Commutative-by-finite Hopf Algebras and their Finite Dual

Miguel Couto

University of Glasgow

m. couto. 1@research.gla.ac.uk

joint work with Ken Brown & Astrid Jahn

14 June 2018

- **1** Preliminaries and Motivation
- 2 Commutative-by-finite Hopf Algebras
- 3 Finite Dual of this Class
- 4 Subspaces of the dual
 - The tangential component
 - The character component

k a field, $\bar{k} = k$, char (k) = 0

k a field, $\bar{k} = k$, char (k) = 0

 $(H,m,u,\Delta,\epsilon,S)$ Hopfk-algebra

k a field, $\bar{k} = k$, char (k) = 0

- $(H,m,u,\Delta,\epsilon,S)$ Hopf k-algebra
- $$\begin{split} &\Delta: H \to H \otimes H \\ &\epsilon: H \to k \\ &S: H \to H \end{split}$$

$$k$$
 a field, $\bar{k} = k$, char $(k) = 0$

```
(H,m,u,\Delta,\epsilon,S) Hopf k-algebra
```

$$\begin{split} &\Delta: H \to H \otimes H \\ &\epsilon: H \to k \\ &S: H \to H \end{split}$$

Sweedler's notation: $\Delta(h) = \sum h_1 \otimes h_2$ $H^+ := \ker \epsilon$

$(H, m, u, \Delta, \epsilon, S)$ finite-dimensional Hopf algebra $H^* = \operatorname{Hom}_k(H, k)$ $(H^*, \Delta^*, \epsilon^*, m^*, u^*, S^*)$

 $(H, m, u, \Delta, \epsilon, S)$ finite-dimensional Hopf algebra $H^* = \operatorname{Hom}_k(H, k)$ $(H^*, \Delta^*, \epsilon^*, m^*, u^*, S^*)$

• Convolution product: take $f, g \in H^*$ and $h \in H$, write $\Delta(h) = \sum h_1 \otimes h_2$

$$(fg)(h) = \sum f(h_1)g(h_2).$$

Problem: $m^*: H^* \to (H \otimes H)^*$ and $H^* \otimes H^* \subset (H \otimes H)^*$.

Problem: $m^*: H^* \to (H \otimes H)^*$ and $H^* \otimes H^* \subset (H \otimes H)^*$.

<u>Finite dual</u>

$$H^{\circ} := \{f \in H^* : m^*(f) \in H^* \otimes H^*\}$$

Problem: $m^*: H^* \to (H \otimes H)^*$ and $H^* \otimes H^* \subset (H \otimes H)^*$.

<u>Finite dual</u>

$$\begin{aligned} H^{\circ} &:= & \{f \in H^* : m^*(f) \in H^* \otimes H^*\} \\ &= & \{f \in H^* : f|_I = 0 \text{ for some ideal } I \triangleleft H \text{ of finite codimension}\} \end{aligned}$$

Problem: $m^*: H^* \to (H \otimes H)^*$ and $H^* \otimes H^* \subset (H \otimes H)^*$.

<u>Finite dual</u>

$$\begin{aligned} H^{\circ} &:= & \{f \in H^* : m^*(f) \in H^* \otimes H^*\} \\ &= & \{f \in H^* : f|_I = 0 \text{ for some ideal } I \triangleleft H \text{ of finite codimension}\} \end{aligned}$$

• H° is Hopf algebra: restrict the maps $(\Delta^*, \epsilon^*, m^*, u^*, S^*)$.

Theorem (Cartier)

Let H be an affine commutative Hopf algebra. Then, H is reduced, hence

 $H\cong \mathcal{O}(G)$

for some affine algebraic group G.

Theorem (Cartier)

Let H be an affine commutative Hopf algebra. Then, H is reduced, hence

 $H \cong \mathcal{O}(G)$

for some affine algebraic group G.

Theorem (Cartier-Gabriel-Kostant)

Let G be an affine algebraic group. Then,

 $\mathcal{O}(G)^{\circ}$

Theorem (Cartier)

Let H be an affine commutative Hopf algebra. Then, H is reduced, hence

 $H \cong \mathcal{O}(G)$

for some affine algebraic group G.

Theorem (Cartier-Gabriel-Kostant)

Let G be an affine algebraic group. Then,

 $\mathcal{O}(G)^{\circ} \cong U(\operatorname{Lie} G) * kG,$

Theorem (Cartier)

Let H be an affine commutative Hopf algebra. Then, H is reduced, hence

 $H \cong \mathcal{O}(G)$

for some affine algebraic group G.

Theorem (Cartier-Gabriel-Kostant)

Let G be an affine algebraic group. Then,

 $\mathcal{O}(G)^{\circ} \cong U(\operatorname{Lie} G) * kG,$

where

• G identifies with the group of characters of $\mathcal{O}(G)$.

Theorem (Cartier)

Let H be an affine commutative Hopf algebra. Then, H is reduced, hence

 $H \cong \mathcal{O}(G)$

for some affine algebraic group G.

Theorem (Cartier-Gabriel-Kostant)

Let G be an affine algebraic group. Then,

 $\mathcal{O}(G)^{\circ} \cong U(\operatorname{Lie} G) * kG,$

where

- G identifies with the group of characters of $\mathcal{O}(G)$.
- U(Lie G) is the set of maps that vanish on some power of $\mathcal{O}(G)^+ = \ker \epsilon$.

Theorem (Cartier)

Let H be an affine commutative Hopf algebra. Then, H is reduced, hence

 $H \cong \mathcal{O}(G)$

for some affine algebraic group G.

Theorem (Cartier-Gabriel-Kostant)

Let G be an affine algebraic group. Then,

 $\mathcal{O}(G)^{\circ} \cong U(\operatorname{Lie} G) * kG,$

where

- G identifies with the group of characters of $\mathcal{O}(G)$.
- U(Lie G) is the set of maps that vanish on some power of $\mathcal{O}(G)^+ = \ker \epsilon$.
- G acts on U(Lie G) by conjugation.

An affine Hopf algebra H is *commutative-by-finite* if it is a finitely-generated left (or right) module over some normal commutative Hopf subalgebra A.

An affine Hopf algebra H is *commutative-by-finite* if it is a finitely-generated left (or right) module over some normal commutative Hopf subalgebra A.

A being *normal* means

$$ad_l(h)(a) := \sum h_1 aS(h_2) \in A$$
 and $ad_r(h)(a) := \sum S(h_1)ah_2 \in A$,
for every $a \in A, h \in H$.

An affine Hopf algebra H is *commutative-by-finite* if it is a finitely-generated left (or right) module over some normal commutative Hopf subalgebra A.

A being *normal* means

 $ad_l(h)(a) := \sum h_1 aS(h_2) \in A$ and $ad_r(h)(a) := \sum S(h_1)ah_2 \in A$, for every $a \in A, h \in H$.

A normal \Rightarrow A^+H is a Hopf ideal of H

An affine Hopf algebra H is *commutative-by-finite* if it is a finitely-generated left (or right) module over some normal commutative Hopf subalgebra A.

A being *normal* means

 $ad_l(h)(a) := \sum h_1 aS(h_2) \in A$ and $ad_r(h)(a) := \sum S(h_1)ah_2 \in A$, for every $a \in A, h \in H$.

$$A \text{ normal} \Rightarrow A^+H \text{ is a Hopf ideal of } H$$

 $\Rightarrow \overline{H} := H/A^+H$

An affine Hopf algebra H is *commutative-by-finite* if it is a finitely-generated left (or right) module over some normal commutative Hopf subalgebra A.

A being *normal* means

 $ad_l(h)(a) := \sum h_1 aS(h_2) \in A$ and $ad_r(h)(a) := \sum S(h_1)ah_2 \in A$, for every $a \in A, h \in H$.

> $A \text{ normal} \Rightarrow A^+H \text{ is a Hopf ideal of } H$ $\Rightarrow \overline{H} := H/A^+H \text{ f.d. quotient Hopf algebra}$

- Finite-dimensional Hopf algebras.
- Commutative Hopf algebras.

- Finite-dimensional Hopf algebras.
- Commutative Hopf algebras.
- Group algebras of finitely-generated abelian-by-finite groups G.

- Finite-dimensional Hopf algebras.
- Commutative Hopf algebras.
- Group algebras of finitely-generated abelian-by-finite groups G.
- Quantum groups $U_{\epsilon}(\mathfrak{g})$ and $\mathcal{O}_{\epsilon}(G)$ at a root of unity ϵ .

- Finite-dimensional Hopf algebras.
- Commutative Hopf algebras.
- Group algebras of finitely-generated abelian-by-finite groups G.
- Quantum groups $U_{\epsilon}(\mathfrak{g})$ and $\mathcal{O}_{\epsilon}(G)$ at a root of unity ϵ .
- Prime regular affine Hopf algebras of Gelfand-Kirillov dimension 1. (Wu, Liu & Ding [arXiv:1410.7497]).

- Finite-dimensional Hopf algebras.
- Commutative Hopf algebras.
- Group algebras of finitely-generated abelian-by-finite groups G.
- Quantum groups $U_{\epsilon}(\mathfrak{g})$ and $\mathcal{O}_{\epsilon}(G)$ at a root of unity ϵ .
- Prime regular affine Hopf algebras of Gelfand-Kirillov dimension 1. (Wu, Liu & Ding [arXiv:1410.7497]).
- Noetherian PI Hopf domains of Gelfand-Kirillov dimension 2. (Goodearl & Zhang [arXiv:0905.0621]).

- Finite-dimensional Hopf algebras.
- Commutative Hopf algebras.
- Group algebras of finitely-generated abelian-by-finite groups G.
- Quantum groups $U_{\epsilon}(\mathfrak{g})$ and $\mathcal{O}_{\epsilon}(G)$ at a root of unity ϵ .
- Prime regular affine Hopf algebras of Gelfand-Kirillov dimension 1. (Wu, Liu & Ding [arXiv:1410.7497]).
- Noetherian PI Hopf domains of Gelfand-Kirillov dimension 2. (Goodearl & Zhang [arXiv:0905.0621]).

Non-example: Gelaki & Letzter [arXiv:math/0112038].

$$D = \langle a, b : a^2 = 1, aba = b^{-1} \rangle$$

$$D = \langle a, b : a^2 = 1, aba = b^{-1} \rangle$$
$$N = \langle b \rangle \triangleleft D$$

$$D = \langle a, b : a^2 = 1, aba = b^{-1} \rangle$$
$$N = \langle b \rangle \triangleleft D$$
$$D/N = C_2$$

$$D = \langle a, b : a^2 = 1, aba = b^{-1} \rangle$$
$$N = \langle b \rangle \triangleleft D$$
$$D/N = C_2$$

$$H = kD$$
$$A = kN$$
$$\overline{H} = kC_2$$
$$\begin{array}{ll} D = \langle a,b:a^2 = 1,aba = b^{-1} \rangle & H = kD \\ N = \langle b \rangle \triangleleft D & A = kN \\ D/N = C_2 & \overline{H} = kC_2 \end{array}$$

$$H = T(n, t, q) = k \langle g, x : g^n = 1, xg = qgx \rangle,$$

$$\begin{array}{ll} D = \langle a,b:a^2 = 1,aba = b^{-1} \rangle & H = kD \\ N = \langle b \rangle \triangleleft D & A = kN \\ D/N = C_2 & \overline{H} = kC_2 \end{array}$$

Example 2

$$H = T(n, t, q) = k \langle g, x : g^n = 1, xg = qgx \rangle,$$

$\Delta(g) = g \otimes g$	$\epsilon(g) = 1$	$S(g) = g^{-1}$
$\Delta(x) = x \otimes g^t + 1 \otimes x$	$\epsilon(x) = 0$	$S(x) = -xg^{-t}$

where q is a primitive nth root of unity and 0 < t < n. Assume (n, t) = 1.

$$\begin{array}{ll} D = \langle a,b:a^2 = 1,aba = b^{-1} \rangle & H = kD \\ N = \langle b \rangle \triangleleft D & A = kN \\ D/N = C_2 & \overline{H} = kC_2 \end{array}$$

Example 2

$$H = T(n, t, q) = k \langle g, x : g^n = 1, xg = qgx \rangle,$$

$$\begin{array}{ll} \Delta(g) = g \otimes g & \epsilon(g) = 1 \\ \Delta(x) = x \otimes g^t + 1 \otimes x & \epsilon(x) = 0 \end{array} \begin{array}{ll} S(g) = g^{-1} \\ S(x) = -xg^{-t} \end{array}$$

where q is a primitive nth root of unity and 0 < t < n. Assume (n, t) = 1.

 $A = k[x^n].$

$$D = \langle a, b : a^2 = 1, aba = b^{-1} \rangle \qquad H = kD$$

$$N = \langle b \rangle \triangleleft D \qquad A = kN$$

$$D/N = C_2 \qquad \overline{H} = kC_2$$

Example 2

$$H = T(n, t, q) = k \langle g, x : g^n = 1, xg = qgx \rangle,$$

$$\begin{array}{ll} \Delta(g) = g \otimes g & \epsilon(g) = 1 \\ \Delta(x) = x \otimes g^t + 1 \otimes x & \epsilon(x) = 0 \end{array} \begin{array}{ll} S(g) = g^{-1} \\ S(x) = -xg^{-t} \end{array}$$

where q is a primitive nth root of unity and 0 < t < n. Assume (n, t) = 1.

$$A = k[x^n].$$

$$\overline{H} = k \langle \overline{g}, \overline{x} : \overline{g}^n = 1, \overline{x}^n = 0, \overline{x}\overline{g} = q\overline{g}\overline{x} \rangle = T_f(n, t, q).$$

Let H be a commutative-by-finite Hopf algebra. Then,

• *H* and *A* are affine and noetherian.

- *H* and *A* are affine and noetherian.
- **2** *H* is a faithfully flat and projective A-module.

- *H* and *A* are affine and noetherian.
- 2 H is a faithfully flat and projective A-module.
 - If H is pointed, H is a free A-module.

- *H* and *A* are affine and noetherian.
- ² H is a faithfully flat and projective A-module.
 - If H is pointed, H is a free A-module.
- \bigcirc H is a PI-ring.

- *H* and *A* are affine and noetherian.
- **2** *H* is a faithfully flat and projective A-module.
 - If H is pointed, H is a free A-module.
- \bullet H is a PI-ring.
- O [Skryabin] The antipode S is bijective.

- Let H be a commutative-by-finite Hopf algebra. Then,
 - *H* and *A* are affine and noetherian.
 - **2** *H* is a faithfully flat and projective A-module.
 - If H is pointed, H is a free A-module.
 - \bigcirc H is a PI-ring.
 - O [Skryabin] The antipode S is bijective.
 - [Skryabin] H is a finitely-generated module over Z(H).

- Let H be a commutative-by-finite Hopf algebra. Then,
 - *H* and *A* are affine and noetherian.
 - **2** *H* is a faithfully flat and projective A-module.
 - If H is pointed, H is a free A-module.
 - \bullet H is a PI-ring.
 - O [Skryabin] The antipode S is bijective.
 - [Skryabin] H is a finitely-generated module over Z(H).
 - [Wu-Zhang] H is Auslander-Gorenstein, AS-Gorenstein and GK-Cohen-Macaulay.

- Let H be a commutative-by-finite Hopf algebra. Then,
 - *H* and *A* are affine and noetherian.
 - **2** *H* is a faithfully flat and projective A-module.
 - If H is pointed, H is a free A-module.
 - \bullet H is a PI-ring.
 - O [Skryabin] The antipode S is bijective.
 - [Skryabin] H is a finitely-generated module over Z(H).
 - [Wu-Zhang] H is Auslander-Gorenstein, AS-Gorenstein and GK-Cohen-Macaulay.

• In general, these Hopf algebras are *not* regular.

Let H be commutative-by-finite.

Let H be commutative-by-finite.

Idea: decompose H° in terms of \overline{H}^{*} and A° .

Let H be commutative-by-finite.

Idea: decompose H° in terms of \overline{H}^{*} and A° .

$$\pi: H \twoheadrightarrow \overline{H} \qquad \iota: A \hookrightarrow H \qquad \Pi: H \twoheadrightarrow A$$

Lemma (B.-C.-J.)

 $\pi^*: \overline{H}^* \hookrightarrow H^\circ$ is an embedding of Hopf algebras.

Lemma (B.-C.-J.)

 $\pi^*: \overline{H}^* \hookrightarrow H^\circ$ is an embedding of Hopf algebras.

 $\overline{H}^* \cong \{f \in H^\circ : f(A^+H) = 0\}.$

Lemma (B.-C.-J.)

 $\pi^*: \overline{H}^* \hookrightarrow H^\circ$ is an embedding of Hopf algebras.

 $\overline{H}^* \cong \{f \in H^\circ : f(A^+H) = 0\}.$

$\iota: A \hookrightarrow H$

Lemma (B.-C.-J.)

 $\pi^*: \overline{H}^* \hookrightarrow H^\circ$ is an embedding of Hopf algebras.

 $\overline{H}^* \cong \{ f \in H^\circ : f(A^+H) = 0 \}.$

 $\iota: A \hookrightarrow H$

Proposition (B.-C.-J.)

 $\iota^{\circ}: H^{\circ} \twoheadrightarrow A^{\circ}$ is a surjection of Hopf algebras.

Lemma (Radford)

H decomposes into $A \oplus X$, as a left (or right) A-module.

Lemma (Radford)

H decomposes into $A \oplus X$, as a left (or right) A-module.

 $\Pi: H \twoheadrightarrow A$ is a left A-module projection map

Lemma (Radford)

H decomposes into $A \oplus X$, as a left (or right) A-module.

 $\Pi: H \twoheadrightarrow A$ is a left A-module projection map

Proposition (B.-C.-J.)

 $\Pi^{\circ}: A^{\circ} \hookrightarrow H^{\circ} \text{ is an embedding of right } A^{\circ}\text{-}comodules.$

Let H be commutative-by-finite. We write $H = A \oplus X$ as A-modules.

Let H be commutative-by-finite. We write $H = A \oplus X$ as A-modules. If X is a coideal of H, then as algebras

 $H^{\circ} \cong \overline{H}^* \# A^{\circ}.$

Let H be commutative-by-finite. We write $H = A \oplus X$ as A-modules. If X is a coideal of H, then as algebras

 $H^{\circ} \cong \overline{H}^* \# A^{\circ}.$

2 If X is an ideal of H, then as algebras

$$H^{\circ} \cong \overline{H}^* \#_{\sigma} A^{\circ}.$$

Let H be commutative-by-finite. We write $H = A \oplus X$ as A-modules. If X is a coideal of H, then as algebras $H^{\circ} \cong \overline{H}^* \# A^{\circ}$.

Decomposes the Hopf dual of:

• Group algebras of finitely-generated abelian-by-finite groups G.

Let H be commutative-by-finite. We write $H = A \oplus X$ as A-modules. If X is a coideal of H, then as algebras $H^{\circ} \cong \overline{H}^* \# A^{\circ}$.

Decomposes the Hopf dual of:

- Group algebras of finitely-generated abelian-by-finite groups G.
- Prime regular affine Hopf algebras of Gelfand-Kirillov dimension 1.

Let H be commutative-by-finite. We write $H = A \oplus X$ as A-modules. If X is a coideal of H, then as algebras $H^{\circ} \cong \overline{H}^* \# A^{\circ}$.

Decomposes the Hopf dual of:

- Group algebras of finitely-generated abelian-by-finite groups G.
- Prime regular affine Hopf algebras of Gelfand-Kirillov dimension 1.
- Noetherian PI Hopf domains of Gelfand-Kirillov dimension 2.

Let H be commutative-by-finite. We write $H = A \oplus X$ as A-modules. If X is a coideal of H, then as algebras $H^{\circ} \cong \overline{H}^* \# A^{\circ}$.

Decomposes the Hopf dual of:

- Group algebras of finitely-generated abelian-by-finite groups G.
- Prime regular affine Hopf algebras of Gelfand-Kirillov dimension 1.
- Noetherian PI Hopf domains of Gelfand-Kirillov dimension 2.
- Quantum groups $U_{\epsilon}(\mathfrak{sl}_2(k))$ and $U_{\epsilon}(\mathfrak{sl}_3(k))$.

$$H = kD = k\langle a, b : a^2 = 1, aba = b^{-1} \rangle$$
$$A = k\langle b \rangle = \mathcal{O}(k^*), \ \overline{H} = kC_2$$

$$H = kD = k\langle a, b : a^2 = 1, aba = b^{-1} \rangle$$
$$A = k\langle b \rangle = \mathcal{O}(k^*), \overline{H} = kC_2$$

$$H^{\circ} \cong \overline{H}^* \# A^{\circ} = kC_2 \otimes k[x] \otimes k(k^*, \cdot).$$

Example 1

$$H = kD = k\langle a, b : a^2 = 1, aba = b^{-1} \rangle$$
$$A = k\langle b \rangle = \mathcal{O}(k^*), \overline{H} = kC_2$$
$$H^{\circ} \cong \overline{H}^* \# A^{\circ} = kC_2 \otimes k[x] \otimes k(k^*, \cdot).$$

$$H = T(n, t, q) = k \langle g, x : g^n = 1, xg = qgx \rangle \text{ with } (n, t) = 1$$
$$A = k[x^n] = \mathcal{O}(k), \ \overline{H} = T_f(n, t, q)$$

Example 1

$$H = kD = k\langle a, b : a^2 = 1, aba = b^{-1} \rangle$$
$$A = k\langle b \rangle = \mathcal{O}(k^*), \ \overline{H} = kC_2$$
$$H^{\circ} \cong \overline{H}^* \# A^{\circ} = kC_2 \otimes k[x] \otimes k(k^*, \cdot).$$

$$H = T(n, t, q) = k \langle g, x : g^n = 1, xg = qgx \rangle \text{ with } (n, t) = 1$$
$$A = k[x^n] = \mathcal{O}(k), \ \overline{H} = T_f(n, t, q)$$

$$H^{\circ} \cong \overline{H}^* \# A^{\circ} = T_f(n, t, q) \otimes k[z] \otimes k(k, +).$$
$A^{\circ} \cong U(\operatorname{Lie} G) * kG,$

 $A^{\circ} \cong U(\operatorname{Lie} G) * kG,$

• $U(\text{Lie }G) = \{ f \in A^{\circ} : f((A^{+})^{n}) = 0, \text{ for some } n \in \mathbb{N} \}, \text{ where } A^{+} = \ker \epsilon.$

$$A^{\circ} \cong U(\operatorname{Lie} G) * kG,$$

•
$$U(\text{Lie }G) = \{ f \in A^{\circ} : f((A^{+})^{n}) = 0, \text{ for some } n \in \mathbb{N} \}, \text{ where } A^{+} = \ker \epsilon.$$

• $kG = \{ f \in A^{\circ} : f(\mathbf{m}_{g_1} \cap \ldots \cap \mathbf{m}_{g_r}) = 0, \text{ for some } g_i \in G \}.$

 $A^{\circ} \cong U(\operatorname{Lie} G) * kG,$

•
$$U(\text{Lie }G) = \{ f \in A^{\circ} : f((A^+)^n) = 0, \text{ for some } n \in \mathbb{N} \}, \text{ where } A^+ = \ker \epsilon.$$

• $kG = \{ f \in A^{\circ} : f(\mathbf{m}_{g_1} \cap \ldots \cap \mathbf{m}_{g_r}) = 0, \text{ for some } g_i \in G \}.$

Under certain hypotheses,

 $H^{\circ} \cong \overline{H}^* \#_{\sigma}(U(\operatorname{Lie} G) * kG).$

 $A^{\circ} \cong U(\operatorname{Lie} G) * kG,$

•
$$U(\text{Lie }G) = \{ f \in A^{\circ} : f((A^{+})^{n}) = 0, \text{ for some } n \in \mathbb{N} \}, \text{ where } A^{+} = \ker \epsilon.$$

• $kG = \{ f \in A^{\circ} : f(\mathbf{m}_{g_1} \cap \ldots \cap \mathbf{m}_{g_r}) = 0, \text{ for some } g_i \in G \}.$

Under certain hypotheses,

$$H^{\circ} \cong \overline{H}^* \#_{\sigma}(U(\operatorname{Lie} G) * kG).$$

Extend these identifications of kG and U(Lie G) to H.

 $A^{\circ} \cong U(\operatorname{Lie} G) * kG,$ • $U(\operatorname{Lie} G) = \{ f \in A^{\circ} : f((A^{+})^{n}) = 0, \text{ for some } n \in \mathbb{N} \}.$

$$A^{\circ} \cong U(\operatorname{Lie} G) * kG,$$

• $U(\operatorname{Lie} G) = \{ f \in A^{\circ} : f((A^{+})^{n}) = 0, \text{ for some } n \in \mathbb{N} \}.$

Definition

Let H be a commutative-by-finite Hopf algebra. The $tangential\ component$ of H° is

 $W := \{ f \in H^{\circ} : f((A^+H)^n) = 0, \text{ for some } n \in \mathbb{N} \}.$

$$A^{\circ} \cong U(\operatorname{Lie} G) * kG,$$

• $U(\operatorname{Lie} G) = \{ f \in A^{\circ} : f((A^+)^n) = 0, \text{ for some } n \in \mathbb{N} \}.$

Definition

Let H be a commutative-by-finite Hopf algebra. The $tangential\ component$ of H° is

 $W := \{ f \in H^{\circ} : f((A^+H)^n) = 0, \text{ for some } n \in \mathbb{N} \}.$

Theorem (B.-C.-J.)

Let H be commutative-by-finite. Then,

• W is a normal Hopf subalgebra of H° ;

$$A^{\circ} \cong U(\operatorname{Lie} G) * kG,$$

• $U(\operatorname{Lie} G) = \{ f \in A^{\circ} : f((A^+)^n) = 0, \text{ for some } n \in \mathbb{N} \}.$

Definition

Let H be a commutative-by-finite Hopf algebra. The $tangential\ component$ of H° is

 $W := \{ f \in H^{\circ} : f((A^+H)^n) = 0, \text{ for some } n \in \mathbb{N} \}.$

Theorem (B.-C.-J.)

Let H be commutative-by-finite. Then,

• W is a normal Hopf subalgebra of H° ;

 \bigcirc and as algebras

 $W \cong \overline{H}^* \#_{\sigma} U(\operatorname{Lie} G).$

- $A^{\circ} \cong U(\operatorname{Lie} G) * kG,$
 - $kG = \{ f \in A^{\circ} : f(\mathbf{m}_{g_1} \cap \ldots \cap \mathbf{m}_{g_r}) = 0, \text{ for some } g_i \in G \}.$

 $A^{\circ} \cong U(\operatorname{Lie} G) * kG,$

• $kG = \{ f \in A^{\circ} : f(\mathbf{m}_{g_1} \cap \ldots \cap \mathbf{m}_{g_r}) = 0, \text{ for some } g_i \in G \}.$

Extending to H:

• *H* acts on *A* by adjoint actions: for every $a \in A, h \in H$

 $ad_l(h)(a) := \sum h_1 aS(h_2) \in A$ and $ad_r(h)(a) := \sum S(h_1)ah_2 \in A.$

 $A^{\circ} \cong U(\operatorname{Lie} G) * kG,$

• $kG = \{ f \in A^{\circ} : f(\mathbf{m}_{g_1} \cap \ldots \cap \mathbf{m}_{g_r}) = 0, \text{ for some } g_i \in G \}.$

Extending to H:

• *H* acts on *A* by adjoint actions: for every $a \in A, h \in H$

 $ad_l(h)(a) := \sum h_1 aS(h_2) \in A$ and $ad_r(h)(a) := \sum S(h_1)ah_2 \in A$.

• H acts on G = MaxSpec(A).

- $A^{\circ} \cong U(\operatorname{Lie} G) * kG,$
 - $kG = \{ f \in A^{\circ} : f(\mathbf{m}_{g_1} \cap \ldots \cap \mathbf{m}_{g_r}) = 0, \text{ for some } g_i \in G \}.$

Extending to H:

• *H* acts on *A* by adjoint actions: for every $a \in A, h \in H$

 $ad_l(h)(a) := \sum h_1 aS(h_2) \in A$ and $ad_r(h)(a) := \sum S(h_1)ah_2 \in A$.

- H acts on G = MaxSpec(A).
- This action restricts to an action of \overline{H} .

 $A^{\circ} \cong U(\operatorname{Lie} G) * kG,$

• $kG = \{ f \in A^{\circ} : f(\mathbf{m}_{g_1} \cap \ldots \cap \mathbf{m}_{g_r}) = 0, \text{ for some } g_i \in G \}.$

Extending to H:

• *H* acts on *A* by adjoint actions: for every $a \in A, h \in H$

 $ad_l(h)(a) := \sum h_1 aS(h_2) \in A$ and $ad_r(h)(a) := \sum S(h_1)ah_2 \in A$.

• H acts on G = MaxSpec(A).

• This action restricts to an action of \overline{H} .

Definition

Let H be commutative-by-finite.

• Let $\mathbf{m} \in \operatorname{MaxSpec}(A)$. We define $\mathbf{m}^{\overline{H}} = \{a \in \mathbf{m} : \overline{h} \cdot a \in \mathbf{m}, \forall \overline{h} \in \overline{H}\}.$

 $A^{\circ} \cong U(\operatorname{Lie} G) * kG,$

• $kG = \{ f \in A^{\circ} : f(\mathbf{m}_{g_1} \cap \ldots \cap \mathbf{m}_{g_r}) = 0, \text{ for some } g_i \in G \}.$

Extending to H:

• *H* acts on *A* by adjoint actions: for every $a \in A, h \in H$

 $ad_l(h)(a) := \sum h_1 aS(h_2) \in A$ and $ad_r(h)(a) := \sum S(h_1)ah_2 \in A$.

• H acts on G = MaxSpec(A).

• This action restricts to an action of \overline{H} .

Definition

Let H be commutative-by-finite.

• Let $\mathbf{m} \in \operatorname{MaxSpec}(A)$. We define $\mathbf{m}^{\overline{H}} = \{a \in \mathbf{m} : \overline{h} \cdot a \in \mathbf{m}, \forall \overline{h} \in \overline{H}\}.$

2 The character component of H° is

$$\widehat{kG} = \{ f \in H^{\circ} : f(\mathbf{m}_{g_1}^{\overline{H}} H \cap \ldots \cap \mathbf{m}_{g_r}^{\overline{H}} H) = 0, \text{ for some } g_i \in G \}.$$

Definition

Let *H* be commutative-by-finite. We say it is *orbitally semisimple* if $A/\mathbf{m}_g^{\overline{H}}$ is semisimple for every $g \in G$.

Definition

Let *H* be commutative-by-finite. We say it is *orbitally semisimple* if A/\mathbf{m}_g^H is semisimple for every $g \in G$.

Theorem (B.-C.-J.)

Let H be an orbitally semisimple commutative-by-finite Hopf algebra.
\$\hat{kG}\$ is a Hopf subalgebra of H°.

Definition

Let *H* be commutative-by-finite. We say it is *orbitally semisimple* if A/\mathbf{m}_g^H is semisimple for every $g \in G$.

Theorem (B.-C.-J.)

 $Let \ H \ be \ an \ orbitally \ semisimple \ commutative-by-finite \ Hopf \ algebra.$

- $\hat{k}\hat{G}$ is a Hopf subalgebra of H° .
- 2) If H° decomposes as $\overline{H}^{*} \#_{\sigma} A^{\circ}$, then

$$\widehat{kG} \cong \overline{H}^* \#_\sigma kG.$$

Under certain hypotheses,

Example 1

 $H=kD=k\langle a,b:a^2=1,aba=b^{-1}\rangle$

•
$$A = k\langle b \rangle, \ \overline{H} = kC_2$$

• $H^{\circ} \cong \overline{H}^* \# A^{\circ} = kC_2 \otimes k[x] \otimes k(k^*, \cdot).$

Example 1

$$H = kD = k\langle a, b : a^2 = 1, aba = b^{-1} \rangle$$

•
$$A = k\langle b \rangle, \overline{H} = kC_2$$

• $H^{\circ} \cong \overline{H}^* \# A^{\circ} = kC_2 \otimes k[x] \otimes k(k^*, \cdot).$
 $W \cong \overline{H}^* \#_{\sigma} U(\text{Lie } G) = kC_2 \otimes k[x] \quad \text{and} \quad \widehat{kG} \cong \overline{H}^* \#_{\sigma} kG = kC_2 \otimes k(k^*, \cdot).$

Example 1

$$H = kD = k\langle a, b : a^2 = 1, aba = b^{-1} \rangle$$

•
$$A = k\langle b \rangle, \overline{H} = kC_2$$

• $H^{\circ} \cong \overline{H}^* \# A^{\circ} = kC_2 \otimes k[x] \otimes k(k^*, \cdot).$
 $W \cong \overline{H}^* \#_{\sigma} U(\text{Lie}\,G) = kC_2 \otimes k[x] \quad \text{and} \quad \widehat{kG} \cong \overline{H}^* \#_{\sigma} kG = kC_2 \otimes k(k^*, \cdot).$

Example 2

$$H=T(n,t,q)=k\langle g,x:g^n=1,xg=qgx\rangle$$

•
$$A = k[x^n], \overline{H} = T_f$$

• $H^{\circ} \cong \overline{H}^* \# A^{\circ} = T_f \otimes k[z] \otimes k(k, +).$

Example 1

$$H = kD = k\langle a, b : a^2 = 1, aba = b^{-1} \rangle$$

•
$$A = k\langle b \rangle, \overline{H} = kC_2$$

• $H^{\circ} \cong \overline{H}^* \# A^{\circ} = kC_2 \otimes k[x] \otimes k(k^*, \cdot).$
 $W \cong \overline{H}^* \#_{\sigma} U(\text{Lie } G) = kC_2 \otimes k[x] \quad \text{and} \quad \widehat{kG} \cong \overline{H}^* \#_{\sigma} kG = kC_2 \otimes k(k^*, \cdot).$

Example 2

$$H = T(n, t, q) = k \langle g, x : g^n = 1, xg = qgx \rangle$$

•
$$A = k[x^n], \overline{H} = T_f$$

• $H^{\circ} \cong \overline{H}^* \# A^{\circ} = T_f \otimes k[z] \otimes k(k, +).$
 $W \cong \overline{H}^* \#_{\sigma} U(\text{Lie } G) = T_f \otimes k[z] \text{ and } \widehat{kG} \cong \overline{H}^* \#_{\sigma} kG = T_f \otimes k(k, +).$

References

- K.R. Goodearl & R.B. Warfield Jr., An Introduction to Noncommutative Noetherian Rings, London Mathematical Society, Student Texts **61**, 2004.
- A. Jahn's Doctor of Philosophy thesis, *The finite dual of crossed products*, University of Glasgow, December 2014.
- J.C. McConnell & J.C. Robson, *Noncommutative Noetherian Rings*, John Wiley & Sons, 1987.
- S. Montgomery, *Hopf Algebras and Their Actions on Rings*, American Mathematical Society, 1992.
- D. E. Radford, *Hopf Algebras*, Series on Knots and Everything, Vol. 49, World Scientific Publishing, 2012.
- J.T. Stafford & J.J. Zhang, *Homological Properties of (Graded) Noetherian PI rings*, Journal of Algebra, Vol. 168, pp. 988-1026, 1994.

Thank you.