e.,

 $(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$

- Solution There are two n.s.f. weights φ , ψ on M (the Haar weights) with:
 - $\varphi((\omega \otimes id)\Delta(x)) = \omega(1)\varphi(x)$ when $\omega \in M_*^+$, $x \in M^+$ and $\varphi(x) < \infty$
 - $\psi((\mathrm{id}\otimes\omega)\Delta(x)) = \omega(1)\psi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\psi(x) < \infty$.

Denote $L^{\infty}(\mathbb{G}) := M$. Have it act standardly on the Hilbert space $L^{2}(\mathbb{G})$

Definition (Kustermans-Vaes, '00)

A locally compact quantum group is a pair $G = (M, \Delta)$ such that:

- M is a von Neumann algebra
- ② $\Delta : M \to M \overline{\otimes} M$ is a co-multiplication: a normal, faithful, unital ∗-homomorphism which is co-associative, i.e.,

 $(\Delta \otimes \mathrm{id}) \Delta = (\mathrm{id} \otimes \Delta) \Delta$

- Solution There are two n.s.f. weights φ, ψ on *M* (the Haar weights) with:
 - $\varphi((\omega \otimes id)\Delta(x)) = \omega(1)\varphi(x)$ when $\omega \in M_*^+$, $x \in M^+$ and $\varphi(x) < \infty$
 - $\psi((\mathrm{id}\otimes\omega)\Delta(x)) = \omega(1)\psi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\psi(x) < \infty$.

Denote $L^{\infty}(\mathbb{G}) := M$. Have it act standardly on the Hilbert space $L^{2}(\mathbb{G})$.

Theorem (Skalski–V)

There exist 1 – 1 correspondences between:

- w*-continuous, symmetric, convolution semigroups of states on G;
- **2** completely Dirichlet forms w.r.t. φ that are right-translation invariant;
- Sompletely Markov semigroups on L²(G) that are symmetric and contained in L[∞](Ĝ);
- completely Markov semigroups on $L^{\infty}(\mathbb{G})$ that are right-translation invariant and KMS-symmetric w.r.t. φ .

1. Convolution semigroups of probability measures

G - locally compact group

Convolution of measures

For positive Borel measures μ, ν on *G*, their convolution $\mu \star \nu$ is given by

$$(\mu \star \nu)(A) := \int_G \left(\int_G I_A(gh) d\mu(g) \right) d\nu(h)$$
 (Vmeasurable A).

Definition

A convolution semigroup of probability measures on *G* is a family $(\mu_t)_{t\geq 0}$ of probability measures on *G* satisfying

$$\mu_0 = \delta_e$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$).

It is w*-continuous if $\int_G f d\mu_t \xrightarrow[t\to 0^+]{} \int_G f d\mu_0 = f(e)$ for all $f \in C_0(G)$.

1. Convolution semigroups of probability measures

G - locally compact group

Convolution of measures

For positive Borel measures μ , ν on *G*, their convolution $\mu \star \nu$ is given by

$$(\mu \star \nu)(A) := \int_G \left(\int_G I_A(gh) \, \mathrm{d}\mu(g) \right) \mathrm{d}\nu(h) \qquad (\forall \text{measurable } A).$$

Definition

A convolution semigroup of probability measures on *G* is a family $(\mu_t)_{t>0}$ of probability measures on *G* satisfying

$$\mu_0 = \delta_e$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$).

It is w^{*}-continuous if $\int_G f d\mu_t \xrightarrow{} \int_G f d\mu_0 = f(e)$ for all $f \in C_0(G)$.

1. Convolution semigroups of probability measures

G - locally compact group

Convolution of measures

For positive Borel measures μ, ν on *G*, their convolution $\mu \star \nu$ is given by

$$(\mu \star \nu)(A) := \int_G \left(\int_G I_A(gh) \, \mathrm{d}\mu(g) \right) \mathrm{d}\nu(h) \qquad (\forall \text{measurable } A).$$

Definition

A convolution semigroup of probability measures on *G* is a family $(\mu_t)_{t\geq 0}$ of probability measures on *G* satisfying

$$\mu_0 = \delta_e$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$).

It is w*-continuous if $\int_G f d\mu_t \xrightarrow[t\to 0^+]{} \int_G f d\mu_0 = f(e)$ for all $f \in C_0(G)$.

2. Lévy processes

Definition

Let $d \in \mathbb{N}$. A Lévy process with values in \mathbb{R}^d is a family $X = (X_t)_{t \ge 0}$ of random variables from a probability space to \mathbb{R}^d such that:

- **1** $X_0 = 0;$
- X has independent and stationary increments;
- X is continuous.

Given a Lévy process *X*, define $(\mu_t)_{t\geq 0}$ to be its family of distributions: for $t \geq 0$, μ_t is the probability measure on \mathbb{R}^d defined by $\mu_t := \mathbb{P} \circ X_t^{-1}$.

Theorem

- $(\mu_t)_{t\geq 0}$ is a w^{*}-continuous convolution semigroup of probability measures on \mathbb{R}^d .
- Il such convolution semigroups arise this way.

2. Lévy processes

Definition

Let $d \in \mathbb{N}$. A Lévy process with values in \mathbb{R}^d is a family $X = (X_t)_{t \ge 0}$ of random variables from a probability space to \mathbb{R}^d such that:

- **1** $X_0 = 0;$
- X has independent and stationary increments;
- X is continuous.

Given a Lévy process X, define $(\mu_t)_{t\geq 0}$ to be its family of distributions: for $t \geq 0$, μ_t is the probability measure on \mathbb{R}^d defined by $\mu_t := \mathbb{P} \circ X_t^{-1}$.

Theorem

- $(\mu_t)_{t\geq 0}$ is a w^{*}-continuous convolution semigroup of probability measures on \mathbb{R}^d .
- Il such convolution semigroups arise this way.

2. Lévy processes

Definition

Let $d \in \mathbb{N}$. A Lévy process with values in \mathbb{R}^d is a family $X = (X_t)_{t \ge 0}$ of random variables from a probability space to \mathbb{R}^d such that:

- **1** $X_0 = 0;$
- X has independent and stationary increments;
- X is continuous.

Given a Lévy process X, define $(\mu_t)_{t\geq 0}$ to be its family of distributions: for $t \geq 0$, μ_t is the probability measure on \mathbb{R}^d defined by $\mu_t := \mathbb{P} \circ X_t^{-1}$.

Theorem

• $(\mu_t)_{t\geq 0}$ is a w^{*}-continuous convolution semigroup of probability measures on \mathbb{R}^d .

All such convolution semigroups arise this way.

2. Lévy processes

Definition

Let $d \in \mathbb{N}$. A Lévy process with values in \mathbb{R}^d is a family $X = (X_t)_{t \ge 0}$ of random variables from a probability space to \mathbb{R}^d such that:

- **1** $X_0 = 0;$
- X has independent and stationary increments;
- X is continuous.

Given a Lévy process X, define $(\mu_t)_{t\geq 0}$ to be its family of distributions: for $t \geq 0$, μ_t is the probability measure on \mathbb{R}^d defined by $\mu_t := \mathbb{P} \circ X_t^{-1}$.

Theorem

- $(\mu_t)_{t\geq 0}$ is a w^{*}-continuous convolution semigroup of probability measures on \mathbb{R}^d .
- All such convolution semigroups arise this way.

2. Lévy processes

Definition

Let $d \in \mathbb{N}$. A Lévy process with values in *G* is a family $X = (X_t)_{t \ge 0}$ of random variables from a probability space to *G* such that:

- **1** $X_0 = 0;$
- X has independent and stationary increments;
- X is continuous.

Given a Lévy process *X*, define $(\mu_t)_{t\geq 0}$ to be its family of distributions: for $t \geq 0$, μ_t is the probability measure on *G* defined by $\mu_t := \mathbb{P} \circ X_t^{-1}$.

Theorem

- $(\mu_t)_{t\geq 0}$ is a w^{*}-continuous convolution semigroup of probability measures on G.
- All such convolution semigroups arise this way.

3. Dirichlet forms and Markov semigroups

Definition

A (non-negative) quadratic form on a Hilbert space \mathcal{H} is a semi-inner product $Q: D(Q) \times D(Q) \to \mathbb{C}$ on a subspace D(Q) of \mathcal{H} .

- Densely defined if D(Q) is dense in \mathcal{H} .
- Closedness.

More convenient to work with $Q' : \mathcal{H} \to [0, \infty]$ given by

$$\mathcal{Q}'\zeta := egin{cases} \mathcal{Q}(\zeta,\zeta) & \zeta\in D(\mathcal{Q}) \\ \infty & ext{else.} \end{cases}$$

closed, densely-defined quadratic forms $\|A^{1/2}\cdot\|^2$

Ami Viselter (University of Haifa)

3. Dirichlet forms and Markov semigroups

Definition

A (non-negative) quadratic form on a Hilbert space \mathcal{H} is a semi-inner product $Q: D(Q) \times D(Q) \to \mathbb{C}$ on a subspace D(Q) of \mathcal{H} .

- Densely defined if D(Q) is dense in \mathcal{H} .
- Closedness.

More convenient to work with $Q' : \mathcal{H} \to [0, \infty]$ given by

$$Q'\zeta:=egin{cases} Q(\zeta,\zeta) & \zeta\in D(Q)\ \infty & ext{else.} \end{cases}$$

closed, \leftarrow generally \leftarrow C_0 -semigroups of densely-defined unbounded, positive selfadjoint quadratic forms $\|A^{1/2}.\|^2$ A $(e^{-tA})_{t \ge Q}$

Ami Viselter (University of Haifa)

3. Dirichlet forms and Markov semigroups

Definition

A (non-negative) quadratic form on a Hilbert space \mathcal{H} is a semi-inner product $Q: D(Q) \times D(Q) \to \mathbb{C}$ on a subspace D(Q) of \mathcal{H} .

- Densely defined if D(Q) is dense in \mathcal{H} .
- Closedness.

More convenient to work with $Q' : \mathcal{H} \to [0, \infty]$ given by

$$\mathbf{Q}'\zeta := egin{cases} Q(\zeta,\zeta) & \zeta\in D(Q) \ \infty & ext{else.} \end{cases}$$

closed, () generally () C_0 -semigroups of densely-defined unbounded, positive selfadjoint quadratic forms $\|A^{1/2}.\|^2$ A () $(e^{-tA})_{t \ge 0}$

Ami Viselter (University of Haifa)

3. Dirichlet forms and Markov semigroups

(X, m) – positive measure space

Definition

A map $S : L^2(X, m) \rightarrow L^2(X, m)$ is Markov if for all $f \in L^2(X, m)$,

$$0 \le f \le 1 \implies 0 \le Sf \le 1.$$

Definition (Based on Beurling–Deny, Acta Math., 1958)

A Dirichlet form on (X, m) is a closed, densely defined, quadratic form Q on $L^2(X, m)$ such that for all \mathbb{R} -valued $f \in L^2(X, m)$,

$$Q(\min(\max(f,0),1))) \le Q(f).$$

3. Dirichlet forms and Markov semigroups

(X, m) – positive measure space

Definition

A map $S : L^2(X, m) \rightarrow L^2(X, m)$ is Markov if for all $f \in L^2(X, m)$,

$$0\leq f\leq 1\implies 0\leq Sf\leq 1.$$

Definition (Based on Beurling–Deny, Acta Math., 1958)

A Dirichlet form on (X, m) is a closed, densely defined, quadratic form Q on $L^2(X, m)$ such that for all \mathbb{R} -valued $f \in L^2(X, m)$,

$$Q(\min(\max(f,0),1))) \le Q(f).$$

3. Dirichlet forms and Markov semigroups

(X, m) – positive measure space

Definition

A map $S : L^2(X, m) \rightarrow L^2(X, m)$ is Markov if for all $f \in L^2(X, m)$,

$$0\leq f\leq 1\implies 0\leq Sf\leq 1.$$

Definition (Based on Beurling–Deny, Acta Math., 1958)

A Dirichlet form on (X, m) is a closed, densely defined, quadratic form Q on $L^2(X, m)$ such that for all \mathbb{R} -valued $f \in L^2(X, m)$,

$$Q(\min(\max(f,0),1))) \le Q(f).$$

3. Dirichlet forms and Markov semigroups

G - locally compact group

Easy fact

 μ – probability measure on *G* that is symmetric ($\mu(B) = \mu(B^{-1}), \forall B$). The operator $f \mapsto \mu \star f$ on $L^2(G)$ is a symmetric Markov operator.

Corollary

w^{*}-continuous convolution semigroup of symmetric probability measures on G \rightsquigarrow symmetric Markov semigroup on L²(G) \leftrightarrow Dirichlet form on L

Which Dirichlet forms on $L^2(G)$ arise this way?

Theorem

Precisely the right-translation invariant ones.

Ami Viselter (University of Haifa) Convol

Convolution semigroups on quantum groups

3. Dirichlet forms and Markov semigroups

G - locally compact group

Easy fact

 μ – probability measure on *G* that is symmetric ($\mu(B) = \mu(B^{-1}), \forall B$). The operator $f \mapsto \mu \star f$ on $L^2(G)$ is a symmetric Markov operator.

Corollary

w^{*}-continuous convolution semigroup of symmetric probability measures on G \rightsquigarrow symmetric Markov semigroup on L²(G) \leftrightarrow Dirichlet form on L

Which Dirichlet forms on $L^2(G)$ arise this way?

Theorem

Precisely the right-translation invariant ones.

Ami Viselter (University of Haifa) Convolution

Convolution semigroups on quantum groups

• U > • 00 > • 2 > • 2 >

3. Dirichlet forms and Markov semigroups

G - locally compact group

Easy fact

 μ – probability measure on *G* that is symmetric ($\mu(B) = \mu(B^{-1}), \forall B$). The operator $f \mapsto \mu \star f$ on $L^2(G)$ is a symmetric Markov operator.

Corollary

 $w^{\ast}\mbox{-}continuous\ convolution\ semigroup\ of\ symmetric\ probability\ measures\ on\ G$

 \rightsquigarrow symmetric Markov semigroup on $L^2(G) \leftrightarrow$ Dirichlet form on $L^2(G)$.

Which Dirichlet forms on $L^2(G)$ arise this way?

Theorem

Precisely the right-translation invariant ones.

ヘロン ヘロシス モンス モント

3. Dirichlet forms and Markov semigroups

G - locally compact group

Easy fact

 μ – probability measure on *G* that is symmetric ($\mu(B) = \mu(B^{-1}), \forall B$). The operator $f \mapsto \mu \star f$ on $L^2(G)$ is a symmetric Markov operator.

Corollary

 $w^{\ast}\mbox{-}continuous\ convolution\ semigroup\ of\ symmetric\ probability\ measures\ on\ G$

 \rightsquigarrow symmetric Markov semigroup on $L^2(G) \leftrightarrow$ Dirichlet form on $L^2(G)$.

Which Dirichlet forms on $L^2(G)$ arise this way?

Theorem

Precisely the right-translation invariant ones.

ヘロン ヘロシス モンス モント

3. Dirichlet forms and Markov semigroups

G - locally compact group

Easy fact

 μ – probability measure on *G* that is symmetric ($\mu(B) = \mu(B^{-1}), \forall B$). The operator $f \mapsto \mu \star f$ on $L^2(G)$ is a symmetric Markov operator.

Corollary

 $w^{\ast}\mbox{-}continuous\ convolution\ semigroup\ of\ symmetric\ probability\ measures\ on\ G$

 \rightsquigarrow symmetric Markov semigroup on $L^2(G) \leftrightarrow$ Dirichlet form on $L^2(G)$.

Which Dirichlet forms on $L^2(G)$ arise this way?

Theorem

Precisely the right-translation invariant ones.

Interim summary

< 🗐 🕨

Interim summary

4. Conditionally negative-definite functions

G – locally compact group

Definition

A semigroup of normalized positive-definite functions on *G* is a family $(\varphi_t)_{t\geq 0}$ of positive-definite functions on *G* mapping *e* to 1 and satisfying

$$\varphi_0 \equiv 1 \text{ and } \varphi_s \cdot \varphi_t = \varphi_{s+t} \quad (\forall s, t \ge 0).$$

Adjectives: w^* -continuous symmetric = invariant under inversion (\iff real valued).

4. Conditionally negative-definite functions

G - locally compact group

Definition

A semigroup of normalized positive-definite functions on *G* is a family $(\varphi_t)_{t\geq 0}$ of positive-definite functions on *G* mapping *e* to 1 and satisfying

$$\varphi_0 \equiv 1 \text{ and } \varphi_s \cdot \varphi_t = \varphi_{s+t} \quad (\forall s, t \ge 0).$$

Adjectives: w^* -continuous symmetric = invariant under inversion (\iff real valued).

4. Conditionally negative-definite functions

G - locally compact group

Definition

A semigroup of normalized positive-definite functions on *G* is a family $(\varphi_t)_{t\geq 0}$ of positive-definite functions on *G* mapping *e* to 1 and satisfying

$$\varphi_0 \equiv 1 \text{ and } \varphi_s \cdot \varphi_t = \varphi_{s+t} \quad (\forall s, t \ge 0).$$

Adjectives: w*-continuous

symmetric = invariant under inversion (\iff real valued).

Example

 $G = \hat{\Gamma}$, where Γ – locally compact abelian group $(\mu_t)_{t\geq 0} - w^*$ -cont. convolution semigroup of prob. measures on Γ \rightsquigarrow Define $\varphi_t := \hat{\mu}_t$ (the Fourier–Stieltjes transform) for all $t \geq 0$.

4. Conditionally negative-definite functions

G – locally compact group

Definition

A semigroup of normalized positive-definite functions on *G* is a family $(\varphi_t)_{t\geq 0}$ of positive-definite functions on *G* mapping *e* to 1 and satisfying

$$\varphi_0 \equiv 1 \text{ and } \varphi_s \cdot \varphi_t = \varphi_{s+t} \quad (\forall s, t \ge 0).$$

Adjectives: w^* -continuous symmetric = invariant under inversion (\iff real valued).

Assume *w*^{*}-continuity and symmetry. These families are of the form $(e^{-t\theta})_{t\geq 0}$. "Who" are their generators θ ?

・ロト ・四ト ・ヨト ・ヨト

4. Conditionally negative-definite functions

Definition

A continuous $\theta: G \to \mathbb{R}$ is conditionally negative definite if:

Schönberg's Theorem

A continuous $\theta : G \to \mathbb{R}$ satisfying 1 and 2 is CND $\iff e^{-t\theta}$ is positive definite for all $t \ge 0$.

Corollary

The w^{*}-cont. semigroups of symmetric, normalized, positive-definite functions on G are exactly $(e^{-t\theta})_{t\geq 0}$ for a CND function $\theta : G \to \mathbb{R}$.

4. Conditionally negative-definite functions

Definition

A continuous $\theta: G \to \mathbb{R}$ is conditionally negative definite if:

Schönberg's Theorem

A continuous $\theta : G \to \mathbb{R}$ satisfying 1 and 2 is CND $\iff e^{-t\theta}$ is positive definite for all $t \ge 0$.

Corollary

The w^{*}-cont. semigroups of symmetric, normalized, positive-definite functions on G are exactly $(e^{-t\theta})_{t\geq 0}$ for a CND function $\theta : G \to \mathbb{R}$.

4. Conditionally negative-definite functions

Definition

A continuous $\theta: G \to \mathbb{R}$ is conditionally negative definite if:

Schönberg's Theorem

A continuous $\theta : G \to \mathbb{R}$ satisfying 1 and 2 is CND $\iff e^{-t\theta}$ is positive definite for all $t \ge 0$.

Corollary

The w^{*}-cont. semigroups of symmetric, normalized, positive-definite functions on G are exactly $(e^{-t\theta})_{t\geq 0}$ for a CND function $\theta : G \to \mathbb{R}$.

4. Conditionally negative-definite functions

Example

For $d \in \mathbb{N}$ and $0 \le \alpha \le 2$, the function $\mathbb{R}^d \to [0, \infty)$ given by $x \mapsto ||x||^{\alpha}$ is conditionally negative definite.

Example (Haagerup, Invent. Math., 1978/79)

Let $n \in \mathbb{N}$. The function $\mathbb{F}_n \to [0, \infty)$ given by

$s\mapsto |s|$

is conditionally negative definite.

Consequently:

- the C^* -algebra $C^*_r(\mathbb{F}_n)$ has the metric approximation property;
- If \mathbb{F}_n is weakly amenable;
- **F**_n has the Haagerup property.

4. Conditionally negative-definite functions

Example

For $d \in \mathbb{N}$ and $0 \le \alpha \le 2$, the function $\mathbb{R}^d \to [0, \infty)$ given by $x \mapsto ||x||^{\alpha}$ is conditionally negative definite.

Example (Haagerup, Invent. Math., 1978/79)

Let $n \in \mathbb{N}$. The function $\mathbb{F}_n \to [0, \infty)$ given by

$s \mapsto |s|$

is conditionally negative definite.

Consequently:

- the C^* -algebra $C^*_r(\mathbb{F}_n)$ has the metric approximation property;
- IF_n is weakly amenable;
- **3** \mathbb{F}_n has the Haagerup property.

4. Conditionally negative-definite functions

Example

For $d \in \mathbb{N}$ and $0 \le \alpha \le 2$, the function $\mathbb{R}^d \to [0, \infty)$ given by $x \mapsto ||x||^{\alpha}$ is conditionally negative definite.

Example (Haagerup, Invent. Math., 1978/79)

Let $n \in \mathbb{N}$. The function $\mathbb{F}_n \to [0, \infty)$ given by

$s \mapsto |s|$

is conditionally negative definite.

Consequently:

- the C^{*}-algebra $C_r^*(\mathbb{F}_n)$ has the metric approximation property;
- 2 \mathbb{F}_n is weakly amenable;
- \mathbb{F}_n has the Haagerup property.

Summary

Duality _

w*-cont. semigroups of symmetric, normalized, positive-definite functions on *G*

conditionally negative-definite functions on *G*

Back to locally compact quantum groups

Features and two basic examples

Duality $\mathbb{G} \mapsto \hat{\mathbb{G}}$ within the category satisfying $\hat{\hat{\mathbb{G}}} = \mathbb{G}$.

G - locally compact group

G	$L^{\infty}(\mathbb{G})$	$C_0(\mathbb{G})$	$C_0^{\mathrm{u}}(\mathbb{G})$	(states of $C_0^{\mathrm{u}}(\mathbb{G}),\star$)	antipode
G					
Ĝ					

15/27

< 6 b

Back to locally compact quantum groups

Features and two basic examples

Three "faces" (algebras):

- the von Neumann algebra $L^{\infty}(\mathbb{G})$;
- the "reduced" C^* -algebra $C_0(\mathbb{G})$;
- the "universal" C^* -algebra $C_0^u(\mathbb{G})$. The conjugate space $C_0^u(\mathbb{G})^*$ carries a convolution \star turning it into

a Banach algebra with unit ϵ (the co-unit).

G - locally compact group

G	$L^{\infty}(\mathbb{G})$	$C_0(\mathbb{G})$	$C_0^{\mathrm{u}}(\mathbb{G})$	(states of $C_0^{\mathrm{u}}(\mathbb{G}), \star$)	antipode
				regular probability	
G	$L^{\infty}(G)$	$C_0(G)$	$C_0(G)$	measures,	
				\star = convolution	
				normalized positive	
Ĝ	VN(G)	$C^*_{\mathrm{r}}(G)$	$C^*(G)$	definite functions,	
				\star = product	

Back to locally compact quantum groups

Features and two basic examples

The antipode: an (unbounded) operator on $L^{\infty}(\mathbb{G}) / C_0(\mathbb{G}) / C_0^u(\mathbb{G})$. Decomposes into:

- a "bounded part": the unitary antipode, an anti-automor. of $L^{\infty}(\mathbb{G})$;
- an "unbounded part": the scaling group.

G - locally compact group

G	$L^{\infty}(\mathbb{G})$	$C_0(\mathbb{G})$	$C_0^{\mathrm{u}}(\mathbb{G})$	(states of $C_0^{\mathrm{u}}(\mathbb{G}),\star$)	antipode
G	$L^{\infty}(G)$	$C_0(G)$	$C_0(G)$	regular probability measures, ★ = convolution	composition with inverse
Ĝ	VN(G)	$C^*_{ m r}(G)$	<i>C</i> *(<i>G</i>)	normalized positive definite functions,	$\lambda_g \mapsto \lambda_{g^{-1}}$ for $g \in G$

Definition

A convolution semigroup of states on G is a family $(\mu_t)_{t\geq 0}$ of states of $C_0^u(G)$ such that

$$\mu_0 = \epsilon$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ $(\forall s, t \ge 0).$

Adjectives:

- w*-continuous
- symmetric = invariant under the unitary antipode.

A (10) > A (10) > A (10)

Definition

A convolution semigroup of states on \mathbb{G} is a family $(\mu_t)_{t\geq 0}$ of states of $C_0^{\mathrm{u}}(\mathbb{G})$ such that

$$\mu_0 = \epsilon$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$).

Adjectives:

- w*-continuous
- symmetric = invariant under the unitary antipode.

Definition

A convolution semigroup of states on \mathbb{G} is a family $(\mu_t)_{t\geq 0}$ of states of $C_0^{\mathrm{u}}(\mathbb{G})$ such that

$$\mu_0 = \epsilon$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$).

Adjectives:

- w*-continuous
- symmetric = invariant under the unitary antipode.

Definition

A convolution semigroup of states on \mathbb{G} is a family $(\mu_t)_{t\geq 0}$ of states of $C_0^{\mathrm{u}}(\mathbb{G})$ such that

$$\mu_0 = \epsilon$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$).

Adjectives:

- w*-continuous
- symmetric = invariant under the unitary antipode.

Examples

of w*-continuous, symmetric, convolution semigroups of states on G:

- G = G: w*-continuous, symmetric, convolution semigroups of probability measures on G.
- G = Ĝ: w*-continuous, symmetric, semigroups of normalized positive-definite functions on G.

These capture the two types of semigroups discussed earlier.

4 3 > 4 3

< 6 b

Non-commutative Dirichlet forms and Markov semigroups

- ★ Commutative = "classical" = on a positive measure space with a reference measure.
- Non-commutative = on a von Neumann algebra with a reference weight.
 - Developed by many people: Albeverio–Høegh-Krohn, Sauvageot, Davies–Lindsay, Guido–Isola–Scarlatti, Cipriani–Sauvageot, Cipriani, Goldstein–Lindsay, ...
 - We use the general definition of Goldstein–Lindsay (Math. Ann., 1999). Basic difficulty: the domain of Dirichlet forms does not have a canonical regularity property.

- Commutative = "classical" = on a positive measure space with a reference measure.
- Non-commutative = on a von Neumann algebra with a reference weight.
 - Developed by many people: Albeverio–Høegh-Krohn, Sauvageot, Davies–Lindsay, Guido–Isola–Scarlatti, Cipriani–Sauvageot, Cipriani, Goldstein–Lindsay, ...
 - We use the general definition of Goldstein–Lindsay (Math. Ann., 1999). Basic difficulty: the domain of Dirichlet forms does not have a canonical regularity property.

- Commutative = "classical" = on a positive measure space with a reference measure.
- Non-commutative = on a von Neumann algebra with a reference weight.
 - Developed by many people: Albeverio–Høegh-Krohn, Sauvageot, Davies–Lindsay, Guido–Isola–Scarlatti, Cipriani–Sauvageot, Cipriani, Goldstein–Lindsay, ...
 - We use the general definition of Goldstein–Lindsay (Math. Ann., 1999). Basic difficulty: the domain of Dirichlet forms does not have a canonical regularity property.

Main result

G - locally compact quantum group

(Recall: $L^{\infty}(\mathbb{G})$ – underlying von Neumann algebra, $L^{2}(\mathbb{G})$ – a standard Hilbert space; φ – left Haar weight.)

Theorem (Skalski–V)

There exist 1 – 1 correspondences between:

- w*-continuous, symmetric, convolution semigroups of states on G;
- **2** completely Dirichlet forms w.r.t. φ that are right-translation invariant;
- Sompletely Markov semigroups on L²(G) that are symmetric and contained in L[∞](Ĝ);
- completely Markov semigroups on $L^{\infty}(\mathbb{G})$ that are right-translation invariant and KMS-symmetric w.r.t. φ .

3

- $\mathbb{G} = G$ or \hat{G} : the classical work;
- G compact quantum group: Cipriani–Franz–Kula (JFA, 2014).

Such G has a canonical Hopf *-algebra Pol(G). Its embedding in $L^2(G)$ is a core of all Dirichlet forms \rightsquigarrow the problem becomes more algebraic.

.

- $\mathbb{G} = G$ or \hat{G} : the classical work;
- G compact quantum group: Cipriani-Franz-Kula (JFA, 2014).

Such G has a canonical Hopf *-algebra Pol(G). Its embedding in $L^2(G)$ is a core of all Dirichlet forms \rightsquigarrow the problem becomes more algebraic.

4 3 5 4 3

- $\mathbb{G} = G$ or \hat{G} : the classical work;
- G compact quantum group: Cipriani-Franz-Kula (JFA, 2014).

Such G has a canonical Hopf *-algebra Pol(G).

Its embedding in $L^2(\mathbb{G})$ is a core of all Dirichlet forms \rightsquigarrow the problem becomes more algebraic.

.

- $\mathbb{G} = G$ or \hat{G} : the classical work;
- G compact quantum group: Cipriani–Franz–Kula (JFA, 2014).

Such G has a canonical Hopf *-algebra Pol(G). Its embedding in $L^2(G)$ is a core of all Dirichlet forms \rightsquigarrow the problem becomes more algebraic.

G – locally compact group.

Definition

G has the Haagerup property if it admits a mixing representation with almost-invariant vectors.

Examples

Amenable groups; free groups; $SL(2, \mathbb{Z})$; groups that act properly on a tree (more generally: on a space with "walls"); Coxeter groups.

Definition

G does not have property (T) if it admits an ergodic representation with almost-invariant vectors.

Examples (of property (T))

 $SL(n, \mathbb{Z}), n \ge 3$; $SL(n, \mathbb{K}), n \ge 3$; $Sp(2n, \mathbb{K}), n \ge 2$ (\mathbb{K} – local field).

G – locally compact group.

Definition

G has the Haagerup property if it admits a mixing representation with almost-invariant vectors.

Examples

Amenable groups; free groups; $SL(2, \mathbb{Z})$; groups that act properly on a tree (more generally: on a space with "walls"); Coxeter groups.

Definition

G does not have property (T) if it admits an ergodic representation with almost-invariant vectors.

Examples (of property (T))

 $SL(n, \mathbb{Z}), n \ge 3$; $SL(n, \mathbb{K}), n \ge 3$; $Sp(2n, \mathbb{K}), n \ge 2$ (\mathbb{K} – local field).

G – locally compact group.

Definition

G has the Haagerup property if it admits a mixing representation with almost-invariant vectors.

Examples

Amenable groups; free groups; $SL(2, \mathbb{Z})$; groups that act properly on a tree (more generally: on a space with "walls"); Coxeter groups.

Definition

G does not have property (T) if it admits an ergodic representation with almost-invariant vectors.

Examples (of property (T))

 $SL(n, \mathbb{Z}), n \ge 3; SL(n, \mathbb{K}), n \ge 3; Sp(2n, \mathbb{K}), n \ge 2 (\mathbb{K} - \text{local field}).$

G – locally compact group.

Definition

G has the Haagerup property if it admits a mixing representation with almost-invariant vectors.

Examples

Amenable groups; free groups; $SL(2, \mathbb{Z})$; groups that act properly on a tree (more generally: on a space with "walls"); Coxeter groups.

Definition

G does not have property (T) if it admits an ergodic representation with almost-invariant vectors.

Examples (of property (T))

 $SL(n,\mathbb{Z}), n \ge 3$; $SL(n,\mathbb{K}), n \ge 3$; $Sp(2n,\mathbb{K}), n \ge 2$ (\mathbb{K} – local field).

Geometric characterizations

Theorem (Guichardet, '72 + Delorme, '77; Akemann–Walter, '81)

Assume that G is σ -compact.

- G does not have property (T)
 - \iff it has an unbounded conditionally negative-definite function

it has a w*-cont. semigroup of symm. normalized pos.-def. functions that is not norm continuous.

- **2** G has the Haagerup property
 - ⇔ it has a proper conditionally negative-definite function

 \iff it has a w^{*}-cont. semigroup of symm. normalized pos.-def. functions that is C_0 in positive time.

(proper = goes to ∞ at ∞).

Example

The CND function $s \mapsto |s|$ on \mathbb{F}_n presented earlier!

Geometric characterizations

Theorem (Guichardet, '72 + Delorme, '77; Akemann–Walter, '81)

Assume that G is σ -compact.

- G does not have property (T)
 - \iff it has an unbounded conditionally negative-definite function

it has a w*-cont. semigroup of symm. normalized pos.-def. functions that is not norm continuous.

- **2** G has the Haagerup property
 - ⇔ it has a proper conditionally negative-definite function

 \iff it has a w^{*}-cont. semigroup of symm. normalized bos.-def. functions that is C_0 in positive time.

(proper = goes to ∞ at ∞).

Example

The CND function $s \mapsto |s|$ on \mathbb{F}_n presented earlier!

Geometric characterizations

Theorem (Guichardet, '72 + Delorme, '77; Akemann–Walter, '81)

Assume that G is σ -compact.

G does not have property (T)

 \implies it has an unbounded conditionally negative-definite function

 \iff it has a w^{*}-cont. semigroup of symm. normalized pos.-def. functions that is not norm continuous.

In the Haagerup property G has the Haagerup property

⇒ it has a proper conditionally negative-definite function

 \iff it has a w^{*}-cont. semigroup of symm. normalized pos.-def. functions that is C_0 in positive time.

(proper = goes to ∞ at ∞).

Example

The CND function $s \mapsto |s|$ on \mathbb{F}_n presented earlier!

Geometric characterizations: the discrete case

 $\mathbb{G}-\text{second}$ countable, discrete quantum group.

Definition

A conditionally negative-definite function on \mathbb{G} is a map θ : Pol($\hat{\mathbb{G}}$) $\rightarrow \mathbb{C}$ satisfying:

$$0 \theta(1) = 0;$$

●
$$θ(a^*a) \le 0$$
 for all $a \in Pol(\hat{G}) \cap \ker \hat{c}$.

A version of Schönberg's Theorem for finite-dim. co-algebras gives:

Theorem (Schürmann, 1985 + Bédos–Murphy–Tuset, 2001)

The correspondence $\theta \leftrightarrow e_{\star}^{-t\theta}$ is 1 – 1 between the CND functions on \mathbb{G} and w^{*}-cont. convolution semigroups of states on $\hat{\mathbb{G}}$.

ヘロト 人間 ト イヨト イヨト

Geometric characterizations: the discrete case

 \mathbb{G} – second countable, discrete quantum group.

Definition

A conditionally negative-definite function on \mathbb{G} is a map θ : Pol($\hat{\mathbb{G}}$) $\rightarrow \mathbb{C}$ satisfying:

$$0 \theta(1) = 0$$

$$(a^*) = \overline{\theta(a)}$$
 for all $a \in Pol(\hat{\mathbb{G}})$;

●
$$\theta(a^*a) \leq 0$$
 for all $a \in Pol(\hat{\mathbb{G}}) \cap \ker \hat{\epsilon}$.

A version of Schönberg's Theorem for finite-dim. co-algebras gives:

Theorem (Schürmann, 1985 + Bédos–Murphy–Tuset, 2001)

The correspondence $\theta \leftrightarrow e_{\star}^{-t\theta}$ is 1 – 1 between the CND functions on \mathbb{G} and w^* -cont. convolution semigroups of states on $\hat{\mathbb{G}}$.

Geometric characterizations: the discrete case

G – second countable, discrete quantum group.

Theorem (Kyed, JFA, 2011)

If \mathbb{G} is unimodular, then it does not have property (T)

 \iff it has an unbounded conditionally negative-definite function.

Theorem (Daws–Fima–Skalski–White, Crelle's Journal, 2016)

G has the Haagerup property

- \iff it has a proper conditionally negative-definite function.
- Many applications, e.g. Daws–Skalski–V, Comm. Math. Phys., 2017.

Geometric characterizations: the general case

 \mathbb{G} – second countable, locally compact quantum group.

Theorems (Skalski–V)

- G does not have property (T)
 - $\iff \hat{\mathbb{G}} \text{ has a completely Dirichlet form w.r.t. } \hat{\varphi} \text{ that is} \\ \text{right-translation invariant and unbounded}$
 - $\iff \hat{G}$ has a *w*^{*}-continuous, symmetric, convolution semigroup of states that is not norm continuous.
- I G has the Haagerup property
 - $\iff \hat{\mathbb{G}} \text{ has a completely Dirichlet form w.r.t. } \hat{\varphi} \text{ that is}$ right-translation invariant and proper
 - $\iff \hat{\mathbb{G}}$ has a *w*^{*}-continuous, symmetric, convolution semigroup of states that is *C*₀ in positive time.

 \mathbb{G} – locally compact quantum group $U \in L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G})$ – 2-cocycle: a unitary satisfying $(U \otimes \mathbb{1})(\Delta \otimes \mathrm{id})(U) = (\mathbb{1} \otimes U)(\mathrm{id} \otimes \Delta)(U).$

Theorem (De Commer, '09)

Replacing Δ by $U\Delta(\cdot)U^*$ one gets a new LCQG, \mathbb{G}_U .

 $(\mu_t)_{t>0} - w^*$ -cont. (symmetric) convolution semigroup of states on G.

Proposition

If *U* is invariant under the Markov semigroup $(T_t)_{t\geq 0}$ associated with $(\mu_t)_{t\geq 0}$ when applied to its left leg, then $(T_t)_{t\geq 0}$ is also induced by a convolution semigroup on \mathbb{G}_U .

Example

conv. semigroup on $\mathbb{R}^n \rightsquigarrow$ conv. semigroup on $\mathrm{H}^q_n(\mathbb{R}).$

 \mathbb{G} – locally compact quantum group $U \in L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G})$ – 2-cocycle: a unitary satisfying $(U \otimes 1)(\Delta \otimes id)(U) = (1 \otimes U)(id \otimes \Delta)(U).$

Theorem (De Commer, '09)

Replacing Δ by $U\Delta(\cdot)U^*$ one gets a new LCQG, \mathbb{G}_U .

 $(\mu_t)_{t\geq 0} - w^*$ -cont. (symmetric) convolution semigroup of states on G.

Proposition

If *U* is invariant under the Markov semigroup $(T_t)_{t\geq 0}$ associated with $(\mu_t)_{t\geq 0}$ when applied to its left leg, then $(T_t)_{t\geq 0}$ is also induced by a convolution semigroup on \mathbb{G}_U .

Example

conv. semigroup on $\mathbb{R}^n \rightsquigarrow$ conv. semigroup on $\mathrm{H}^q_n(\mathbb{R})$.

 \mathbb{G} – locally compact quantum group $U \in L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G})$ – 2-cocycle: a unitary satisfying $(U \otimes 1)(\Delta \otimes id)(U) = (1 \otimes U)(id \otimes \Delta)(U).$

Theorem (De Commer, '09)

Replacing Δ by $U\Delta(\cdot)U^*$ one gets a new LCQG, \mathbb{G}_U .

 $(\mu_t)_{t\geq 0} - w^*$ -cont. (symmetric) convolution semigroup of states on G.

Proposition

If *U* is invariant under the Markov semigroup $(T_t)_{t\geq 0}$ associated with $(\mu_t)_{t\geq 0}$ when applied to its left leg, then $(T_t)_{t\geq 0}$ is also induced by a convolution semigroup on \mathbb{G}_U .

Example

conv. semigroup on $\mathbb{R}^n \rightsquigarrow$ conv. semigroup on $\mathrm{H}^q_n(\mathbb{R})$.

 \mathbb{G} – locally compact quantum group $U \in L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G})$ – 2-cocycle: a unitary satisfying $(U \otimes 1)(\Delta \otimes id)(U) = (1 \otimes U)(id \otimes \Delta)(U).$

Theorem (De Commer, '09)

Replacing Δ by $U\Delta(\cdot)U^*$ one gets a new LCQG, \mathbb{G}_U .

 $(\mu_t)_{t\geq 0} - w^*$ -cont. (symmetric) convolution semigroup of states on G.

Proposition

If *U* is invariant under the Markov semigroup $(T_t)_{t\geq 0}$ associated with $(\mu_t)_{t\geq 0}$ when applied to its left leg, then $(T_t)_{t\geq 0}$ is also induced by a convolution semigroup on \mathbb{G}_U .

Example

conv. semigroup on $\mathbb{R}^n \rightsquigarrow$ conv. semigroup on $\mathbb{H}^q_n(\mathbb{R})$.

A. Skalski and A. Viselter, *Convolution semigroups on locally compact quantum groups and noncommutative Dirichlet forms* Journal de Mathématiques Pures et Appliquées, to appear, 52 pp.

M. Daws, A. Skalski and A. Viselter, *Around Property (T) for quantum groups* Comm. Math. Phys. 353 (2017), no. 1, 69–118.

M. Daws, P. Fima, A. Skalski and S. White, *The Haagerup property for locally compact quantum groups* J. Reine Angew. Math. 711 (2016), 189–229.

F. Cipriani, U. Franz and A. Kula, Symmetries of Lévy processes on compact quantum groups, their Markov semigroups and potential

- J. Funct. Anal. 266 (2014), no. 5, 2789-2844.
- D. Kyed, A cohomological description of property (T) for quantum groups J. Funct. Anal. 261 (2011), no. 6, 1469–1493.

- C. A. Akemann and M. E. Walter, Unbounded negative definite functions Canad. J. Math. 33 (1981), no. 4, 862–871.
- U. Haagerup, An example of a non nuclear C*-algebra, which has the metric approximation property Invent. Math. 50 (1978/79), no. 3, 279–293.

Thank you for your attention!

Ami Viselter (University of Haifa)