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Motivation: K-theory of complex projective spaces

J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 1962.

K0(CPn) = Z[t]/〈tn+1〉, K1(CPn) = 0,

where t = 1− [ξ∗n] is the Euler class of the canonical line bundle ξn
over CPn.

The above result was generalized to Vaksman-Soibelman CPnq ’s by
F. Arici, S. Brain and G. Landi.

Initial goal
Geometric interpretation of generators of the K0-group of CPnq as
Milnor vector bundles.
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The Milnor connecting homomorphism

For any pullback unital algebras
A

}} !!
A1

π1 !!

A2

π2}}
A12

there exists a long exact sequence in algebraic K-theory.

The Milnor connecting homomorphism is given by

∂10 : K
alg
1 (A12)→ Kalg

0 (A) : [U ] 7→ [pU ]− [In],

where U ∈ GLn(A12) and pU is an idempotent matrix in M2n(A)
whose entries consist of liftings c, d ∈Mn(A1) of U such that
π1(c) = U−1 and π1(d) = U . The above construction was adapted
to the realm C*-algebras by Nigel Higson.
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The Vaksman-Soibelman quantum spheres

Definition (Vaksman-Soibelman odd quantum spheres)

For any 0 < q < 1, the C∗-algebra C(S2n+1
q ) of

the Vaksman-Soibelman quantum sphere is the universal C∗-algebra
generated by z0, z1, . . . , zn, subject to the following relations:

zizj = qzjzi for i < j, ziz
∗
j = qz∗j zi for i 6= j,

ziz
∗
i = z∗i zi + (q−2 − 1)

n∑
m=i+1

zmz
∗
m,

n∑
m=0

zmz
∗
m = 1.

Note that C(S3
q ) = C(SUq(2)). In the original approach of

Vaksman and Soibelman, the algebra C(S2n+1
q ) was defined as the

quantum homogeneous space C(SUq(n+ 1))/C(SUq(n)).
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The Hong-Szymański even quantum balls

Definition (Hong-Szymański even quantum balls)

For any 0 < q < 1, the C∗-algebra C(B2n
q ) of the Hong-Szymański

quantum ball is the universal C∗-algebra generated by z1, . . . , zn,
subject to the following relations:

zizj = q1/2zjzi for i < j, ziz
∗
j = q−1/2z∗j zi for i 6= j,

z∗i zi − qziz∗i = (1− q)

(
1−

n∑
m=i+1

zmz
∗
m

)
for i = 1, . . . , n.

We have that

C(∂B2n
q ) := C(B2n

q )/I ∼= C(S2n−1
q ),

where I is the ideal generated by 1−
∑n

m=1 zmz
∗
m.
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An equivariant pullback structure of C(S2n+1
q )

Theorem
∀n ∈ N \ {0} ∃ a U(1)-equivariant pullback of C*-algebras:

C(S2n+1
q )

vv ))
C(S2n−1

q )

((

C(B2n
q )⊗ C(U(1))

uu
C(S2n−1

q )⊗ C(U(1)).



Bundles over quantum complex projective spaces

Corollary

∀n ∈ N \ {0} ∃ a pullback of C*-algebras:

C(CPnq )

xx %%
C(CPn−1q )

&&

C(B2n
q )

yy
C(S2n−1

q ).

K0(C(CPnq )) // K0(C(CPn−1q ))⊕K0(C(B
2n
q )) // K0(C(S

2n−1
q ))

∂01
��

K1(C(S
2n−1
q ))

∂10

OO

K1(C(CPn−1q ))⊕K1(C(B
2n
q ))oo K1(C(CPnq ))oo
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Graph C*-algebras

Definition (Graph C*-algebra)

Let Q = (Q0, Q1, t, s) be a finite directed graph.

The universal
C*-algebra C∗(Q) of the graph Q is generated by orthogonal
projections pvi , where vi ∈ Q0, and partial isometries sei , where
ei ∈ Q1, subject to relations:

1 ∀ sei , sej ∈ Q1 : s
∗
eisej = δijt(ei),

2 ∀ v ∈ Q0 such that the preimage s−1(v) is not empty and
finite:

∑
se∈s−1(v) ses

∗
e = pv.

Examples: C, Mn(C), K, C(S1), T , On, Cuntz-Krieger algebras,
C(S2n+1

q ), C(B2n
q ) (Hong-Szymański).

Gauge action: There is a natural U(1)-coaction on C∗(Q) given by

δ(pv) = pv ⊗ 1, v ∈ Q0,

δ(se) = se ⊗ u, e ∈ Q1, u ∈ C(U(1)).
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Quantum spheres and balls as graph algebras
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Trimmable graph C*-algebras

Definition (Trimmable graph)

Let Q be a finite graph consisting of a sub-graph Q′ emitting at
least one edge to an external vertex v0 whose only outgoing edge e0
is a loop. We call such a graph (Q′, v0)-trimmable iff all edges from
Q′ to v0 begin in a vertex emitting an edge that ends inside Q′.



Pullback structure of trimmable graph C*-algebras (I)

π1

{{

f
''

δ $$

⊗

π2⊗idww
⊗

.



Pullback structure of trimmable graph C*-algebras (II)

Theorem
Let Q be a (Q′, v0) trimmable graph.
∀n ∈ N \ {0} ∃ a U(1)-equivariant pullback of C*-algebras:

C∗(Q)

vv ))
C∗(Q′′)

((

C∗(Q′)⊗ C(U(1))

uu
C∗(Q′′)⊗ C(U(1)).



Pullback structure of trimmable graph C*-algebras (II)
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Towards q-deformed CW-complexes

Definition
Let A and D be C*-algebras. We say that A is obtained from D by
attaching a q-n-cell, if there is a pullback diagram of C*-algebras

A

{{ %%
D

##

C(Bn
q )

yy
C(Sn−1q )

First examples

C(CPnq ), C(WP1
q(1, l)), C(RPnq ), C(Snq ), C(Tg,q) (Wagner)
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