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Initial goal

Geometric interpretation of generators of the Ko-group of CPy as
Milnor vector bundles.
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The Milnor connecting homomorphism is given by
D10 : K19 (A12) = K§'9(A) : [U] = [pu] — L],

where U € GL,,(A12) and py is an idempotent matrix in M, (A)
whose entries consist of liftings ¢, d € M,, (A1) of U such that
m1(c) = U~ and 71(d) = U. The above construction was adapted
to the realm C*-algebras by Nigel Higson.
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generated by zg, 21, . .., zn, subject to the following relations:
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* * —2 * *
zizi =27z + (" —1) g ZmZs g Zmzy, = 1.
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Note that C(Sg‘) = C(SU4(2)). In the original approach of
Vaksman and Soibelman, the algebra C'(S2"*1) was defined as the
quantum homogeneous space C(SU,(n + 1))/C(SU4(n)).
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We have that
C(0B") := C(B™") /I = C(S7" ),

where I is the ideal generated by 1 —>"" | 2,27,



An equivariant pullback structure of C(Sg’”ﬂ)

Vn € N\ {0} 3 a U(1)-equivariant pullback of C*-algebras:

SZn—l—l

/ \
(5" ™) C(B) ® C(U(1))
\

/

5277, 1 ®C
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Bundles over quantum complex projective spaces
Corollary

Vn € N\ {0} 3 a pullback of C*-algebras:
C(Cry)
c(cpr) c(Bzm)
S2n 1)

Ko (C(CPy)) — Ko(C(CPy™Y) & Ko(C(B}") — Ko(C(S7)

810T laol

K (C’(Sg”_l)) ~— K (C’((CP;_l)) @ K1(C(B§”)) ~—— K1(C(CF}))
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Definition (Graph C*-algebra)
Let @ = (Qo, Q1,t,s) be a finite directed graph. The universal
C*-algebra C*(Q) of the graph @ is generated by orthogonal
projections p,,,, where v; € (o, and partial isometries s.,, where
e; € 1, subject to relations:

O Vse;,Se; € Q1 s 5e; = dijt(es),

@ Vv € Qq such that the preimage s~!(v) is not empty and

finite: Zsees_l(’l}) SeS: = Py-

Examples: C, M, (C), K, C(S'), T, O, Cuntz-Krieger algebras,
C(5zm+1), C(BF") (Hong-Szymanski).

Gauge action: There is a natural U(1)-coaction on C*(()) given by
5(}77_)) =pp®1, veE QOa

I(se) =8 ®@u, e€@Qr, uelCUQ)).



Quantum spheres and balls as graph algebras




Quantum spheres and balls as graph algebras




Trimmable graph C*-algebras

Definition (Trimmable graph)
Let Q be a finite graph consisting of a sub-graph @’ emitting at
least one edge to an external vertex vy whose only outgoing edge eg

is a loop. We call such a graph (Q’, vo)-trimmable iff all edges from
Q' to vy begin in a vertex emitting an edge that ends inside Q'.




Pullback structure of trimmable graph C*-algebras (1)
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Definition
Let A and D be C*-algebras. We say that A is obtained from D by
attaching a q-n-cell, if there is a pullback diagram of C*-algebras

N
e T

C(sg™)

7)

v
First examples

C(CPY), C(WP(1,1)), C(RP?), C(S), C(Ty,q) (Wagner)

.




