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Classical Martin boundary

- (Γ, µ) measure space, Γ discrete group with probability measure µ.

- Pµ left convolution Markov operator acting on functions
u ∈ `∞(Γ, µ) by

(Pµu)(s) =
∑
t∈Γ

pµ(s, t)u(t), with pµ(s, t) = µ(st−1).

- For any n ∈ N, define (Pnµ u)(s) =
∑
t∈Γ p

(n)
µ (s, t)u(t), where

p(0)(s, t) = δs,t, and p(n)
µ (s, t) =

∑
r∈Γ

p(n−1)
µ (s, r)pµ(r, t).

- the Green kernel is the operator Gµ =
∑∞
n=0 P

n
µ .
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Classical Martin boundary

Assumptions:

(i) transience, Gµ(s, t) :=
∑∞
n=0 p

(n)
µ (s, t) <∞, for any s, t ∈ Γ.

(ii) irreducibility, for any s, t ∈ Γ, there exists n ∈ N such that

p
(n)
µ (s, t) > 0.

Fix e ∈ Γ. For any s, t ∈ Γ the Martin kernel is the operator

Kµ : cc(Γ)→ `∞(Γ), defined by Kµ(s, t) := (Kµ δt)(s) =
Gµ(s, t)

Gµ(e, t)
.

- The Martin compactification ΓM of Γ with respect to a Markov
operator Pµ, is the smallest compactification for which all the
Martin kernels {Kµ(s, · ), s ∈ Γ} extend continuously.

- The Martin boundary is the compact space ∂ΓM = ΓM r Γ.
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Martin boundary of a hyperbolic graph

[Ancona – 1988], [Picardello, Woess – 1987](tree)

Assumptions: X a hyperbolic graph and P a Markov operator satisfying

(i) uniform irreducibility ;

(ii) bounded step-length;

(iii) the spectral radius of the random walk ρ = limn p
(n)
µ (s, s)1/n < 1.

Then the Martin boundary coincides with the hyperbolic boundary ∂X.

Main properties used: almost multiplicativity of kernels along geodesics

1

C1
G(s, v)G(v, t) ≤ G(s, t) ≤ C1G(s, v)G(v, t), C1 > 0, v ∈ [s, t].
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Notation

- Compact quantum group (C(G),∆).

- U ∈ B(HU )⊗ C(G) finite dimensional representation of G is an
invertible element satisfying (ι⊗∆)(U) = U12U13.

- I set of irreducible unitary representations.

- C[G]∗ '
∏
s∈I B(Hs), ∆̂(ω)(a⊗ b) = ω(ab) for ω ∈ C[G]∗ and

a, b ∈ C[G].

- dual discrete quantum group is `∞(Ĝ) = `∞-
⊕

s∈I B(Hs), with

∆̂ : `∞(Ĝ)→ `∞(Ĝ) ⊗̄ `∞(Ĝ).

- c0(Ĝ) = c0-
⊕

s∈I B(Hs) and C[Ĝ] =
⊕

s∈I B(Hs).

- For s ∈ I, Is ∈ B(Hs) minimal central projection.
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- c0(Ĝ) = c0-
⊕

s∈I B(Hs) and C[Ĝ] =
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Noncommutative Martin boundary

[Neshveyev, Tuset – 2004]

- µ probability measure on I, normal state

φµ =
∑
s∈I

µ(s)φs, on `∞(Ĝ) = `∞-
⊕
s∈I

B(Hs).

- left convolution Markov operator Pµ = (φµ ⊗ ι)∆̂ on `∞(Ĝ).

- Pµ preserves the centre Z(`∞(Ĝ)) ' `∞(I),

Pµ(It)Is = pµ(s, t)Is.

- Green operator Gµ =
∑∞
k=0 P

k
µ .
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Noncommutative Martin boundary

Assumptions on the Pµ-random walk:

(i) transience;

(ii) irreducibility.

- µ̌ defined by µ̌(s) = µ(s̄).

- Kµ̌ : C[Ĝ]→ `∞(Ĝ) is the Martin kernel defined by

Kµ̌(x) = Gµ̌(x)Gµ̌(I0)−1,

where I0 is the unit in the trivial representation.

- The Martin compactification is the C∗-algebra M̄µ generated by

c0(Ĝ) and {Kµ̌(x) s.t. x ∈ C[Ĝ] }.

- The Martin boundary is the quotient C∗-algebra
Mµ := M̄µ/c0(Ĝ).
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Free unitary quantum group Au(F )

- F ∈ GLn(C), n ≥ 2, such that Tr(F ∗F ) = Tr((F ∗F )−1);

- Au(F ) is the universal unital C∗-algebra generated by entries of a
matrix U = (uij)

n
i,j=1 such that

U = (uij)i,j and Ū := FU cF−1 are unitary,

where U c = (u∗ij)i,j .

- the comultiplication ∆ is defined by

∆(uij) =
n∑
k=1

uik ⊗ ukj ;

- (Au(F ),∆) is called the free unitary quantum group;
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Representation theory of Au(F )

- The set I of irreducible representations of Au(F ) identified with
N ∗ N:

1 e, U  α, Ū  β, β̄ = α, ᾱ = β.

- fusion rules
x⊗ y '

⊕
z∈N∗N

x=x0z, y=z̄y0

x0y0.

- Example αβ ⊗ αβ = αβαβ ⊕ αβ ⊕ e.

- q ∈ (0, 1] such that dimq(α) = Tr(F ∗F ) = q + q−1.

- F not a unitary 2-by-2 matrix, so q < 1.
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Cayley graph associated to Au(F )
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End compactification

- Boundary ∂I = Ī r I set of infinite words on the left.

- C(Ī) identified with the algebra of functions f ∈ `∞(I) such that

|f(yx)− f(x)| → 0 as x→∞, uniformly in y ∈ I.

[Vaes, Vergnioux, Vander Vennet – 2007]

- Unital C∗-algebra c0(Ĝ) ⊂ B ⊂ `∞(Ĝ),

B = {a ∈ `∞(Ĝ) : ‖ayx−ψyx,x(ax)‖ → 0 as x→∞, uniformly in y ∈ I}.

- B∞ = B/c0(Ĝ).
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Martin boundary of Au(F )

Theorem (M., Neshveyev)

• Free unitary quantum group G = Au(F ), with F not a unitary 2-by-2
matrix;

• generating finitely supported probability measure µ on I.

Then the Martin compactification M̄µ coincides with the compactification
B. It follows that the Martin boundary Mµ coincides with B∞.



Actions on B and on Mµ

- The Martin compactification M̄µ and by restriction the Martin
boundary Mµ are equipped with actions

αĜ : Mµ →M(Mµ ⊗ c0(Ĝ)), x 7→ ∆̂(x),

αG : Mµ → C(G)⊗Mµ, x 7→ αG(x),

where αG is the collection of actions

αsG : B(Hs)→ C(G)⊗B(Hs), αsG(x) = (Us)
∗
21(1⊗ x)(Us)21.

- The same holds for B and B∞.
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αG : Mµ → C(G)⊗Mµ, x 7→ αG(x),

where αG is the collection of actions

αsG : B(Hs)→ C(G)⊗B(Hs), αsG(x) = (Us)
∗
21(1⊗ x)(Us)21.

- The same holds for B and B∞.



Actions on B and on Mµ

- The Martin compactification M̄µ and by restriction the Martin
boundary Mµ are equipped with actions
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Duality Theorem

[De Commer, Yamashita – 2013, Neshveyev – 2014]

Theorem (Duality for G-C∗-algebras)
Let G be a reduced compact quantum group. Then the categories

(i) the category of unital G-C∗-algebras with unital G-equivariant
∗-homomorphisms as morphisms;

(ii) the category of pairs (D,M), where D is a right RepG-module
C∗-category and M is a generating object in D, with equivalence
classes of unitary RepG-module functors respecting the generating
objects as morphisms.

are equivalent. The actions in (i) are ergodic if and only if the
RepG-module C∗-categories in (ii) are semisimple, indecomposable and
with simple generating objects.
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Duality for adjoint actions on discrete quantum groups

- `∞(Ĝ) equipped with adjoint action αG.

- DĜ category with same objects as RepG and morphism spaces

DĜ(U, V ) := `∞-
⊕
s∈I

Mor(Us ⊗ U,Us ⊗ V )

⊂ `∞-
⊕
s∈I

B(Hs ⊗HU , Hs ⊗HV ) = `∞(Ĝ)⊗B(HU , HV ).

- A ⊂ `∞(Ĝ) a C∗-algebra. Then DA(U, V ) equal to the intersection
of DĜ(U, V ) with A⊗B(HU , HV ).

- The G-C∗-algebra A reconstructed from the morphism spaces
DA(1, Uy), y ∈ I.

- Denote by DB the category associated to B and by DM the
category associated to M̄µ.
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DĜ(U, V ) := `∞-
⊕
s∈I

Mor(Us ⊗ U,Us ⊗ V )

⊂ `∞-
⊕
s∈I

B(Hs ⊗HU , Hs ⊗HV ) = `∞(Ĝ)⊗B(HU , HV ).
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Morphism spaces DB(e, y)

- G = Au(F ), y ∈ I irreducible representation.

- Morphism spaces

DB(e, y) ⊂ `∞-
⊕
s∈I

Mor(s, s⊗ y),

nonzero only if y = z̄z ∈ I.
- Ωy = {s ∈ I | Mor(s, s⊗ y) 6= 0 }, is a branch of I and Ω̄y ⊂ Ī.

- For a particular element T ∈
⊕

s∈I Mor(s, s⊗ y),

DB(e, y) = C(Ω̄y)T.
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Branch Ω̄y of the tree
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Branch Ω̄y of the tree
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Morphism spaces DM(e, y)

- Pµ defined on
⊕

s∈I Mor(s, s⊗ y) ⊂ C[Ĝ]⊗B(C, Hy).

- y = e then Ωy = I, random walk on the centre with
P = pµ(s, t)s,t∈I .

- y 6= e, get ”transition probabilities” in R, Q = qµ(s, t)s,t∈Ωy
.

- Letting KQ(s, t) =
GQ(s, t)

GP (e, t)
, then DM(e, y) is generated by

morphisms

KQ(s, ·)T.

- Goal: understand asymptotic behaviour of KQ(s, ·).
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- y = e then Ωy = I, random walk on the centre with
P = pµ(s, t)s,t∈I .

- y 6= e, get ”transition probabilities” in R, Q = qµ(s, t)s,t∈Ωy
.

- Letting KQ(s, t) =
GQ(s, t)

GP (e, t)
, then DM(e, y) is generated by

morphisms

KQ(s, ·)T.

- Goal: understand asymptotic behaviour of KQ(s, ·).



Random walk on the centre

Properties of Pµ-random walk:

- There exists a constant C1 > 0 such that

1

C1
GP,∆x

(s, v)GP,∆x
(v, t) ≤ GP,∆x

(s, t) ≤ C1GP,∆x
(s, v)GP,∆x

(v, t)

for all x ∈ I, s, t ∈ ∆x and v ∈ [s, t].

- The norm of P ∈ B(`2(I,m)) is strictly smaller than 1, due to the
non coamenability of Au(F ).

- Uniform irreducibility, bounded range.

=⇒ KP (s, ·) ∈ C(Ī).
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Perturbed random walks on a tree

Estimates that we obtained:

- C constant depending on q, |y| and the support of µ such that

|qµ(s, t)− pµ(s, t)| ≤ Cq|s|, ∀s, t ∈ Ωy.

- |qµ(s, t)| ≤ pµ(s, t), for any s, t ∈ Ωy.

- Let ∆x = {ux |u ∈ I}. There is a constant C2 such that

|GQ,∆x(s, t)−GP,∆x(s, t)| ≤ C2q
|x|GP,∆x(s, t)

for all x ∈ Ωy and s, t ∈ ∆x.
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Proposition

- s ∈ Ωy, the function KQ(s, ·) =
GQ(s, ·)
GP (e, ·)

on Ωy extends to a

continuous function on Ω̄y ⊂ Ī,

so

DM(e, y) ⊆ DB(e, y).
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Thank you for your attention!


