Quantum groups acting on the nodal cubic

Manuel Martins and Ulrich Krähmer

Institute of Geometry, TU Dresden
Brief motivation

<table>
<thead>
<tr>
<th>Classical notions</th>
<th>Quantum analogues</th>
</tr>
</thead>
<tbody>
<tr>
<td>X set, G group</td>
<td>B algebra, A Hopf algebra,</td>
</tr>
<tr>
<td>$\alpha_x : G \to X$ surjective</td>
<td>$B \hookrightarrow A$ faithfully flat,</td>
</tr>
<tr>
<td>$\alpha : X \times G \to X$ action,</td>
<td>$\Delta : B \to B \otimes A$ right coideal</td>
</tr>
<tr>
<td>$H \leq G$ isotropy group</td>
<td>A/AB^+ quotient coalgebra</td>
</tr>
</tbody>
</table>
Brief motivation

<table>
<thead>
<tr>
<th>Classical notions</th>
<th>Quantum analogues</th>
</tr>
</thead>
<tbody>
<tr>
<td>X set, G group</td>
<td>B algebra, A Hopf algebra,</td>
</tr>
<tr>
<td>$\alpha_x : G \to X$ surjective</td>
<td>$B \hookrightarrow A$ faithfully flat,</td>
</tr>
<tr>
<td>$\alpha : X \times G \to X$ action,</td>
<td>$\Delta : B \to B \otimes A$ right coideal</td>
</tr>
<tr>
<td>$H \leq G$ isotropy group</td>
<td>A/AB^+ quotient coalgebra</td>
</tr>
</tbody>
</table>

Definition

An algebra embedding $B \subseteq A$ is **faithfully flat** when any chain complex

$$L \xrightarrow{f} M \xrightarrow{g} N, \quad g \circ f = 0$$

of B-modules is exact if and only if so is the induced complex of A-modules

$$A \otimes_B L \to A \otimes_B M \to A \otimes_B N.$$
Quantum homogeneous spaces

Definition

Let A be a Hopf algebra. A quantum homogeneous space is a right coideal subalgebra $B \subseteq A$, such that A is a faithfully flat B-module.
Quantum homogeneous spaces

Definition

Let A be a Hopf algebra. A **quantum homogeneous space** is a right coideal subalgebra $B \subseteq A$, such that A is a faithfully flat B-module.

- Given a right coideal subalgebra $B \subseteq A$,

 $$ C := A/AB^+, \quad \text{where } B^+ := B \cap \ker \varepsilon $$

 is a quotient coalgebra. It is Hopf iff $AB^+ = B^+A$.

Quantum homogeneous spaces

Definition

Let A be a Hopf algebra. A **quantum homogeneous space** is a right coideal subalgebra $B \subseteq A$, such that A is a faithfully flat B-module.

- Given a right coideal subalgebra $B \subseteq A$,
 \[C := A/AB^+, \quad \text{where } B^+ := B \cap \ker \varepsilon \]
 is a quotient coalgebra. It is Hopf iff $AB^+ = B^+ A$.
- The canonical map $\pi: A \to C$ induces a left coaction $\lambda: A \to C \otimes A$ (via Δ). Faithfully flatness implies that
 \[B = A^{CoC} := \{ a \in A \mid \lambda(a) = \pi(1) \otimes a \}. \]
\(B \subseteq A \) as a coalgebra Galois extension

- \(B \subseteq A \) is a **Galois C-extension**, since the Galois map

\[
\beta : A \otimes_B A \to C \otimes A, \quad a \otimes_B b \mapsto \pi(a_{(1)}) \otimes a_{(2)} b.
\]

is bijective with inverse given by \(\pi(a) \otimes b \mapsto a_1 \otimes_B S(a_2) b. \)
$B \subseteq A$ as a coalgebra Galois extension

- $B \subseteq A$ is a **Galois C-extension**, since the Galois map

 $$\beta : A \otimes_B A \to C \otimes A, \quad a \otimes_B b \mapsto \pi(a_{(1)}) \otimes a_{(2)} b.$$

 is bijective with inverse given by $\pi(a) \otimes b \mapsto a_1 \otimes_B S(a_2) b$.

- Classical: the orbit stabiliser theorem $\sim \to G/H \simeq X$, i.e., as a set $G \simeq X \times H$. However, $\alpha_X : G \to X$ is not necessarily a trivial H-principal bundle.
$B \subseteq A$ as a coalgebra Galois extension

- $B \subseteq A$ is a **Galois C-extension**, since the Galois map

 $$\beta : A \otimes_B A \to C \otimes A, \quad a \otimes_B b \mapsto \pi(a_1) \otimes a_2 b.$$

 is bijective with inverse given by $\pi(a) \otimes b \mapsto a_1 \otimes_B S(a_2) b$.

- Classical: the orbit stabiliser theorem $\sim G/H \simeq X$, i.e., as a set $G \cong X \times H$. However, $\alpha_X : G \to X$ is not necessarily a trivial H-principal bundle.

- Quantum: the most trivial bundle is $A = C \otimes B$, followed by $C \ltimes B$, followed by **cleft extensions**.

Definition

The extension $B \subseteq A$ is **C-cleft** if there exists a C-colinear map $\gamma : C \to A$ that is convolution invertible.
Cleftness can be equivalently stated as $A \cong C \otimes B$ as left C-comodules right B-modules. Think $c \mapsto c \otimes 1$ in $C \otimes B$ under the identification.
Cleftness can be equivalently stated as $A \cong C \otimes B$ as left C-comodules right B-modules. Think $c \mapsto c \otimes 1$ in $C \otimes B$ under the identification.

Faithful flatness implies that the functor

$$-\square_C A : \text{Mod}^C \to \text{Mod}^A_B$$

is an equivalence of categories. To finite-dimensional C-comodules V correspond finitely generated projective B-modules $\rightsquigarrow K$-theory of B.

Manuel Martins

Quantum groups acting on the nodal cubic

ICMS Workshop 12.6.2018
Cleftness and associated modules

Cleftness can be equivalently stated as $A \cong C \otimes B$ as left C-comodules right B-modules. Think $c \mapsto c \otimes 1$ in $C \otimes B$ under the identification.

Faithful flatness implies that the functor

$$\square_C A : \text{Mod}^C \to \text{Mod}_B^A$$

is an equivalence of categories. To finite-dimensional C-comodules V correspond finitely generated projective B-modules $\rightsquigarrow K$-theory of B.

Question: can we generate $K_0(B)$ in this way?
Cleftness and associated modules

Cleftness can be equivalently stated as $A \cong C \otimes B$ as left C-comodules right B-modules. Think $c \mapsto c \otimes 1$ in $C \otimes B$ under the identification.

Faithful flatness implies that the functor

$$-\square_C A : \text{Mod}^C \to \text{Mod}^A_B$$

is an equivalence of categories. To finite-dimensional C-comodules V correspond finitely generated projective B-modules $\cong K$-theory of B.

Question: can we generate $K_0(B)$ in this way?

C-cleft \Rightarrow all associated modules are free since $V \square_C C \otimes B \cong V \otimes B$. \Rightarrow answer is no, non-trivial elements in $K_0(B)$ are not reached.
The nodal cubic

Let k be a field.

The **nodal cubic** is plane curve in k^2 given by the equation $y^2 = x^2 + x^3$:

![Graph of the nodal cubic over \mathbb{R}]

Its coordinate ring is $B = k[x, y]/\langle y^2 - x^2 - x^3 \rangle$.

Singular curves cannot be homogeneous, right?
Consider the algebra \(\tilde{A} \) generated by \(x, y \) and invertible elements \(a, b \) satisfying

\[
\begin{align*}
y^2 &= x^2 + x^3, \quad a^3 = b^2, \\
ba &= ab, \quad ya = ay, \quad bx = xb, \quad by = -yb, \\
xa^2 + axa + a^2 x - a^2 + a^3 &= 0, \quad x^2 a + xax + ax^2 + ax + xa = 0,
\end{align*}
\]
Consider the algebra \tilde{A} generated by x, y and invertible elements a, b satisfying

\begin{align*}
y^2 &= x^2 + x^3, \quad a^3 = b^2, \\
ba &= ab, \quad ya = ay, \quad bx = xb, \quad by = -yb, \\
xa^2 + axa + a^2x - a^2 + a^3 &= 0, \quad x^2a + xax + ax^2 + ax + xa = 0,
\end{align*}

From these relations, it follows that \tilde{A} is a right free B-module (hence faithfully flat), with vector space basis

$$\left\{ a^i b^j (xa)^k x^m y^n \mid i \in \mathbb{Z}, k, m \in \mathbb{N}, j, n \in \{0, 1\} \right\}.$$

However, in this presentation, the commutation relations are too complicated for extensive computations.
A Hopf algebra structure in \tilde{A} is given by

\[
\Delta(x) = 1 \otimes x + x \otimes a, \quad \Delta(y) = 1 \otimes y + y \otimes b,
\]

\[
\Delta(a) = a \otimes a, \quad \Delta(b) = b \otimes b,
\]

\[
\varepsilon(x) = \varepsilon(y) = 0, \quad \varepsilon(a) = \varepsilon(b) = 1,
\]

\[
S(x) = -xa^{-1}, \quad S(y) = -yb^{-1}, \quad S(a) = a^{-1}, \quad S(b) = b^{-1},
\]

from where it is clear that $\Delta(B) \subseteq B \otimes A$.
A Hopf algebra structure in \tilde{A} is given by

$$
\Delta(x) = 1 \otimes x + x \otimes a, \quad \Delta(y) = 1 \otimes y + y \otimes b,
\Delta(a) = a \otimes a, \quad \Delta(b) = b \otimes b,
\varepsilon(x) = \varepsilon(y) = 0, \quad \varepsilon(a) = \varepsilon(b) = 1,
S(x) = -xa^{-1}, \quad S(y) = -yb^{-1}, \quad S(a) = a^{-1}, \quad S(b) = b^{-1},
$$

from where it is clear that $\Delta(B) \subseteq B \otimes A$.

- \tilde{A} is pointed but not connected. What else can we say about its properties, both as an algebra and as a coalgebra?
- Coproducts on powers of x and (xa) are also hard to compute, because of the commutation relations.
Playing around with the relations

Idea: find a smaller Hopf algebra which still admits a faithfully flat embedding of B as a right coideal subalgebra.

How: look for central and grouplike/primitive elements in \tilde{A}, generating (Hopf) ideals that intersect B trivially. E.g., $\langle a^3 - 1 \rangle$, since a^3 is grouplike and central.
Idea: find a smaller Hopf algebra which still admits a faithfully flat embedding of B as a right coideal subalgebra.

How: look for central and grouplike/primitive elements in \tilde{A}, generating (Hopf) ideals that intersect B trivially. E.g., $\langle a^3 - 1 \rangle$, since a^3 is grouplike and central.

If the field contains a primitive 3rd root r of unity, then one can define

$$F := xa + (r + 1)ax + \frac{r + 2}{3} (a - a^2).$$

Think of F as a change of the variable (xa) that yields a nicer presentation.
Playing around with relations

Lemma

The class of F in $\tilde{A}/\langle a^3 - 1 \rangle$ satisfies

$$aF = r^2 Fa, \quad bF = Fb, \quad yF = Fy,$$

$$xF = rFx + \frac{r + 2}{3} aF + \frac{r - 1}{3} F + \frac{1}{3} (a - 1),$$

and

$$\Delta(F) = a \otimes F + F \otimes a^2.$$

Furthermore, the class of F^3 is central and primitive.

\implies It is also “safe” to add the relation $F^3 = 0$.

Manuel Martins
Quantum groups acting on the nodal cubic
ICMS Workshop 12.6.2018 10 / 16
Lemma

The class of F in $\tilde{A}/\langle a^3 - 1 \rangle$ satisfies

\[aF = r^2 Fa, \quad bF = Fb, \quad yF = Fy, \]
\[xF = rFx + \frac{r + 2}{3} aF + \frac{r - 1}{3} F + \frac{1}{3}(a - 1), \]

and

\[\Delta(F) = a \otimes F + F \otimes a^2. \]

Furthermore, the class of F^3 is central and primitive.

It is also “safe” to add the relation $F^3 = 0$.

The resulting quotient $A := \tilde{A}/\langle a^3 - 1, F^3 \rangle$ is an iterated Ore extension and a finitely generated free B–module.
Note that B is the subalgebra of A generated by x and y. Let C be the subalgebra generated by a, b and F.
Note that \(B \) is the subalgebra of \(A \) generated by \(x \) and \(y \). Let \(C \) be the subalgebra generated by \(a, b \) and \(F \).

Theorem

- \(B \subseteq A \) is a quantum homogeneous space.
- \(C \cong A/AB^+ \) as coalgebras.
- Multiplication in \(A \) defines an isomorphism \(C \otimes B \cong A \) as left \(C \)-comodules and right \(B \)-modules, so \(A \) is a **cleft extension** of \(B \).
Note that B is the subalgebra of A generated by x and y. Let C be the subalgebra generated by a, b and F.

Theorem

- $B \subseteq A$ is a quantum homogeneous space.
- $C \cong A/AB^+$ as coalgebras.
- Multiplication in A defines an isomorphism $C \otimes B \cong A$ as left C-comodules and right B-modules, so A is a cleft extension of B.

The decomposition $A \cong C \otimes B$ follows explicitly from

$$\left\{ a^i b^j F^k x^m y^n \mid i, k \in \{0, 1, 2\}, m \in \mathbb{N}, j, n \in \{0, 1\} \right\}.$$

being a basis of A as a vector space. Since $B^+ = \langle x, y \rangle_B$, the projection $\pi : A \to A/AB^+$ restricts to an isomorphism $C \cong A/AB^+$.

Manuel Martins
Quantum groups acting on the nodal cubic
ICMS Workshop 12.6.2018
Relation to $U_r(\mathfrak{sl}_2)$ and the small quantum group $u_r(\mathfrak{sl}_2)$

One can also define elements

$$E := xa - rax + \frac{1-r}{3}(a - a^2), \quad K := a^2$$

which together with F satisfy the defining relations of $U_r(\mathfrak{sl}_2)$:

$$KE = r^2EK, \quad KF = rFK, \quad [E,F] = \frac{K - K^2}{r - r^2}, \quad KK^{-1} = K^{-1}K = 1.$$
Relation to $U_r(\mathfrak{sl}_2)$ and the small quantum group $u_r(\mathfrak{sl}_2)$

One can also define elements

$$E := xa - rax + \frac{1 - r}{3}(a - a^2), \quad K := a^2$$

which together with F satisfy the defining relations of $U_r(\mathfrak{sl}_2)$:

$$KE = r^2EK, \quad KF = rFK, \quad [E, F] = \frac{K - K^2}{r - r^2}, \quad KK^{-1} = K^{-1}K = 1.$$

Remark: Monomials in a, x and (xa) can be replaced by monomials in E, F and K (PBW-like basis), while b and y have the coproduct of the generators of Sweedler’s infinite dimensional Hopf algebra H.

Indeed, A can be seen as a quotient of $U_r(\mathfrak{sl}_2) \otimes H$ by the relations

$$F^3 = 0, \quad K^3 = 1, \quad y^2 = \frac{1}{27}E^3, \quad a^3 = b^2, \quad b^2 = 1, \quad yb = -by$$
Relation to $U_r(\mathfrak{sl}_2)$ and the small quantum group $u_r(\mathfrak{sl}_2)$

The **small quantum group** $u_r(\mathfrak{sl}_2)$ is obtained by truncating $U_r(\mathfrak{sl}_2)$, i.e., imposing the relations

$$E^3 = 0, \quad F^3 = 0, \quad K^3 = 1.$$
The **small quantum group** \(u_r(\mathfrak{sl}_2) \) is obtained by truncating \(U_r(\mathfrak{sl}_2) \), i.e., imposing the relations

\[
E^3 = 0, \quad F^3 = 0, \quad K^3 = 1.
\]

The last two of these relations are already present in \(A \), but the relation \(E^3 = 0 \) is equivalent to \(y^2 = x^2 + x^3 = 0 \). In this case, we obtain \(u_r(\mathfrak{sl}_2) \otimes H_4 \) as a quotient of \(A \), where \(H_4 \) is Sweedler’s 4-dimensional Hopf algebra.
Relation to $U_r(\mathfrak{sl}_2)$ and the small quantum group $u_r(\mathfrak{sl}_2)$

The **small quantum group** $u_r(\mathfrak{sl}_2)$ is obtained by truncating $U_r(\mathfrak{sl}_2)$, i.e., imposing the relations

$$E^3 = 0, \quad F^3 = 0, \quad K^3 = 1.$$

The last two of these relations are already present in A, but the relation $E^3 = 0$ is equivalent to $y^2 = x^2 + x^3 = 0$. In this case, we obtain $u_r(\mathfrak{sl}_2) \otimes H_4$ as a quotient of A, where H_4 is Sweedler’s 4-dimensional Hopf algebra.

We have the Casimir element in A

$$\Omega := EF + \frac{r^2K + rK^2}{(r - r^2)^2} = (xa)^2 - a^2x - a^2x^2 + \frac{1}{3}$$

which is central.
Ring theoretic properties of A

Proposition

The algebra A is Noetherian of Gelfand-Kirillov dimension 1, but neither regular nor semiprime.
Proposition

The algebra A is Noetherian of Gelfand-Kirillov dimension 1, but neither regular nor semiprime.

Noetherianity and GK dimension (resp. non-regularity) follow from B having the mentioned properties and A being a f. g. (resp. free) B-module.

The Casimir element Ω has as minimal polynomial:

$$t^3 - \frac{1}{3}t^2 - \frac{2}{27}t - \frac{1}{3}.$$

From where it follows that A is not semiprime.
Proposition

The algebra A is Noetherian of Gelfand-Kirillov dimension 1, but neither regular nor semiprime.

Noetherianity and GK dimension (resp. non-regularity) follow from B having the mentioned properties and A being a f. g. (resp. free) B-module.

The Casimir element Ω has as minimal polynomial:

$$t^3 - \frac{1}{3}t + \frac{2}{27} = \left(t - \frac{1}{3}\right)^2 \left(t + \frac{2}{3}\right),$$

from where it follows that A is not semiprime.
Main theorem - second half

Theorem

If $\text{char } k \neq 2$ and $0 \neq I \subseteq A$ is a Hopf ideal, then $B \cap I \neq 0$. In other words, A is a minimal Hopf algebra containing B as a quantum homogeneous space.

Motivation: classically, find a smallest subgroup that still acts transitively.
Main theorem - second half

Theorem

If char $k \neq 2$ and $0 \neq I \subseteq A$ is a Hopf ideal, then $B \cap I \neq 0$. In other words, A is a minimal Hopf algebra containing B as a quantum homogeneous space.

Motivation: classically, find a smallest subgroup that still acts transitively.

Proof: The group of group-likes of A is $\mathbb{Z}_3 \times \mathbb{Z}_2$. The presentation of A in terms of $U_r(\mathfrak{sl}_2)$ and H gives a complete characterization of the Yetter-Drinfel’d module of twisted primitives of A:

$$(1, 1): \langle x^2 + x^3 \rangle_k, \quad (1, a): \langle x, axa^2 \rangle_k, \quad (1, b): \langle y \rangle_k.$$
Main theorem - second half

Theorem

If $\text{char } k \neq 2$ and $0 \neq I \subseteq A$ is a Hopf ideal, then $B \cap I \neq 0$. In other words, A is a minimal Hopf algebra containing B as a quantum homogeneous space.

Motivation: classically, find a smallest subgroup that still acts transitively.

Proof: The group of group-likes of A is $\mathbb{Z}_3 \times \mathbb{Z}_2$. The presentation of A in terms of $U_r(\mathfrak{sl}_2)$ and H gives a complete characterization of the Yetter-Drinfel’d module of twisted primitives of A:

$$(1, 1): \langle x^2 + x^3 \rangle_k, \quad (1, a): \langle x, axa^2 \rangle_k, \quad (1, b): \langle y \rangle_k.$$

A Hopf algebra map $A \rightarrow A/I$ such that $B \cap I = 0$ induces a injective map on the level of group-like elements and subsequently, on the level of the twisted primitives of A. This implies that $A \rightarrow A/I$ is injective, so $I = 0 \not\leq$.

Manuel Martins

Quantum groups acting on the nodal cubic

ICMS Workshop 12.6.2018
Besides the Casimir, $y^2 = x^2 + x^3$ is also an element in the center. Is the whole center generated by these two?

What is the nilradical of A?

For other curves (as in Angela’s work), are the corresponding extensions cleft as well?

Can the K_0-group of B be obtained from A in some other way, such as a generalisation of a Mayer-Vietoris sequence to Hopf algebras or Hopf Galois extensions?