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(ii) irreducibility, for any s,t € T', there exists n € N such that
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Assumptions:
(i) transience, G, (s,t) :==Y ", p,(f)(s,t) < oo, for any s,t € T.
(ii) irreducibility, for any s,t € T', there exists n € N such that
i (s,8) > 0.
Fix e € I'. For any s,t € I' the Martin kernel is the operator

K, :c.(') = £°(T), defined by K, (s,t) := (K,d)(s) =

- The Martin compactification T';; of T with respect to a Markov
operator P, is the smallest compactification for which all the
Martin kernels {K (s, -), s € I'} extend continuously.

- The Martin boundary is the compact space OI'y; = s ~ T
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Martin boundary of a hyperbolic graph

[Ancona — 1988], [Picardello, Woess — 1987](tree)

Assumptions: X a hyperbolic graph and P a Markov operator satisfying
(i) wniform irreducibility;
(ii) bounded step-length;
(iii) the spectral radius of the random walk p = lim,, /") (s, s)1/™ < 1.
Then the Martin boundary coincides with the hyperbolic boundary 0.X.

Main properties used: almost multiplicativity of kernels along geodesics

CLG(S,U)G(v,t) < G(s,t) < C1 G(s,v)G(v,t), Cy >0, v€ls,t].
1
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Notation

- Compact quantum group (C(G), A).

- U € B(Hy) ® C(Q) finite dimensional representation of G is an
invertible element satisfying (¢ ® A)(U) = Uy2Uss.

- I set of irreducible unitary representations.

- CIGT* ~ ], B(Hs), A(w)(a ® b) = w(ab) for w € C[G]* and
a,b € C[G].

- dual discrete quantum group is /> (G) = (>°- D.c; B(H), with
A 0°(G) = 1°(G) & 1=(G).

- CO(G) = Co- @sel B(H,) and C[G] = EBSGI B(H).

- For s € I, I, € B(H;) minimal central projection.
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Noncommutative Martin boundary

[Neshveyev, Tuset — 2004]

- 1 probability measure on I, normal state

bu =3 u(s)s on  £°(C) = >-D B(H.).

sel sel
- left convolution Markov operator P, = (¢, ® t)A on £=(G).
- P, preserves the centre Z(¢>°(G)) ~ (>°(I),

P,(I)Is = pu(s,t)1Ls.

Green operator G, = Y~ | P
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Noncommutative Martin boundary

Assumptions on the P,-random walk:

(i) transience;
(ii) irreducibility.

- [ defined by ji(s) = u(s).

- K;: C[G] — £°°(@G) is the Martin kernel defined by
Kp(x) = Gu(2)Gu(lo) ™",

where Iy is the unit in the trivial representation.
- The Martin compactification is the C*-algebra M,, generated by
co(G) and {K;(x) s.t. z € C[G] }.

- The Martin boundary is the quotient C*-algebra
M, = M,/co(Q).
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- F € GL,(C), n > 2, such that Tr(F*F) = Tr((F*F)~1);
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Free

unitary quantum group A,(F)

- F € GL,(C), n > 2, such that Tr(F*F) = Tr((F*F)™Y);

- A, (F) is the universal unital C*-algebra generated by entries of a
matrix U = (u;;)7;—; such that

U= (uij)i; and U:=FU°F~' are unitary,

where U = (uj;)i ;.

- the comultiplication A is defined by
Aluig) =Y i ® ugg;
k=1

- (Ay(F),A) is called the free unitary quantum group;
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Representation theory of A, (F)

The set I of irreducible representations of A, (F') identified with
N N:

L~e, U~a U~§B, B=a, a=24.

fusion rules

TRy~ @ ZoYo-

zENxN _
T=x0%, Y=2Yo

- Example af ® aff = afaf d af & e.
- q € (0,1] such that dim,(a) = Tr(F*F) =q+q .
- F not a unitary 2-by-2 matrix, so ¢ < 1.



Cayley graph associated to A, (F)
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End compactification

- Boundary I = I ~ I set of infinite words on the left.
- C(I) identified with the algebra of functions f € £>°(I) such that

|f(yx) — f(z)] = 0 as & — oo, uniformly iny € I.

[Vaes, Vergnioux, Vander Vennet — 2007]
- Unital C*-algebra ¢o(G) € B C £=(G),

B ={a€l*(G): ||ayz—Vyzz(az)|| = 0asz — oo, uniformly iny € I}.

- Boo = B/co(G).



Martin boundary of A, (F)

Theorem (M., Neshveyev)

e Free unitary quantum group G = A, (F), with F not a unitary 2-by-2
matrix;

e generating finitely supported probability measure p on I.

Then the Martin compactification M,, coincides with the compactification
B. It follows that the Martin boundary M,, coincides with B.
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Actions on I3 and on M,

- The Martin compactification J\qu and by restriction the Martin
boundary M), are equipped with actions

ag: My, — M(M, ® co(G)), @~ Az),
ag: M, - C(G)® M,, z = ag(z),

where ag is the collection of actions

af: BH,) » C(Q) ® B(H.),  ag(@) = (U5 (1©2)(U,)ar.

- The same holds for B and B..
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Duality Theorem

[De Commer, Yamashita — 2013, Neshveyev — 2014]

Theorem (Duality for G-C*-algebras)
Let G be a reduced compact quantum group. Then the categories

(i) the category of unital G-C*-algebras with unital G-equivariant
x-homomorphisms as morphisms;

(ii) the category of pairs (D, M), where D is a right Rep G-module
C*-category and M is a generating object in D, with equivalence
classes of unitary Rep G-module functors respecting the generating
objects as morphisms.

are equivalent. The actions in (i) are ergodic if and only if the
Rep G-module C*-categories in (ii) are semisimple, indecomposable and
with simple generating objects.
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Duality for adjoint actions on discrete quantum groups

- £°°(G) equipped with adjoint action ag.
- D¢ category with same objects as Rep G and morphism spaces

De(U, V) := 1> Mor (U, ® U, U, @ V)
sel
C - B(H, ® Hy, H, ® Hy) = (*(G) @ B(Hy, Hy).
sel

- A C{>*(G) a C*-algebra. Then D4(U, V) equal to the intersection
of DG(U’ V) with A ® B(HU, Hv)

- The G-C*-algebra A reconstructed from the morphism spaces
Da1,Uy), y e 1.

- Denote by Dg the category associated to B and by Dy the
category associated to M,,.
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Morphism spaces Dg(e, y)

- G = Au(F), y € I irreducible representation.
- Morphism spaces

Dg(e,y) C £°- @ Mor(s, s ® y),
sel

nonzero only if y =zz € I.
- Q,={seI|Mor(s,s®y) #0},isabranch of I and Q, C I.

- For a particular element T' € @, ; Mor(s, s ® y),

Ds(e,y) = C(Q)T.
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Morphism spaces D (e, )

P, defined on @, ; Mor(s,s ® y) C C[G] ® B(C, H).
- y = e then Q, = I, random walk on the centre with
P= pM(Sa t)s,tel-

- y # e, get "transition probabilities” in R, Q@ = q,.(s,1)s,teq, -
G t
- Letting Kg(s,t) = M then Dp(e,y) is generated by
Gp(e, t)
morphisms

KQ(& )T

Goal: understand asymptotic behaviour of K¢(s,-).
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Properties of P,,-random walk:

- There exists a constant C; > 0 such that

1

o Gpa,(5,0)Gpa,(v,t) <Gpa,(s,t) <C1Gpa,(5,0)Gpa,(v,t)

forall z € I, s,t € A, and v € [s,1].

- The norm of P € B(¢*(I,m)) is strictly smaller than 1, due to the
non coamenability of A, (F).

- Uniform irreducibility, bounded range.



Random walk on the centre

Properties of P,,-random walk:

- There exists a constant C; > 0 such that

1

o Gpa,(5,0)Gpa,(v,t) <Gpa,(s,t) <C1Gpa,(5,0)Gpa,(v,t)

forall z € I, s,t € A, and v € [s,1].

- The norm of P € B(¢*(I,m)) is strictly smaller than 1, due to the
non coamenability of A, (F).

- Uniform irreducibility, bounded range.

= Kp(s,") € C(I).
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Perturbed random walks on a tree

Estimates that we obtained:

- C constant depending on ¢, |y| and the support of u such that
0u(5,8) = pu(s, )] < CqPl, Vs, t € Q.
- gu(s, t)] < pu(s,t), for any s,t € €.
- Let A, = {ux |u € I'}. There is a constant C5 such that
Ga.a,(s,0) = Gpa,(s,1)] < Cog"lGpa, (s,1)

for all x € Q) and s5,t € A,.



Proposition

- s €Q,, the function Kg(s, ) = gQ()
p(e,-

on Q, extends to a

continuous function on €, C I,



Proposition

- s €Q,, the function Kg(s, ) = gQ()
p(e,-

continuous function on €, C I, so

on Q, extends to a

Dm (6, y) - DB(B’ y)



Proposition

- s €8y, the function Kg(s,-) = gQ(e)
PG,

continuous function on €, C I, so

on Q, extends to a

Dm (6, y) - DB(B’ y)

A priori the kernels could vanish on the boundary.



Proposition

- s €Q,, the function Kg(s, ) = g ( ’.)
ple,-

continuous function on €, C I, so

on Q, extends to a

Dm (6, y) - DB(B’ y)

A priori the kernels could vanish on the boundary.
Proposition

- too € Qy NI, Kg(s,te) > 0 for all s sufficiently close to to.



Proposition

- s €Q,, the function Kg(s, ) = g ( ’.)
ple,-

continuous function on €, C I, so

on Q, extends to a

Dm (6, y) - DB(B’ y)

A priori the kernels could vanish on the boundary.
Proposition

- too € Qy NI, Kg(s,te) > 0 for all s sufficiently close to to.

= every function in C({,) can be written as a combination of
Kq(s,-) for suitable s € Q,, so

Dpm (6’ y) 2 DB(Q, y)



Proposition

- s €Q,, the function Kg(s, ) = g ( ’.)
ple,-

continuous function on €, C I, so

on Q, extends to a

Dm (6, y) - DB(B’ y)

A priori the kernels could vanish on the boundary.
Proposition
- too € Qy NI, Kg(s,te) > 0 for all s sufficiently close to to.

= every function in C({,) can be written as a combination of
Kq(s,-) for suitable s € Q,, so

Dpm (6’ y) 2 DB(Q, y)

This concludes the proof.



Thank you for your attention!



