Contractive idempotent functionals on locally compact quantum groups

P. Kasprzak

June 11, 2018

Kasprzak

Contractive idempotents

June 11, 2018 1 / 18

Classical case

• G - l.c.g., H - open subgroup of G

- G l.c.g., H open subgroup of G
- $G/H = \{tH : t \in G\}$ (discrete) quotient space

- G l.c.g., H open subgroup of G
- $G/H = \{tH : t \in G\}$ (discrete) quotient space
- $\{\delta_{tH}: tH \in G/H\}$ o.n. basis of $\ell^2(G/H)$

- G l.c.g., H open subgroup of G
- $G/H = \{tH : t \in G\}$ (discrete) quotient space
- $\{\delta_{tH}: tH \in G/H\}$ o.n. basis of $\ell^2(G/H)$
- $\lambda^{G/H}: G \to \mathsf{B}(\ell^2(G/H))$ quasi-regular representation

$$\lambda_s^{G/H} \delta_{tH} = \delta_{stH}$$

Classical case

•
$$G$$
 - l.c.g., H - open subgroup of G

•
$$G/H = \{tH : t \in G\}$$
 - (discrete) quotient space

- $\{\delta_{tH}: tH \in G/H\}$ o.n. basis of $\ell^2(G/H)$
- $\lambda^{G/H}: G \to \mathsf{B}(\ell^2(G/H))$ quasi-regular representation

$$\lambda_s^{G/H} \delta_{tH} = \delta_{stH}$$

• $\langle \delta_{gH} | \lambda_s^{G/H} | \delta_{eH} \rangle = \mathbb{1}_{gH}(s)$ - characteristic function of gH

•
$$G$$
 - l.c.g., H - open subgroup of G

•
$$G/H = \{tH : t \in G\}$$
 - (discrete) quotient space

- $\{\delta_{tH} : tH \in G/H\}$ o.n. basis of $\ell^2(G/H)$
- $\lambda^{G/H}: G \to \mathsf{B}(\ell^2(G/H))$ quasi-regular representation

$$\lambda_s^{G/H} \delta_{tH} = \delta_{stH}$$

- $\langle \delta_{gH} | \lambda_s^{G/H} | \delta_{eH} \rangle = \mathbb{1}_{gH}(s)$ characteristic function of gH
- thus $\mathbb{1}_{gH} \in B(G)$ Fourier-Stieltjes algebra

•
$$G$$
 - l.c.g., H - open subgroup of G

•
$$G/H = \{tH : t \in G\}$$
 - (discrete) quotient space

- $\{\delta_{tH} : tH \in G/H\}$ o.n. basis of $\ell^2(G/H)$
- $\lambda^{G/H}: G \to \mathsf{B}(\ell^2(G/H))$ quasi-regular representation

$$\lambda_s^{G/H} \delta_{tH} = \delta_{stH}$$

- $\langle \delta_{gH} | \lambda_s^{G/H} | \delta_{eH} \rangle = \mathbb{1}_{gH}(s)$ characteristic function of gH
- thus $\mathbb{1}_{gH} \in B(G)$ Fourier-Stieltjes algebra
- C^{*}(G) universal group C^{*} algebra

•
$$G$$
 - l.c.g., H - open subgroup of G

•
$$G/H = \{tH : t \in G\}$$
 - (discrete) quotient space

- $\{\delta_{tH}: tH \in G/H\}$ o.n. basis of $\ell^2(G/H)$
- $\lambda^{G/H}: G \to \mathsf{B}(\ell^2(G/H))$ quasi-regular representation

$$\lambda_s^{G/H} \delta_{tH} = \delta_{stH}$$

- $\langle \delta_{gH} | \lambda_s^{G/H} | \delta_{eH} \rangle = \mathbb{1}_{gH}(s)$ characteristic function of gH
- thus $\mathbb{1}_{gH} \in B(G)$ Fourier-Stieltjes algebra
- C^{*}(G) universal group C^{*} algebra
- $U: G \to \mathsf{M}(\mathsf{C}^*(G))$ universal representation of G

•
$$G$$
 - l.c.g., H - open subgroup of G

•
$$G/H = \{tH : t \in G\}$$
 - (discrete) quotient space

- $\{\delta_{tH} : tH \in G/H\}$ o.n. basis of $\ell^2(G/H)$
- $\lambda^{G/H}: G \to \mathsf{B}(\ell^2(G/H))$ quasi-regular representation

$$\lambda_s^{G/H} \delta_{tH} = \delta_{stH}$$

- $\langle \delta_{gH} | \lambda_s^{G/H} | \delta_{eH} \rangle = \mathbb{1}_{gH}(s)$ characteristic function of gH
- thus $\mathbb{1}_{gH} \in B(G)$ Fourier-Stieltjes algebra
- C^{*}(G) universal group C^{*} algebra
- $U: G \to M(C^*(G))$ universal representation of G
- $B(G) = C^*(G)^*$ Banach algebra (with convolution)

•
$$G$$
 - l.c.g., H - open subgroup of G

•
$$G/H = \{tH : t \in G\}$$
 - (discrete) quotient space

- $\{\delta_{tH}: tH \in G/H\}$ o.n. basis of $\ell^2(G/H)$
- $\lambda^{G/H}: G
 ightarrow \mathsf{B}(\ell^2(G/H))$ quasi-regular representation

$$\lambda_s^{G/H} \delta_{tH} = \delta_{stH}$$

- $\langle \delta_{gH} | \lambda_s^{G/H} | \delta_{eH} \rangle = \mathbb{1}_{gH}(s)$ characteristic function of gH
- thus $\mathbb{1}_{gH} \in B(G)$ Fourier-Stieltjes algebra
- $C^*(G)$ universal group C^* algebra
- $U: G \to \mathsf{M}(\mathsf{C}^*(G))$ universal representation of G
- $B(G) = C^*(G)^*$ Banach algebra (with convolution)
- $B(G) \ni \omega \mapsto \lambda^u(\omega) \in \mathsf{C}_b(G)$ where $\lambda^u(\omega)(g) = \omega(U_g)$

• 1-1 correspondence between idempotents (idempotent functionals) in *B*(*G*)

• 1-1 correspondence between idempotents (idempotent functionals) in B(G) and elements of the boolean ring generated by the cosets of open subgroups of G (Host in general and Cohen for abelian groups)

- 1-1 correspondence between idempotents (idempotent functionals) in B(G) and elements of the boolean ring generated by the cosets of open subgroups of G (Host in general and Cohen for abelian groups).
- 1-1 correspondence between contractive idempotent functionals in *B*(*G*)

- 1-1 correspondence between idempotents (idempotent functionals) in B(G) and elements of the boolean ring generated by the cosets of open subgroups of G (Host in general and Cohen for abelian groups).
- 1-1 correspondence between contractive idempotent functionals in *B*(*G*) and cosets of open subgroups of *G* (Illie-Spronk).

- 1-1 correspondence between idempotents (idempotent functionals) in B(G) and elements of the boolean ring generated by the cosets of open subgroups of G (Host in general and Cohen for abelian groups).
- 1-1 correspondence between contractive idempotent functionals in *B*(*G*) and cosets of open subgroups of *G* (Illie-Spronk).
- 1-1 correspondence between contractive idempotent states in B(G)

- 1-1 correspondence between idempotents (idempotent functionals) in B(G) and elements of the boolean ring generated by the cosets of open subgroups of G (Host in general and Cohen for abelian groups).
- 1-1 correspondence between contractive idempotent functionals in *B*(*G*) and cosets of open subgroups of *G* (Illie-Spronk).
- 1-1 correspondence between contractive idempotent states in B(G) and open subgroups of G (Illie-Spronk).

Question

What are the quantum counterparts of these results?

• Locally compact quantum group is a quadruple $\mathbb{G} = (\mathsf{M}, \Delta, \varphi, \psi)$

< □ > < ---->

Locally compact quantum group is a quadruple G = (M, Δ, φ, ψ)
 M is a von Neumann algebra, later denoted by L[∞](G)

- Locally compact quantum group is a quadruple G = (M, Δ, φ, ψ)
 M is a von Neumann algebra, later denoted by L[∞](G)
 - \bullet $\Delta : \mathsf{M} \to \mathsf{M} \,\overline{\otimes} \,\mathsf{M}$ normal, injective, coassociative *-homomorphism

- Locally compact quantum group is a quadruple $\mathbb{G} = (\mathsf{M}, \Delta, arphi, \psi)$
 - **(**) M is a von Neumann algebra, later denoted by $L^\infty(\mathbb{G})$
 - **2** $\Delta: M \to M \bar{\otimes} M$ normal, injective, coassociative *-homomorphism
 - φ, ψ left resp. right invariant Haar weights, e.g. (ψ ⊗ id)(Δ(x)) = ψ(x)1 for all x ∈ M⁺

- Locally compact quantum group is a quadruple G = (M, Δ, φ, ψ)
 M is a von Neumann algebra, later denoted by L[∞](G)
 Δ : M → M ⊗ M normal, injective, coassociative *-homomorphism
 φ, ψ left resp. right invariant Haar weights, e.g. (ψ ⊗ id)(Δ(x)) = ψ(x)1 for all x ∈ M⁺
- The unitary antipode and the scaling group

$$R, \tau_t : L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}), S = R \circ \tau_{\frac{i}{2}}$$

Image: A matrix

- Locally compact quantum group is a quadruple G = (M, Δ, φ, ψ)
 M is a von Neumann algebra, later denoted by L[∞](G)
 Δ : M → M ⊗ M normal, injective, coassociative *-homomorphism
 φ, ψ left resp. right invariant Haar weights, e.g. (ψ ⊗ id)(Δ(x)) = ψ(x)1 for all x ∈ M⁺
- The unitary antipode and the scaling group

$$R, \tau_t : L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}), S = R \circ \tau_{\frac{i}{2}}$$

• The dual locally compact quantum group

$$\widehat{\mathbb{G}} = (L^{\infty}(\widehat{\mathbb{G}}), \widehat{\Delta}, \widehat{arphi}, \widehat{\psi})$$

Image: A math a math

- Locally compact quantum group is a quadruple G = (M, Δ, φ, ψ)
 M is a von Neumann algebra, later denoted by L[∞](G)
 Δ : M → M ⊗ M normal, injective, coassociative *-homomorphism
 φ, ψ left resp. right invariant Haar weights, e.g. (ψ ⊗ id)(Δ(x)) = ψ(x)1 for all x ∈ M⁺
- The unitary antipode and the scaling group

$$R, \tau_t : L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}), S = R \circ \tau_{\frac{i}{2}}$$

• The dual locally compact quantum group

$$\widehat{\mathbb{G}} = (L^{\infty}(\widehat{\mathbb{G}}), \widehat{\Delta}, \widehat{\varphi}, \widehat{\psi})$$

• $L^{\infty}(\mathbb{G}), L^{\infty}(\widehat{\mathbb{G}}) \subset \mathsf{B}(L^2(\mathbb{G})), \, \eta^{\psi}$ - the GNS map assigned to ψ

• Bicharacter: $W \in \mathsf{M}(\mathsf{C}_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}_0(\mathbb{G}))$

• Bicharacter:
$$\mathrm{W} \in \mathsf{M}(\mathsf{C}_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}_0(\mathbb{G})) \subset L^\infty(\widehat{\mathbb{G}}) \, \bar{\otimes} \, L^\infty(\mathbb{G})$$

- Bicharacter: $W \in \mathsf{M}(\mathsf{C}_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}_0(\mathbb{G})) \subset L^{\infty}(\widehat{\mathbb{G}}) \bar{\otimes} L^{\infty}(\mathbb{G})$
- $L^{\infty}(\mathbb{G}) = \{(\mu \otimes \mathrm{id})(\mathrm{W}) : \mu \in L^{\infty}(\widehat{\mathbb{G}})_*\}''$

- Bicharacter: $W \in \mathsf{M}(\mathsf{C}_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}_0(\mathbb{G})) \subset L^{\infty}(\widehat{\mathbb{G}}) \bar{\otimes} L^{\infty}(\mathbb{G})$
- $L^{\infty}(\mathbb{G}) = \{(\mu \otimes \mathrm{id})(\mathrm{W}) : \mu \in L^{\infty}(\widehat{\mathbb{G}})_*\}''$
- $\Delta(x) = \mathrm{W}(x \otimes 1)\mathrm{W}^*$ for $x \in L^{\infty}(\widehat{\mathbb{G}})$

- Bicharacter: $W \in \mathsf{M}(\mathsf{C}_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}_0(\mathbb{G})) \subset L^{\infty}(\widehat{\mathbb{G}}) \bar{\otimes} L^{\infty}(\mathbb{G})$
- $L^{\infty}(\mathbb{G}) = \{(\mu \otimes \mathrm{id})(\mathrm{W}) : \mu \in L^{\infty}(\widehat{\mathbb{G}})_*\}''$
- $\Delta(x) = \mathrm{W}(x \otimes 1)\mathrm{W}^*$ for $x \in L^{\infty}(\widehat{\mathbb{G}})$
- Half universal bicharacter: $W \in M(C_0^u(\widehat{\mathbb{G}}) \otimes C_0(\mathbb{G}))$

- Bicharacter: $W \in \mathsf{M}(\mathsf{C}_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}_0(\mathbb{G})) \subset L^{\infty}(\widehat{\mathbb{G}}) \bar{\otimes} L^{\infty}(\mathbb{G})$
- $L^{\infty}(\mathbb{G}) = \{(\mu \otimes \mathrm{id})(\mathrm{W}) : \mu \in L^{\infty}(\widehat{\mathbb{G}})_*\}''$
- $\Delta(x) = \mathrm{W}(x \otimes 1)\mathrm{W}^*$ for $x \in L^{\infty}(\widehat{\mathbb{G}})$
- Half universal bicharacter: $\mathbb{W}\in\mathsf{M}(\mathsf{C}^{\textit{u}}_0(\widehat{\mathbb{G}})\otimes\mathsf{C}_0(\mathbb{G}))$
- B(𝔅) := C₀^u(𝔅)^{*} Fourier-Stieltjes (Banach) algebra (with convolution)

- Bicharacter: $W \in \mathsf{M}(\mathsf{C}_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}_0(\mathbb{G})) \subset L^{\infty}(\widehat{\mathbb{G}}) \,\bar{\otimes} \, L^{\infty}(\mathbb{G})$
- $L^{\infty}(\mathbb{G}) = \{(\mu \otimes \mathrm{id})(\mathrm{W}) : \mu \in L^{\infty}(\widehat{\mathbb{G}})_*\}''$
- $\Delta(x) = \mathrm{W}(x \otimes \mathbb{1})\mathrm{W}^*$ for $x \in L^\infty(\widehat{\mathbb{G}})$
- Half universal bicharacter: $\mathbb{W}\in\mathsf{M}(\mathsf{C}^{\textit{u}}_{0}(\widehat{\mathbb{G}})\otimes\mathsf{C}_{0}(\mathbb{G}))$
- B(𝔅) := C₀^u(𝔅)[∗] Fourier-Stieltjes (Banach) algebra (with convolution)
- $\omega_1 * \omega_2 = (\omega_1 \otimes \omega_2) \circ \widehat{\Delta}^u$ where $\widehat{\Delta}^u \in \mathsf{Mor}(\mathsf{C}^u_0(\widehat{\mathbb{G}}), \mathsf{C}^u_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}^u_0(\widehat{\mathbb{G}}))$

- Bicharacter: $W \in \mathsf{M}(\mathsf{C}_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}_0(\mathbb{G})) \subset L^{\infty}(\widehat{\mathbb{G}}) \,\bar{\otimes} \, L^{\infty}(\mathbb{G})$
- $L^{\infty}(\mathbb{G}) = \{(\mu \otimes \mathrm{id})(\mathrm{W}) : \mu \in L^{\infty}(\widehat{\mathbb{G}})_*\}''$
- $\Delta(x) = \mathrm{W}(x \otimes \mathbb{1})\mathrm{W}^*$ for $x \in L^{\infty}(\widehat{\mathbb{G}})$
- Half universal bicharacter: $\mathbb{W}\in\mathsf{M}(\mathsf{C}^{\textit{u}}_{0}(\widehat{\mathbb{G}})\otimes\mathsf{C}_{0}(\mathbb{G}))$
- B(𝔅) := C₀^u(𝔅)^{*} Fourier-Stieltjes (Banach) algebra (with convolution)
- $\omega_1 * \omega_2 = (\omega_1 \otimes \omega_2) \circ \widehat{\Delta}^u$ where $\widehat{\Delta}^u \in \mathsf{Mor}(\mathsf{C}^u_0(\widehat{\mathbb{G}}), \mathsf{C}^u_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}^u_0(\widehat{\mathbb{G}}))$

•
$$B(\mathbb{G}) \ni \omega \mapsto \lambda^u(\omega) \in \mathsf{M}(\mathsf{C}_0(\mathbb{G}))$$

- Bicharacter: $W \in \mathsf{M}(\mathsf{C}_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}_0(\mathbb{G})) \subset L^{\infty}(\widehat{\mathbb{G}}) \,\bar{\otimes} \, L^{\infty}(\mathbb{G})$
- $L^{\infty}(\mathbb{G}) = \{(\mu \otimes \mathrm{id})(\mathrm{W}) : \mu \in L^{\infty}(\widehat{\mathbb{G}})_*\}''$
- $\Delta(x) = \mathrm{W}(x \otimes \mathbb{1})\mathrm{W}^*$ for $x \in L^{\infty}(\widehat{\mathbb{G}})$
- Half universal bicharacter: $\mathbb{W}\in\mathsf{M}(\mathsf{C}^{\textit{u}}_{0}(\widehat{\mathbb{G}})\otimes\mathsf{C}_{0}(\mathbb{G}))$
- B(𝔅) := C₀^u(𝔅)^{*} Fourier-Stieltjes (Banach) algebra (with convolution)
- $\omega_1 * \omega_2 = (\omega_1 \otimes \omega_2) \circ \widehat{\Delta}^u$ where $\widehat{\Delta}^u \in \mathsf{Mor}(\mathsf{C}^u_0(\widehat{\mathbb{G}}), \mathsf{C}^u_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}^u_0(\widehat{\mathbb{G}}))$
- $B(\mathbb{G}) \ni \omega \mapsto \lambda^u(\omega) \in \mathsf{M}(\mathsf{C}_0(\mathbb{G}))$ where $\lambda^u(\omega) = (\omega \otimes \mathrm{id})(\mathbb{W})$

- Bicharacter: $W \in \mathsf{M}(\mathsf{C}_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}_0(\mathbb{G})) \subset L^{\infty}(\widehat{\mathbb{G}}) \,\bar{\otimes} \, L^{\infty}(\mathbb{G})$
- $L^{\infty}(\mathbb{G}) = \{(\mu \otimes \mathrm{id})(\mathrm{W}) : \mu \in L^{\infty}(\widehat{\mathbb{G}})_*\}''$
- $\Delta(x) = \mathrm{W}(x \otimes \mathbb{1})\mathrm{W}^*$ for $x \in L^{\infty}(\widehat{\mathbb{G}})$
- Half universal bicharacter: $\mathbb{W}\in\mathsf{M}(\mathsf{C}^{\textit{u}}_{0}(\widehat{\mathbb{G}})\otimes\mathsf{C}_{0}(\mathbb{G}))$
- B(𝔅) := C₀^u(𝔅)^{*} Fourier-Stieltjes (Banach) algebra (with convolution)
- $\omega_1 * \omega_2 = (\omega_1 \otimes \omega_2) \circ \widehat{\Delta}^u$ where $\widehat{\Delta}^u \in \mathsf{Mor}(\mathsf{C}^u_0(\widehat{\mathbb{G}}), \mathsf{C}^u_0(\widehat{\mathbb{G}}) \otimes \mathsf{C}^u_0(\widehat{\mathbb{G}}))$
- $B(\mathbb{G}) \ni \omega \mapsto \lambda^u(\omega) \in \mathsf{M}(\mathsf{C}_0(\mathbb{G}))$ where $\lambda^u(\omega) = (\omega \otimes \mathrm{id})(\mathbb{W})$
- λ^u is injective

Host-Illie-Spronk problem for quantum groups

What are the λ^{u} - images of $\{ \omega \in C_{0}^{u}(\widehat{\mathbb{G}})^{*} : \omega * \omega = \omega \text{ and } \omega - \text{state} \}?$

Host-Illie-Spronk problem for quantum groups

What are the λ^u - images of

$$\{ \omega \in C_0^u(\widehat{\mathbb{G}})^* : \omega * \omega = \omega \text{ and } \|\omega\| = 1 \}?$$
What are the λ^{u} - images of 4 $\{\omega \in C_{0}^{u}(\widehat{\mathbb{G}})^{*} : \omega * \omega = \omega \text{ and } \omega - \text{state}\}?$ 5 $\{\omega \in C_{0}^{u}(\widehat{\mathbb{G}})^{*} : \omega * \omega = \omega \text{ and } \|\omega\| = 1\}?$

Kasprzak

What are the λ^u - images of

$$\{ \omega \in \mathsf{C}^{u}_{\mathsf{0}}(\widehat{\mathbb{G}})^{*} : \omega * \omega = \omega \text{ and } \omega - \text{state} \}$$

$$\{ \omega \in \mathsf{C}^{\mathsf{u}}_{\mathsf{0}}(\mathbb{G})^* : \omega * \omega = \omega \text{ and } \|\omega\| = 1 \}?$$

$$\ \mathbf{i} \ \{\omega \in \mathsf{C}^{u}_{\mathsf{0}}(\widehat{\mathbb{G}})^{*} : \omega * \omega = \omega\}?$$

• We answer Question 1 and 2. Question 3 is open.

What are the λ^u - images of

$$\{ \omega \in \mathsf{C}^{u}_{\mathsf{0}}(\widehat{\mathbb{G}})^{*} : \omega * \omega = \omega \text{ and } \omega - \text{state} \}$$

$$\{ \omega \in \mathsf{C}^{\mathsf{u}}_{\mathsf{0}}(\mathbb{G})^* : \omega * \omega = \omega \text{ and } \|\omega\| = 1 \} ?$$

$$\ \mathbf{O} \ \{\omega \in \mathsf{C}^{u}_{\mathsf{O}}(\mathbb{G})^{*} : \omega * \omega = \omega\}?$$

- We answer Question 1 and 2. Question 3 is open.
- idempotent states for QGs: Franz, Salmi, Skalski, Tomatsu

What are the λ^u - images of

$$\{ \omega \in C_0^u(\widehat{\mathbb{G}})^* : \omega * \omega = \omega \text{ and } \omega - \text{state} \}?$$

$$\{ \omega \in \mathsf{C}^{u}_{\mathsf{0}}(\widehat{\mathbb{G}})^{*} : \omega * \omega = \omega \}?$$

- We answer Question 1 and 2. Question 3 is open.
- idempotent states for QGs: Franz, Salmi, Skalski, Tomatsu
- idempotent contractive functionals for QG's: Neufang, Salmi, Skalski, Spronk

Let $P \in L^{\infty}(\mathbb{G})$ be a selfadjoint projection.

Let $P \in L^{\infty}(\mathbb{G})$ be a selfadjoint projection. We say that P is a group-like projection if

 $\Delta(P)(\mathbb{1}\otimes P)=P\otimes P.$

Let $P\in L^\infty(\mathbb{G})$ be a selfadjoint projection. We say that P is a group-like projection if

$$\Delta(P)(\mathbb{1}\otimes P)=P\otimes P.$$

Example

Let $P\in L^\infty(\mathbb{G})$ be a selfadjoint projection. We say that P is a group-like projection if

$$\Delta(P)(\mathbb{1}\otimes P)=P\otimes P.$$

Example

Let H be an open subgroup of G

• $1_H \in L^{\infty}(G)$ is a group-like projection

Let $P\in L^\infty(\mathbb{G})$ be a selfadjoint projection. We say that P is a group-like projection if

$$\Delta(P)(\mathbb{1}\otimes P)=P\otimes P.$$

Example

- $\mathbb{1}_H \in L^{\infty}(G)$ is a group-like projection
- all group-like projections in $L^\infty(G)$ are of this form

Let $P\in L^\infty(\mathbb{G})$ be a selfadjoint projection. We say that P is a group-like projection if

$$\Delta(P)(\mathbb{1}\otimes P)=P\otimes P.$$

Example

- $\mathbb{1}_H \in L^{\infty}(G)$ is a group-like projection
- all group-like projections in $L^\infty(G)$ are of this form
- Illie-Spronk: 1-1 between idempotent states in B(G) and group-like projections in L[∞](G)

Let $P\in L^\infty(\mathbb{G})$ be a selfadjoint projection. We say that P is a group-like projection if

$$\Delta(P)(\mathbb{1}\otimes P)=P\otimes P.$$

Example

- $\mathbb{1}_H \in L^{\infty}(G)$ is a group-like projection
- all group-like projections in $L^\infty(G)$ are of this form
- Illie-Spronk: 1-1 between idempotent states in B(G) and group-like projections in L[∞](G)

 $\lambda^{u}: C^{u}_{0}(\widehat{\mathbb{G}})^{*} \to L^{\infty}(\mathbb{G})$ yields a 1-1 correspondence between

Kasprzak

 $\lambda^u: C^u_0(\widehat{\mathbb{G}})^* \to L^\infty(\mathbb{G})$ yields a 1-1 correspondence between idempotent states in $C^u_0(\widehat{\mathbb{G}})^*$

 $\lambda^{u}: C_{0}^{u}(\widehat{\mathbb{G}})^{*} \to L^{\infty}(\mathbb{G})$ yields a 1-1 correspondence between idempotent states in $C_{0}^{u}(\widehat{\mathbb{G}})^{*}$ and group-like projections in $L^{\infty}(\mathbb{G})$ which are preserved by the scaling group $\tau: \mathbb{R} \to \operatorname{Aut}(L^{\infty}(\mathbb{G}))$.

 $\lambda^{u} : C_{0}^{u}(\widehat{\mathbb{G}})^{*} \to L^{\infty}(\mathbb{G})$ yields a 1-1 correspondence between idempotent states in $C_{0}^{u}(\widehat{\mathbb{G}})^{*}$ and group-like projections in $L^{\infty}(\mathbb{G})$ which are preserved by the scaling group $\tau : \mathbb{R} \to \operatorname{Aut}(L^{\infty}(\mathbb{G}))$.

Notation

Given an idempotent state $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ we write

$$P_{\omega} = \lambda^{u}(\omega) = (\omega \otimes \mathrm{id})(W)$$

Let $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. There are

• idempotent states, denoted $|\omega|_r, |\omega|_l \in C^u_0(\widehat{\mathbb{G}})^*$ - right and left absolute values of ω

Let $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. There are

• idempotent states, denoted $|\omega|_r, |\omega|_l \in C^u_0(\widehat{\mathbb{G}})^*$ - right and left absolute values of ω

• an element $u \in C^u_0(\widehat{\mathbb{G}})$ such that

Let $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. There are

• idempotent states, denoted $|\omega|_r, |\omega|_l \in C^u_0(\widehat{\mathbb{G}})^*$ - right and left absolute values of ω

• an element
$$u \in C^u_0(\widehat{\mathbb{G}})$$
 such that

•
$$\omega = |\omega|_I \cdot u = u \cdot |\omega|_r$$

Let $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. There are

• idempotent states, denoted $|\omega|_r, |\omega|_l \in C^u_0(\widehat{\mathbb{G}})^*$ - right and left absolute values of ω

• an element
$$u \in \mathsf{C}^u_0(\widehat{\mathbb{G}})$$
 such that

•
$$\omega = |\omega|_I \cdot u = u \cdot |\omega|_r$$

• e.g.
$$\omega(x) = |\omega|_I(ux)$$
 for all $x \in C_0^u(\widehat{\mathbb{G}})$

Let $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. There are

• idempotent states, denoted $|\omega|_r, |\omega|_l \in C^u_0(\widehat{\mathbb{G}})^*$ - right and left absolute values of ω

• an element
$$u \in \mathsf{C}^u_0(\widehat{\mathbb{G}})$$
 such that

•
$$\omega = |\omega|_I \cdot u = u \cdot |\omega|_r$$

• e.g.
$$\omega(x) = |\omega|_I(ux)$$
 for all $x \in C_0^u(\widehat{\mathbb{G}})$

We shall write $P_{\omega} = \lambda^{u}(\omega) = (\omega \otimes id)(W).$

From CIF to shifts of group-like projections

Definition

Let $P, Q \in L^{\infty}(\mathbb{G})$ be non-zero projections where P is a group-like projection. We say that Q is a

Let $P,Q\in L^\infty(\mathbb{G})$ be non-zero projections where P is a group-like projection. We say that Q is a

• left shift of P if $\Delta(Q)(Q \otimes 1) = Q \otimes P$

Let $P,Q\in L^\infty(\mathbb{G})$ be non-zero projections where P is a group-like projection. We say that Q is a

- left shift of P if $\Delta(Q)(Q \otimes 1) = Q \otimes P$
- right shift of P if $\Delta(Q)(\mathbb{1}\otimes Q)=P\otimes Q$

Let $P,Q\in L^\infty(\mathbb{G})$ be non-zero projections where P is a group-like projection. We say that Q is a

- left shift of P if $\Delta(Q)(Q\otimes 1) = Q\otimes P$
- right shift of P if $\Delta(Q)(\mathbb{1}\otimes Q)=P\otimes Q$

Example

Let $P,Q\in L^\infty(\mathbb{G})$ be non-zero projections where P is a group-like projection. We say that Q is a

- left shift of P if $\Delta(Q)(Q\otimes 1) = Q\otimes P$
- right shift of P if $\Delta(Q)(\mathbb{1}\otimes Q)=P\otimes Q$

Example

Let H be open subgroup of G, $g \in G$

• $\mathbb{1}_{gH} \in L^{\infty}(G)$ is a left shift of group-like projection $\mathbb{1}_{H}$

Let $P,Q\in L^\infty(\mathbb{G})$ be non-zero projections where P is a group-like projection. We say that Q is a

- left shift of P if $\Delta(Q)(Q\otimes 1) = Q\otimes P$
- right shift of P if $\Delta(Q)(\mathbb{1}\otimes Q)=P\otimes Q$

Example

- $\mathbb{1}_{gH} \in L^{\infty}(G)$ is a left shift of group-like projection $\mathbb{1}_{H}$
- all left shifts of $\mathbb{1}_H$ are of this form

Let $P,Q\in L^\infty(\mathbb{G})$ be non-zero projections where P is a group-like projection. We say that Q is a

- left shift of P if $\Delta(Q)(Q\otimes 1) = Q\otimes P$
- right shift of P if $\Delta(Q)(\mathbb{1}\otimes Q)=P\otimes Q$

Example

- $\mathbb{1}_{gH} \in L^{\infty}(G)$ is a left shift of group-like projection $\mathbb{1}_{H}$
- all left shifts of $\mathbb{1}_H$ are of this form
- Illie-Spronk: 1-1 between contractive idempotent functionals in B(G) and left shifts of group-like projections in L[∞](G)

Let $P,Q\in L^\infty(\mathbb{G})$ be non-zero projections where P is a group-like projection. We say that Q is a

- left shift of P if $\Delta(Q)(Q\otimes 1) = Q\otimes P$
- right shift of P if $\Delta(Q)(\mathbb{1}\otimes Q)=P\otimes Q$

Example

- $\mathbb{1}_{gH} \in L^{\infty}(G)$ is a left shift of group-like projection $\mathbb{1}_{H}$
- all left shifts of $\mathbb{1}_H$ are of this form
- Illie-Spronk: 1-1 between contractive idempotent functionals in B(G) and left shifts of group-like projections in L[∞](G)

From CIFs to shifts of group-like projections

Theorem (PK)

Let $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. Then

From CIFs to shifts of group-like projections

Theorem (PK)

Let $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. Then

• P_{ω} is preserved by the scaling group τ

Let $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. Then

- P_{ω} is preserved by the scaling group au
- P_{ω} is a left shift of $P_{|\omega|_r}$

Let $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. Then

- P_{ω} is preserved by the scaling group au
- P_{ω} is a left shift of $P_{|\omega|_r}$
- P_{ω} is a right shift of $P_{|\omega|_{I}}$

Let $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. Then

- P_{ω} is preserved by the scaling group au
- P_{ω} is a left shift of $P_{|\omega|_r}$
- P_{ω} is a right shift of $P_{|\omega|_{l}}$

Since $P_\omega = (\omega \otimes \mathrm{id})(W)$ and $(\widehat{ au}_t^u \otimes au_t)(W) = W$ we get

Let $\omega\in C^u_0(\widehat{\mathbb{G}})^*$ be a contractive idempotent functional. Then

- P_{ω} is preserved by the scaling group au
- P_{ω} is a left shift of $P_{|\omega|_r}$
- P_{ω} is a right shift of $P_{|\omega|_{l}}$

Since $P_\omega = (\omega \otimes \mathrm{id})(\mathbb{W})$ and $(\widehat{ au}^u_t \otimes au_t)(\mathbb{W}) = \mathbb{W}$ we get

Corollary

Contractive idempotent functionals are preserved by $\widehat{\tau}^{u}$

$$\omega = \omega \circ \widehat{\tau}_t^u$$
 for all $t \in \mathbb{R}$

From shifts of group-like projections to CIFs

Theorem (PK)

Let \mathbb{G} be a lcgq and Q a left shift a of group like projection P such that $\tau_t(Q) = Q$ for all $t \in \mathbb{R}$.

From shifts of group-like projections to CIFs

Theorem (PK)

Let \mathbb{G} be a lcgq and Q a left shift a of group like projection P such that $\tau_t(Q) = Q$ for all $t \in \mathbb{R}$. Then there exists a unique contractive idempotent functional $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ such that $Q = P_\omega$.
Theorem (PK)

Let \mathbb{G} be a lcgq and Q a left shift a of group like projection P such that $\tau_t(Q) = Q$ for all $t \in \mathbb{R}$. Then there exists a unique contractive idempotent functional $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ such that $Q = P_\omega$.

Proof.

• Show that $\Delta(P)(R(Q)\otimes \mathbb{1})=R(Q)\otimes Q$

Theorem (PK)

Let \mathbb{G} be a lcgq and Q a left shift a of group like projection P such that $\tau_t(Q) = Q$ for all $t \in \mathbb{R}$. Then there exists a unique contractive idempotent functional $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ such that $Q = P_\omega$.

- Show that $\Delta(P)(R(Q)\otimes \mathbb{1})=R(Q)\otimes Q$
- Conclude that there exists μ , $\|\mu\| \leq 1$ such that $(\mu \otimes \mathrm{id})(\Delta(P)) = Q$

Theorem (PK)

Let \mathbb{G} be a lcgq and Q a left shift a of group like projection P such that $\tau_t(Q) = Q$ for all $t \in \mathbb{R}$. Then there exists a unique contractive idempotent functional $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ such that $Q = P_\omega$.

- Show that $\Delta(P)(R(Q)\otimes \mathbb{1})=R(Q)\otimes Q$
- Conclude that there exists μ , $\|\mu\| \leq 1$ such that $(\mu \otimes \mathrm{id})(\Delta(P)) = Q$
- Note that P is preserved by au, i.e. $P = (\tilde{\omega} \otimes \mathrm{id})(W)$

Theorem (PK)

Let \mathbb{G} be a lcgq and Q a left shift a of group like projection P such that $\tau_t(Q) = Q$ for all $t \in \mathbb{R}$. Then there exists a unique contractive idempotent functional $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ such that $Q = P_\omega$.

- Show that $\Delta(P)(R(Q)\otimes \mathbb{1})=R(Q)\otimes Q$
- Conclude that there exists μ , $\|\mu\| \leq 1$ such that $(\mu \otimes \mathrm{id})(\Delta(P)) = Q$
- Note that P is preserved by τ , i.e. $P = (\tilde{\omega} \otimes id)(W)$
- Note that $Q = (\tilde{\omega} \cdot a \otimes id)(\mathbb{W})$ where $a = (id \otimes \mu)(\mathbb{W})$

Theorem (PK)

Let \mathbb{G} be a lcgq and Q a left shift a of group like projection P such that $\tau_t(Q) = Q$ for all $t \in \mathbb{R}$. Then there exists a unique contractive idempotent functional $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ such that $Q = P_\omega$.

Proof.

• Show that
$$\Delta(P)(R(Q)\otimes \mathbb{1})=R(Q)\otimes Q$$

• Conclude that there exists μ , $\|\mu\| \leq 1$ such that $(\mu \otimes \mathrm{id})(\Delta(P)) = Q$

- Note that P is preserved by au, i.e. $P = (\tilde{\omega} \otimes \mathrm{id})(\mathbb{W})$
- Note that $Q = (\tilde{\omega} \cdot a \otimes id)(\mathbb{W})$ where $a = (id \otimes \mu)(\mathbb{W})$

Corollary

If
$$Q\in L^\infty(\mathbb{G})$$
 is as above, then $Q=\mathsf{P}_\omega$, $\mathsf{P}=\mathsf{P}_{|\omega|_r}.$

Theorem (PK)

Let \mathbb{G} be a lcgq and Q a left shift a of group like projection P such that $\tau_t(Q) = Q$ for all $t \in \mathbb{R}$. Then there exists a unique contractive idempotent functional $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ such that $Q = P_\omega$.

Proof.

- Show that $\Delta(P)(R(Q)\otimes \mathbb{1})=R(Q)\otimes Q$
- Conclude that there exists μ , $\|\mu\| \leq 1$ such that $(\mu \otimes \mathrm{id})(\Delta(P)) = Q$
- Note that P is preserved by au, i.e. $P = (\tilde{\omega} \otimes \mathrm{id})(W)$
- Note that $Q = (\tilde{\omega} \cdot a \otimes id)(\mathbb{W})$ where $a = (id \otimes \mu)(\mathbb{W})$

Corollary

If $Q \in L^{\infty}(\mathbb{G})$ is as above, then $Q = P_{\omega}$, $P = P_{|\omega|_r}$. In particular $\Delta(Q)(\mathbb{1} \otimes Q) = \tilde{P} \otimes Q$ where $\tilde{P} = P_{|\omega|_r}$.

Theorem (PK)

Let \mathbb{G} be a lcgq and Q a left shift a of group like projection P such that $\tau_t(Q) = Q$ for all $t \in \mathbb{R}$. Then there exists a unique contractive idempotent functional $\omega \in C_0^u(\widehat{\mathbb{G}})^*$ such that $Q = P_\omega$.

Proof.

- Show that $\Delta(P)(R(Q)\otimes \mathbb{1})=R(Q)\otimes Q$
- Conclude that there exists μ , $\|\mu\| \leq 1$ such that $(\mu \otimes \mathrm{id})(\Delta(P)) = Q$
- Note that P is preserved by au, i.e. $P = (\tilde{\omega} \otimes \mathrm{id})(W)$
- Note that $Q = (\tilde{\omega} \cdot a \otimes id)(\mathbb{W})$ where $a = (id \otimes \mu)(\mathbb{W})$

Corollary

If $Q \in L^{\infty}(\mathbb{G})$ is as above, then $Q = P_{\omega}$, $P = P_{|\omega|_r}$. In particular $\Delta(Q)(\mathbb{1} \otimes Q) = \tilde{P} \otimes Q$ where $\tilde{P} = P_{|\omega|_r}$.

From CIFs to TROs and back

Definition

Let $X \subset L^{\infty}(\mathbb{G})$ and let $X \subset L^{\infty}(\mathbb{G})$ be a weakly closed linear subspace.

From CIFs to TROs and back

Definition

Let $X \subset L^{\infty}(\mathbb{G})$ and let $X \subset L^{\infty}(\mathbb{G})$ be a weakly closed linear subspace. We say that X is

Let $X \subset L^{\infty}(\mathbb{G})$ and let $X \subset L^{\infty}(\mathbb{G})$ be a weakly closed linear subspace. We say that X is

• a ternary ring of operators (TRO) if

Let $X \subset L^{\infty}(\mathbb{G})$ and let $X \subset L^{\infty}(\mathbb{G})$ be a weakly closed linear subspace. We say that X is

• a ternary ring of operators (TRO) if

 $ab^*c \in X$ whenever $a, b, c \in X$

• \mathbb{G} - invariant if $\Delta(\mathsf{X}) \subset L^{\infty}(\mathbb{G}) \,\bar{\otimes} \,\mathsf{X}$

Let $X \subset L^{\infty}(\mathbb{G})$ and let $X \subset L^{\infty}(\mathbb{G})$ be a weakly closed linear subspace. We say that X is

• a ternary ring of operators (TRO) if

- \mathbb{G} invariant if $\Delta(\mathsf{X}) \subset L^{\infty}(\mathbb{G}) \,\bar{\otimes} \,\mathsf{X}$
- integrable if the set {a ∈ X : ψ(a*a) < ∞} is weakly dense in X; L²(X) - Hilbert space completion.

Let $X \subset L^{\infty}(\mathbb{G})$ and let $X \subset L^{\infty}(\mathbb{G})$ be a weakly closed linear subspace. We say that X is

• a ternary ring of operators (TRO) if

- \mathbb{G} invariant if $\Delta(\mathsf{X}) \subset L^{\infty}(\mathbb{G}) \,\bar{\otimes} \,\mathsf{X}$
- integrable if the set {a ∈ X : ψ(a*a) < ∞} is weakly dense in X; L²(X) - Hilbert space completion.
- X TRO, $\langle X^*X \rangle, \langle XX^* \rangle \subset L^{\infty}(\mathbb{G})$ subalgebras of $L^{\infty}(\mathbb{G})$

Let $X \subset L^{\infty}(\mathbb{G})$ and let $X \subset L^{\infty}(\mathbb{G})$ be a weakly closed linear subspace. We say that X is

• a ternary ring of operators (TRO) if

- \mathbb{G} invariant if $\Delta(\mathsf{X}) \subset L^{\infty}(\mathbb{G}) \,\bar{\otimes} \,\mathsf{X}$
- integrable if the set {a ∈ X : ψ(a*a) < ∞} is weakly dense in X; L²(X) - Hilbert space completion.
- X TRO, $\langle X^*X \rangle, \langle XX^* \rangle \subset L^{\infty}(\mathbb{G})$ subalgebras of $L^{\infty}(\mathbb{G})$
- \bullet X is non-degenerate if $1\!\!1 \in \langle X^*X \rangle \cap \langle XX^* \rangle$

Theorem (NSSS)

Let $\omega \in C_0^u(\mathbb{G})^*$ be a contractive idempotent functional on \mathbb{G} .

Theorem (NSSS)

Let $\omega \in C_0^u(\mathbb{G})^*$ be a contractive idempotent functional on \mathbb{G} . Consider

$$\mathsf{X}_{\omega} := \{ x \in L^{\infty}(\mathbb{G}) : \omega \,\overline{*}\, x = x \}.$$

Theorem (NSSS)

Let $\omega \in C_0^u(\mathbb{G})^*$ be a contractive idempotent functional on \mathbb{G} . Consider

$$\mathsf{X}_{\omega} := \{ x \in L^{\infty}(\mathbb{G}) : \omega \,\overline{*}\, x = x \}.$$

Then X_{ω} is a non-degenerate, integrable, \mathbb{G} -invariant TRO preserved by τ_t .

Theorem (NSSS)

Let $\omega \in C_0^u(\mathbb{G})^*$ be a contractive idempotent functional on \mathbb{G} . Consider

$$\mathsf{X}_{\omega} := \{ x \in L^{\infty}(\mathbb{G}) : \omega \,\overline{*}\, x = x \}.$$

Then X_{ω} is a non-degenerate, integrable, \mathbb{G} -invariant TRO preserved by τ_t .

Theorem (PK)

Let $X \subset L^{\infty}(\mathbb{G})$ be non-degenerate, integrable, \mathbb{G} -invariant TRO preserved by τ_t .

Theorem (NSSS)

Let $\omega \in C_0^u(\mathbb{G})^*$ be a contractive idempotent functional on \mathbb{G} . Consider

$$\mathsf{X}_{\omega} := \{ x \in L^{\infty}(\mathbb{G}) : \omega \,\overline{*}\, x = x \}.$$

Then X_{ω} is a non-degenerate, integrable, \mathbb{G} -invariant TRO preserved by τ_t .

Theorem (PK)

Let $X \subset L^{\infty}(\mathbb{G})$ be non-degenerate, integrable, \mathbb{G} -invariant TRO preserved by τ_t . Then there exists a contractive idempotent functional $\omega \in C_0^u(\mathbb{G})^*$ such that $X = X_{\omega}$.

• Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$

< 4 → <

3

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- \mathbb{G} invariance of X implies that $P,Q\in L^\infty(\widehat{\mathbb{G}})$

э

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- \mathbb{G} invariance of X implies that $P, Q \in L^\infty(\widehat{\mathbb{G}})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- ${\mathbb G}$ invariance of X implies that $P,Q\in L^\infty(\widehat{\mathbb G})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$
- We prove that $\widehat{\Delta}(Q)(\mathbb{1}\otimes Q)=P\otimes Q.$

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- \mathbb{G} invariance of X implies that $P, Q \in L^\infty(\widehat{\mathbb{G}})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$
- We prove that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$. The latter is equivalent with $(\mathbb{1} \otimes Q)W(Q \otimes \mathbb{1}) = W(Q \otimes P)$.

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- \mathbb{G} invariance of X implies that $P, Q \in L^\infty(\widehat{\mathbb{G}})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$
- We prove that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$. The latter is equivalent with $(\mathbb{1} \otimes Q)W(Q \otimes \mathbb{1}) = W(Q \otimes P)$. Let $x \in X$,

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- \mathbb{G} invariance of X implies that $P, Q \in L^\infty(\widehat{\mathbb{G}})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$
- We prove that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$. The latter is equivalent with $(\mathbb{1} \otimes Q)W(Q \otimes \mathbb{1}) = W(Q \otimes P)$. Let $x \in X$, $\psi(x^*x) < \infty$,

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- \mathbb{G} invariance of X implies that $P, Q \in L^\infty(\widehat{\mathbb{G}})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$
- We prove that Â(Q)(1 ⊗ Q) = P ⊗ Q. The latter is equivalent with (1 ⊗ Q)W(Q ⊗ 1) = W(Q ⊗ P). Let x ∈ X, ψ(x*x) < ∞, ω ∈ B(L²(G))*,

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- \mathbb{G} invariance of X implies that $P, Q \in L^\infty(\widehat{\mathbb{G}})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$
- We prove that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$. The latter is equivalent with $(\mathbb{1} \otimes Q)W(Q \otimes \mathbb{1}) = W(Q \otimes P)$. Let $x \in X$, $\psi(x^*x) < \infty$, $\omega \in B(L^2(\mathbb{G}))_*$, η^{ψ} GNS map

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- ${\mathbb G}$ invariance of X implies that $P,Q\in L^\infty(\widehat{\mathbb G})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$
- We prove that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$. The latter is equivalent with $(\mathbb{1} \otimes Q)W(Q \otimes \mathbb{1}) = W(Q \otimes P)$. Let $x \in X$, $\psi(x^*x) < \infty$, $\omega \in B(L^2(\mathbb{G}))_*$, η^{ψ} GNS map

$$egin{aligned} (\mathrm{id}\otimes\omega)((\mathbbm{1}\otimes Q)\mathrm{W})\eta^\psi(x)&=\eta^\psi((\mathrm{id}\otimes\omega)((\mathbbm{1}\otimes Q)\Delta(x)))\ &=\eta^\psi((\mathrm{id}\otimes\omega)(\Delta(x)(\mathbbm{1}\otimes P)))\ &=(\mathrm{id}\otimes\omega)(\mathrm{W}(\mathbbm{1}\otimes P))\eta^\psi(x). \end{aligned}$$

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- ${\mathbb G}$ invariance of X implies that $P,Q\in L^\infty(\widehat{\mathbb G})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$
- We prove that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$. The latter is equivalent with $(\mathbb{1} \otimes Q)W(Q \otimes \mathbb{1}) = W(Q \otimes P)$. Let $x \in X$, $\psi(x^*x) < \infty$, $\omega \in B(L^2(\mathbb{G}))_*$, η^{ψ} GNS map

$$(\mathrm{id} \otimes \omega)((\mathbb{1} \otimes Q)W)\eta^{\psi}(x) = \eta^{\psi}((\mathrm{id} \otimes \omega)((\mathbb{1} \otimes Q)\Delta(x)))$$

= $\eta^{\psi}((\mathrm{id} \otimes \omega)(\Delta(x)(\mathbb{1} \otimes P)))$
= $(\mathrm{id} \otimes \omega)(W(\mathbb{1} \otimes P))\eta^{\psi}(x).$

• If X is preserved by au_t then Q is preserved by $\hat{ au}_t$

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- ${\mathbb G}$ invariance of X implies that $P,Q\in L^\infty(\widehat{\mathbb G})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$
- We prove that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$. The latter is equivalent with $(\mathbb{1} \otimes Q)W(Q \otimes \mathbb{1}) = W(Q \otimes P)$. Let $x \in X$, $\psi(x^*x) < \infty$, $\omega \in B(L^2(\mathbb{G}))_*$, η^{ψ} GNS map

$$egin{aligned} (\mathrm{id}\otimes\omega)((\mathbbm{1}\otimes Q)\mathrm{W})\eta^\psi(x)&=\eta^\psi((\mathrm{id}\otimes\omega)((\mathbbm{1}\otimes Q)\Delta(x)))\ &=\eta^\psi((\mathrm{id}\otimes\omega)(\Delta(x)(\mathbbm{1}\otimes P)))\ &=(\mathrm{id}\otimes\omega)(\mathrm{W}(\mathbbm{1}\otimes P))\eta^\psi(x). \end{aligned}$$

- If X is preserved by au_t then Q is preserved by $\widehat{ au}_t$
- There exists a CIF $\omega \in \mathsf{C}^u_0(\mathbb{G})^*$ such that $Q = (\mathrm{id} \otimes \omega)(\mathrm{W})$

- Let P, Q be o.n. projection onto $L^2(X)$ and $L^2(\langle X^*X \rangle)$
- ${\mathbb G}$ invariance of X implies that $P,Q\in L^\infty(\widehat{\mathbb G})$
- Almost direct consequence of definition: Qx = xP for all $x \in X$
- We prove that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$. The latter is equivalent with $(\mathbb{1} \otimes Q)W(Q \otimes \mathbb{1}) = W(Q \otimes P)$. Let $x \in X$, $\psi(x^*x) < \infty$, $\omega \in B(L^2(\mathbb{G}))_*$, η^{ψ} GNS map

$$egin{aligned} (\mathrm{id}\otimes\omega)((\mathbbm{1}\otimes Q)\mathrm{W})\eta^\psi(x)&=\eta^\psi((\mathrm{id}\otimes\omega)((\mathbbm{1}\otimes Q)\Delta(x)))\ &=\eta^\psi((\mathrm{id}\otimes\omega)(\Delta(x)(\mathbbm{1}\otimes P)))\ &=(\mathrm{id}\otimes\omega)(\mathrm{W}(\mathbbm{1}\otimes P))\eta^\psi(x). \end{aligned}$$

- If X is preserved by au_t then Q is preserved by $\widehat{ au}_t$
- There exists a CIF $\omega \in \mathsf{C}^u_0(\mathbb{G})^*$ such that $Q = (\mathrm{id} \otimes \omega)(\mathrm{W})$
- A bit of work shows that $X = X_{\omega}$.

Dropping τ_t - invariance.

Correspondences for CIFs

We have a $1-1\ {\rm correspondence}\ {\rm between}$

Dropping τ_t - invariance.

Correspondences for CIFs

We have a 1-1 correspondence between

• CIFs on
$$\mathbb{G}$$
: $\omega \in \mathsf{C}^{\textit{u}}_0(\mathbb{G})^*$, $\|\omega\| = 1$, $\omega * \omega = \omega$

Correspondences for CIFs

We have a 1-1 correspondence between

- CIFs on \mathbb{G} : $\omega \in C_0^u(\mathbb{G})^*$, $\|\omega\| = 1$, $\omega * \omega = \omega$
- Right shift of group-like projections preserved by $\widehat{\tau}_t$: $Q \in L^{\infty}(\widehat{\mathbb{G}})$ such that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$ and $\widehat{\tau}_t(Q) = Q$
We have a 1-1 correspondence between

- CIFs on \mathbb{G} : $\omega \in \mathsf{C}^u_0(\mathbb{G})^*$, $\|\omega\| = 1$, $\omega * \omega = \omega$
- Right shift of group-like projections preserved by $\widehat{\tau}_t$: $Q \in L^{\infty}(\widehat{\mathbb{G}})$ such that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$ and $\widehat{\tau}_t(Q) = Q$
- \mathbb{G} invariant, τ -invariant, integrable TROs X $\subset L^{\infty}(\mathbb{G})$.

We have a 1-1 correspondence between

- CIFs on \mathbb{G} : $\omega \in \mathsf{C}^u_0(\mathbb{G})^*$, $\|\omega\| = 1$, $\omega * \omega = \omega$
- Right shift of group-like projections preserved by $\widehat{\tau}_t$: $Q \in L^{\infty}(\widehat{\mathbb{G}})$ such that $\widehat{\Delta}(Q)(\mathbb{1} \otimes Q) = P \otimes Q$ and $\widehat{\tau}_t(Q) = Q$
- \mathbb{G} invariant, τ -invariant, integrable TROs X $\subset L^{\infty}(\mathbb{G})$.

Correspondences for idempotent states

We have a 1-1 correspondence between

- 一司

We have a 1-1 correspondence between

- CIFs on \mathbb{G} : $\omega \in \mathsf{C}^u_0(\mathbb{G})^*$, $\|\omega\| = 1$, $\omega * \omega = \omega$
- Right shift of group-like projections preserved by τ̂_t: Q ∈ L[∞](Ĝ) such that Â(Q)(1 ⊗ Q) = P ⊗ Q and τ̂_t(Q) = Q
- \mathbb{G} invariant, τ -invariant, integrable TROs X $\subset L^{\infty}(\mathbb{G})$.

Correspondences for idempotent states

We have a 1-1 correspondence between

 $\bullet\,$ idempotent states on $\mathbb G$

- 一司

We have a 1-1 correspondence between

- CIFs on \mathbb{G} : $\omega \in \mathsf{C}^u_0(\mathbb{G})^*$, $\|\omega\| = 1$, $\omega * \omega = \omega$
- Right shift of group-like projections preserved by τ̂_t: Q ∈ L[∞](Ĝ) such that Â(Q)(1 ⊗ Q) = P ⊗ Q and τ̂_t(Q) = Q
- \mathbb{G} invariant, τ -invariant, integrable TROs X $\subset L^{\infty}(\mathbb{G})$.

Correspondences for idempotent states

We have a 1-1 correspondence between

- $\bullet\,$ idempotent states on $\mathbb G$
- Group-like projections preserved by $\widehat{\tau}_t$: $P \in L^{\infty}(\widehat{\mathbb{G}})$ such that $\widehat{\Delta}(P)(\mathbb{1} \otimes P) = P \otimes P$ and $\widehat{\tau}_t(P) = P$

- ∢ 🗇 እ

We have a 1-1 correspondence between

- CIFs on \mathbb{G} : $\omega \in \mathsf{C}^u_0(\mathbb{G})^*$, $\|\omega\| = 1$, $\omega * \omega = \omega$
- Right shift of group-like projections preserved by τ̂_t: Q ∈ L[∞](Ĝ) such that Â(Q)(1 ⊗ Q) = P ⊗ Q and τ̂_t(Q) = Q
- \mathbb{G} invariant, τ -invariant, integrable TROs X $\subset L^{\infty}(\mathbb{G})$.

Correspondences for idempotent states

We have a 1-1 correspondence between

- $\bullet\,$ idempotent states on $\mathbb G$
- Group-like projections preserved by $\widehat{\tau}_t$: $P \in L^{\infty}(\widehat{\mathbb{G}})$ such that $\widehat{\Delta}(P)(\mathbb{1} \otimes P) = P \otimes P$ and $\widehat{\tau}_t(P) = P$
- τ -invariant, integrable coideals $\mathsf{N} \subset L^{\infty}(\mathbb{G})$.

Image: A matrix

We have a 1-1 correspondence between

- CIFs on \mathbb{G} : $\omega \in \mathsf{C}^u_0(\mathbb{G})^*$, $\|\omega\| = 1$, $\omega * \omega = \omega$
- Right shift of group-like projections preserved by τ̂_t: Q ∈ L[∞](Ĝ) such that Â(Q)(1 ⊗ Q) = P ⊗ Q and τ̂_t(Q) = Q
- \mathbb{G} invariant, τ -invariant, integrable TROs X $\subset L^{\infty}(\mathbb{G})$.

Correspondences for idempotent states

We have a 1-1 correspondence between

- $\bullet\,$ idempotent states on $\mathbb G$
- Group-like projections preserved by $\widehat{\tau}_t$: $P \in L^{\infty}(\widehat{\mathbb{G}})$ such that $\widehat{\Delta}(P)(\mathbb{1} \otimes P) = P \otimes P$ and $\widehat{\tau}_t(P) = P$
- τ -invariant, integrable coideals $\mathsf{N} \subset L^{\infty}(\mathbb{G})$.

Image: A matrix

Dropping τ_t - invariance.

Theorem (PK)

There is a 1-1 correspondence between integrable coideals in $\mathsf{N} \subset L^{\infty}(\mathbb{G})$

3 ×

Dropping τ_t - invariance.

Theorem (PK)

There is a 1-1 correspondence between integrable coideals in $N \subset L^{\infty}(\mathbb{G})$ and group like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$

Dropping τ_t - invariance.

Theorem (PK)

There is a 1-1 correspondence between integrable coideals in $N \subset L^{\infty}(\mathbb{G})$ and group like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$ admitting $a \in D(\eta^{\psi})$, $a \neq 0$ such that $P\eta^{\psi}(a) = a$.

There is a 1-1 correspondence between integrable coideals in $N \subset L^{\infty}(\mathbb{G})$ and group like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$ admitting $a \in D(\eta^{\psi})$, $a \neq 0$ such that $P\eta^{\psi}(a) = a$.

Q: how to prove a analogous result linking integrable TROs and shifts of group-like projections?

There is a 1-1 correspondence between integrable coideals in $N \subset L^{\infty}(\mathbb{G})$ and group like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$ admitting $a \in D(\eta^{\psi})$, $a \neq 0$ such that $P\eta^{\psi}(a) = a$.

Q: how to prove a analogous result linking integrable TROs and shifts of group-like projections?

Example

 A non-standard embeddable Podleś spheres of SU_q(2) is described by a coideal N ⊂ L[∞](SU_q(2)).

There is a 1-1 correspondence between integrable coideals in $N \subset L^{\infty}(\mathbb{G})$ and group like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$ admitting $a \in D(\eta^{\psi})$, $a \neq 0$ such that $P\eta^{\psi}(a) = a$.

Q: how to prove a analogous result linking integrable TROs and shifts of group-like projections?

Example

• A non-standard embeddable Podleś spheres of $SU_q(2)$ is described by a coideal N $\subset L^{\infty}(SU_q(2))$. The corresponding group-like projection P_N is not preserved by $\hat{\tau}_t$.

There is a 1-1 correspondence between integrable coideals in $N \subset L^{\infty}(\mathbb{G})$ and group like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$ admitting $a \in D(\eta^{\psi})$, $a \neq 0$ such that $P\eta^{\psi}(a) = a$.

Q: how to prove a analogous result linking integrable TROs and shifts of group-like projections?

Example

- A non-standard embeddable Podleś spheres of $SU_q(2)$ is described by a coideal N $\subset L^{\infty}(SU_q(2))$. The corresponding group-like projection P_N is not preserved by $\hat{\tau}_t$.
- $\bullet~\mathbb{G}$ a non-Kac compact quantum group.

There is a 1-1 correspondence between integrable coideals in $N \subset L^{\infty}(\mathbb{G})$ and group like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$ admitting $a \in D(\eta^{\psi})$, $a \neq 0$ such that $P\eta^{\psi}(a) = a$.

Q: how to prove a analogous result linking integrable TROs and shifts of group-like projections?

Example

- A non-standard embeddable Podleś spheres of $SU_q(2)$ is described by a coideal N $\subset L^{\infty}(SU_q(2))$. The corresponding group-like projection P_N is not preserved by $\hat{\tau}_t$.
- G a non-Kac compact quantum group. Δ(L[∞](G)) ⊂ L[∞](G × G^{op}) is a coideal which is not preserved by τ_t.

< 67 ▶

There is a 1-1 correspondence between integrable coideals in $N \subset L^{\infty}(\mathbb{G})$ and group like projections $P \in L^{\infty}(\widehat{\mathbb{G}})$ admitting $a \in D(\eta^{\psi})$, $a \neq 0$ such that $P\eta^{\psi}(a) = a$.

Q: how to prove a analogous result linking integrable TROs and shifts of group-like projections?

Example

- A non-standard embeddable Podleś spheres of $SU_q(2)$ is described by a coideal N $\subset L^{\infty}(SU_q(2))$. The corresponding group-like projection P_N is not preserved by $\hat{\tau}_t$.
- \mathbb{G} a non-Kac compact quantum group. $\Delta(L^{\infty}(\mathbb{G})) \subset L^{\infty}(\mathbb{G} \times \mathbb{G}^{\mathrm{op}})$ is a coideal which is not preserved by τ_t . The corresponding group-like projection is not preserved by the scaling group.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Open problem

Let $E : L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ be a completely bounded projection of cb-norm 1 such that $\Delta \circ E = (\mathrm{id} \otimes E) \circ \Delta$.

Kasprzak

Open problem

Let $E : L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ be a completely bounded projection of cb-norm 1 such that $\Delta \circ E = (\mathrm{id} \otimes E) \circ \Delta$. Is it of the form $E(x) = \omega \overline{*} x$ for a CIF ω ?

Open problem

Let $E : L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ be a completely bounded projection of cb-norm 1 such that $\Delta \circ E = (\mathrm{id} \otimes E) \circ \Delta$. Is it of the form $E(x) = \omega \overline{*} x$ for a CIF ω ?