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Locally compact quantum groups

Definition (Kustermans–Vaes, ’00)
A locally compact quantum group is a pair G = (M,∆) such that:

1 M is a von Neumann algebra
2 ∆ : M → M ⊗M is a co-multiplication: a normal, faithful, unital
∗-homomorphism which is co-associative, i.e.,

(∆ ⊗ id)∆ = (id ⊗∆)∆

3 There are two n.s.f. weights ϕ,ψ on M (the Haar weights) with:
I ϕ((ω ⊗ id)∆(x)) = ω(1)ϕ(x) when ω ∈ M+

∗ , x ∈ M+ and ϕ(x) < ∞
I ψ((id ⊗ ω)∆(x)) = ω(1)ψ(x) when ω ∈ M+

∗ , x ∈ M+ and ψ(x) < ∞.

Denote L∞(G) := M.
Have it act standardly on the Hilbert space L2(G).
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Main result

G – locally compact quantum group

Theorem (Skalski–V)
There exist 1 − 1 correspondences between:

1 w∗-continuous, symmetric, convolution semigroups of states on G;
2 completely Dirichlet forms w.r.t. ϕ that are right-translation

invariant;
3 completely Markov semigroups on L2(G) that are symmetric and

contained in L∞(Ĝ);
4 completely Markov semigroups on L∞(G) that are right-translation

invariant and KMS-symmetric w.r.t. ϕ.
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Classical players
1. Convolution semigroups of probability measures

G – locally compact group

Convolution of measures
For positive Borel measures µ, ν on G, their convolution µ ? ν is given
by

(µ ? ν)(A) :=

∫
G

(∫
G

IA (gh) dµ(g)

)
dν(h) (∀measurable A).

Definition
A convolution semigroup of probability measures on G is a family
(µt )t≥0 of probability measures on G satisfying

µ0 = δe and µs ? µt = µs+t (∀s, t ≥ 0).

It is w∗-continuous if
∫

G f dµt −−−−→
t→0+

∫
G f dµ0 = f(e) for all f ∈ C0(G).
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Classical players
2. Lévy processes

Definition
Let d ∈N. A Lévy process with values in Rd is a family X = (Xt )t≥0 of
random variables from a probability space to Rd such that:

1 X0 = 0;
2 X has independent and stationary increments;
3 X is continuous.

Given a Lévy process X , define (µt )t≥0 to be its family of distributions:
for t ≥ 0, µt is the probability measure on Rd defined by µt := P ◦ X−1

t .

Theorem
1 (µt )t≥0 is a w∗-continuous convolution semigroup of probability

measures on Rd .
2 All such convolution semigroups arise this way.
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Classical players
3. Dirichlet forms and Markov semigroups

Definition
A (non-negative) quadratic form on a Hilbert space H is a semi-inner
product Q : D(Q) × D(Q)→ C on a subspace D(Q) of H.

Densely defined if D(Q) is dense in H.
Closedness.

More convenient to work with Q ′ : H→ [0,∞] given by

Q ′ζ :=

Q(ζ, ζ) ζ ∈ D(Q)

∞ else.

closed,
densely-defined
quadratic forms∥∥∥A1/2

·

∥∥∥2

←→
generally

unbounded, positive
selfadjoint operators

A

←→
C0-semigroups of

selfadjoint
contractions(

e−tA
)
t≥0
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Classical players
3. Dirichlet forms and Markov semigroups

(X ,m) – positive measure space

Definition
A map S : L2(X ,m)→ L2(X ,m) is Markov if for all f ∈ L2(X ,m),

0 ≤ f ≤ 1 =⇒ 0 ≤ Sf ≤ 1.

Definition (Based on Beurling–Deny, Acta Math., 1958)
A Dirichlet form on (X ,m) is a closed, densely defined, quadratic form
Q on L2(X ,m) such that for all R-valued f ∈ L2(X ,m),

Q
(
min (max(f ,0),1))

)
≤ Q(f).

Theorem (Beurling–Deny)
Dirichlet forms

on (X ,m) ←→
symmetric Markov semigroups

on L2(X ,m) / L∞(X ,m)
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Classical players
3. Dirichlet forms and Markov semigroups

G – locally compact group

Easy fact

µ – probability measure on G that is symmetric (µ(B) = µ(B−1), ∀B).
The operator f 7→ µ ? f on L2(G) is a symmetric Markov operator.

Corollary
w∗-continuous convolution semigroup of symmetric probability
measures on G
 symmetric Markov semigroup on L2(G)↔ Dirichlet form on L2(G).

Which Dirichlet forms on L2(G) arise this way?

Theorem
Precisely the right-translation invariant ones.
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Classical players
Interim summary

G-valued
Lévy processes

←→

w∗-cont.
conv. semigroups

of
prob. measures

on G

←→

right-translation
invariant

Dirichlet forms
on L2(G)
l

right-translation invariant
symmetric Markov semigroups

on L2(G) / L∞(G)
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Classical players
Interim summary

symmetric G-valued
Lévy processes

←→

w∗-cont.
conv. semigroups

of symmetric
prob. measures

on G

←→

right-translation
invariant

Dirichlet forms
on L2(G)
l

right-translation invariant
symmetric Markov semigroups

on L2(G) / L∞(G)
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Classical players
4. Conditionally negative-definite functions

G – locally compact group

Definition
A semigroup of normalized positive-definite functions on G is a family
(ϕt )t≥0 of positive-definite functions on G mapping e to 1 and satisfying

ϕ0 ≡ 1 and ϕs · ϕt = ϕs+t (∀s, t ≥ 0).

Adjectives: w∗-continuous
symmetric = invariant under inversion (⇐⇒ real valued).
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ϕ0 ≡ 1 and ϕs · ϕt = ϕs+t (∀s, t ≥ 0).

Adjectives: w∗-continuous
symmetric = invariant under inversion (⇐⇒ real valued).

Example

G = Γ̂, where Γ – locally compact abelian group
(µt )t≥0 – w∗-cont. convolution semigroup of prob. measures on Γ
 Define ϕt := µ̂t (the Fourier–Stieltjes transform) for all t ≥ 0.
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Classical players
4. Conditionally negative-definite functions

G – locally compact group

Definition
A semigroup of normalized positive-definite functions on G is a family
(ϕt )t≥0 of positive-definite functions on G mapping e to 1 and satisfying

ϕ0 ≡ 1 and ϕs · ϕt = ϕs+t (∀s, t ≥ 0).

Adjectives: w∗-continuous
symmetric = invariant under inversion (⇐⇒ real valued).

Assume w∗-continuity and symmetry.
These families are of the form (e−tθ)t≥0. “Who” are their generators θ?
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Classical players
4. Conditionally negative-definite functions

Definition
A continuous θ : G → R is conditionally negative definite if:

1 θ(e) = 0;
2 θ(g−1) = θ(g) for all g ∈ G;
3

(
θ(gi) + θ(gj) − θ(g−1

j gi)
)
1≤i,j≤n

is positive definite for all n ∈N and

g1, . . . ,gn ∈ G.

Schönberg’s Theorem
A continuous θ : G → R satisfying 1 and 2

is CND ⇐⇒ e−tθ is positive definite for all t ≥ 0.

Corollary
The w∗-cont. semigroups of symmetric, normalized, positive-definite
functions on G are exactly (e−tθ)t≥0 for a CND function θ : G → R.
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Classical players
4. Conditionally negative-definite functions

Example

For d ∈N and 0 ≤ α ≤ 2, the function Rd
→ [0,∞) given by x 7→ ‖x‖α

is conditionally negative definite.

Example (Haagerup, Invent. Math., 1978/79)
Let n ∈N. The function Fn → [0,∞) given by

s 7→ |s|

is conditionally negative definite.

Consequently:
1 the C∗-algebra C∗r (Fn) has the metric approximation property;
2 Fn is weakly amenable;
3 Fn has the Haagerup property.
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Classical players
Summary

symmetric G-valued
Lévy processes

←→

w∗-cont.
conv. semigroups

of symmetric
prob. measures

on G

←→

right-translation
invariant

Dirichlet forms
on L2(G)
l

right-translation invariant
symmetric Markov semigroups

on L2(G) / L∞(G)

Duality

w∗-cont. semigroups of
symmetric, normalized,

positive-definite functions on G
ϕt=e−tθ

←−−−−→

conditionally
negative-definite
functions on G
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Back to locally compact quantum groups
Features and two basic examples

Duality G 7→ Ĝ within the category satisfying ˆ̂
G = G.

G – locally compact group

G L∞(G) C0(G) Cu
0 (G) (states of Cu

0 (G),?) antipode

G

L∞(G) C0(G) C0(G)
regular probability

measures,
? = convolution

composition
with inverse

Ĝ

VN(G) C∗r (G) C∗(G)

normalized positive
definite functions,
? = product

λg 7→ λg−1

for g ∈ G

Ami Viselter (University of Haifa) Convolution semigroups on quantum groups ICMS, June 2018 15 / 27



Back to locally compact quantum groups
Features and two basic examples

Three “faces” (algebras):
the von Neumann algebra L∞(G);
the “reduced” C∗-algebra C0(G);
the “universal” C∗-algebra Cu

0 (G).
The conjugate space Cu

0 (G)∗ carries a convolution ? turning it into
a Banach algebra with unit ε (the co-unit).
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Back to locally compact quantum groups
Features and two basic examples

The antipode: an (unbounded) operator on L∞(G) / C0(G) / Cu
0 (G).
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0 (G),?) antipode

G L∞(G) C0(G) C0(G)
regular probability

measures,
? = convolution

composition
with inverse

Ĝ VN(G) C∗r (G) C∗(G)

normalized positive
definite functions,
? = product

λg 7→ λg−1

for g ∈ G
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Convolution semigroups

G – locally compact quantum group.

Definition
A convolution semigroup of states on G is a family (µt )t≥0 of states of
Cu

0 (G) such that

µ0 = ε and µs ? µt = µs+t (∀s, t ≥ 0).

Adjectives:
w∗-continuous
symmetric = invariant under the unitary antipode.
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Convolution semigroups

Examples
of w∗-continuous, symmetric, convolution semigroups of states on G:

G = G: w∗-continuous, symmetric, convolution semigroups of
probability measures on G.
G = Ĝ: w∗-continuous, symmetric, semigroups of
normalized positive-definite functions on G.

These capture the two types of semigroups discussed earlier.
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Non-commutative Dirichlet forms and Markov
semigroups

? Commutative = “classical” = on a positive measure space with a
reference measure.

? Non-commutative = on a von Neumann algebra with a reference
weight.
I Developed by many people: Albeverio–Høegh-Krohn, Sauvageot,

Davies–Lindsay, Guido–Isola–Scarlatti, Cipriani–Sauvageot,
Cipriani, Goldstein–Lindsay, ...

I We use the general definition of Goldstein–Lindsay (Math. Ann.,
1999). Basic difficulty: the domain of Dirichlet forms does not have
a canonical regularity property.
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Main result

G – locally compact quantum group
(Recall: L∞(G) – underlying von Neumann algebra, L2(G) – a standard
Hilbert space; ϕ – left Haar weight.)

Theorem (Skalski–V)
There exist 1 − 1 correspondences between:

1 w∗-continuous, symmetric, convolution semigroups of states on G;
2 completely Dirichlet forms w.r.t. ϕ that are right-translation

invariant;
3 completely Markov semigroups on L2(G) that are symmetric and

contained in L∞(Ĝ);
4 completely Markov semigroups on L∞(G) that are right-translation

invariant and KMS-symmetric w.r.t. ϕ.
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Earlier results

Our main theorem is definitive.
It unifies and extends:

G = G or Ĝ: the classical work;
G – compact quantum group: Cipriani–Franz–Kula (JFA, 2014).

Such G has a canonical Hopf ∗-algebra Pol(G).
Its embedding in L2(G) is a core of all Dirichlet forms the
problem becomes more algebraic.
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Approximation properties for groups

G – locally compact group.

Definition
G has the Haagerup property if it admits a mixing representation with
almost-invariant vectors.

Examples
Amenable groups; free groups; SL(2,Z); groups that act properly on a
tree (more generally: on a space with “walls”); Coxeter groups.

Definition
G does not have property (T) if it admits an ergodic representation with
almost-invariant vectors.

Examples (of property (T))
SL(n,Z), n ≥ 3; SL(n,K), n ≥ 3; Sp(2n,K), n ≥ 2 (K – local field).
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Approximation properties for groups
Geometric characterizations

Theorem (Guichardet, ’72 + Delorme, ’77; Akemann–Walter, ’81)
Assume that G is σ-compact.

1 G does not have property (T)
⇐⇒ it has an unbounded conditionally negative-definite function
⇐⇒ it has a w∗-cont. semigroup of symm. normalized
pos.-def. functions that is not norm continuous.

2 G has the Haagerup property
⇐⇒ it has a proper conditionally negative-definite function
⇐⇒ it has a w∗-cont. semigroup of symm. normalized
pos.-def. functions that is C0 in positive time.

(proper = goes to ∞ at ∞).

Example
The CND function s 7→ |s| on Fn presented earlier!
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Approximation properties for quantum groups
Geometric characterizations: the discrete case

G – second countable, discrete quantum group.

Definition
A conditionally negative-definite function on G is a map θ : Pol(Ĝ)→ C
satisfying:

1 θ(1) = 0;
2 θ(a∗) = θ(a) for all a ∈ Pol(Ĝ);
3 θ(a∗a) ≤ 0 for all a ∈ Pol(Ĝ) ∩ ker ε̂.

A version of Schönberg’s Theorem for finite-dim. co-algebras gives:

Theorem (Schürmann, 1985 + Bédos–Murphy–Tuset, 2001)

The correspondence θ↔ e−tθ
? is 1 − 1 between the CND functions on

G and w∗-cont. convolution semigroups of states on Ĝ.
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Approximation properties for quantum groups
Geometric characterizations: the discrete case

G – second countable, discrete quantum group.

Theorem (Kyed, JFA, 2011)
If G is unimodular, then it does not have property (T)

⇐⇒ it has an unbounded conditionally negative-definite function.

Theorem (Daws–Fima–Skalski–White, Crelle’s Journal, 2016)
G has the Haagerup property

⇐⇒ it has a proper conditionally negative-definite function.

Many applications, e.g. Daws–Skalski–V, Comm. Math. Phys., 2017.
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Approximation properties for quantum groups
Geometric characterizations: the general case

G – second countable, locally compact quantum group.

Theorems (Skalski–V)
1 G does not have property (T)
⇐⇒ Ĝ has a completely Dirichlet form w.r.t. ϕ̂ that is

right-translation invariant and unbounded
⇐⇒ Ĝ has a w∗-continuous, symmetric, convolution semigroup of

states that is not norm continuous.
2 G has the Haagerup property
⇐⇒ Ĝ has a completely Dirichlet form w.r.t. ϕ̂ that is

right-translation invariant and proper
⇐⇒ Ĝ has a w∗-continuous, symmetric, convolution semigroup of

states that is C0 in positive time.
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Convolution semigroups via cocycle twisting

G – locally compact quantum group
U ∈ L∞(G) ⊗ L∞(G) – 2-cocycle: a unitary satisfying

(U ⊗ 1)(∆ ⊗ id)(U) = (1 ⊗ U)(id ⊗∆)(U).

Theorem (De Commer, ’09)
Replacing ∆ by U∆(·)U∗ one gets a new LCQG, GU.

(µt )t≥0 – w∗-cont. (symmetric) convolution semigroup of states on G.

Proposition
If U is invariant under the Markov semigroup (Tt )t≥0 associated with
(µt )t≥0 when applied to its left leg, then (Tt )t≥0 is also induced by a
convolution semigroup on GU.

Example

conv. semigroup on Rn  conv. semigroup onHq
n(R).
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