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Hopf Algebras

k a field, k̄ = k, char (k) = 0

(H,m, u,∆, ε, S) Hopf k-algebra

∆ : H → H ⊗H
ε : H → k
S : H → H

Sweedler’s notation: ∆(h) =
∑
h1 ⊗ h2

H+ := ker ε
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Hopf dual

(H,m, u,∆, ε, S) finite-dimensional Hopf algebra

H∗ = Homk(H, k)
(H∗,∆∗, ε∗,m∗, u∗, S∗)

Convolution product:
take f, g ∈ H∗ and h ∈ H, write ∆(h) =

∑
h1 ⊗ h2

(fg)(h) =
∑

f(h1)g(h2).
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Finite dual

(H,m, u,∆, ε, S) infinite-dimensional Hopf algebra

Problem: m∗ : H∗ → (H ⊗H)∗ and H∗ ⊗H∗ ⊂ (H ⊗H)∗.

Finite dual

H◦ := {f ∈ H∗ : m∗(f) ∈ H∗ ⊗H∗}
= {f ∈ H∗ : f |I = 0 for some ideal I / H of finite codimension}

H◦ is Hopf algebra: restrict the maps (∆∗, ε∗,m∗, u∗, S∗).
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Motivation

Theorem (Cartier)

Let H be an affine commutative Hopf algebra. Then, H is reduced, hence

H ∼= O(G)

for some affine algebraic group G.

Theorem (Cartier-Gabriel-Kostant)

Let G be an affine algebraic group. Then,

O(G)◦ ∼= U(LieG) ∗ kG,

where

G identifies with the group of characters of O(G).

U(LieG) is the set of maps that vanish on some power of O(G)+ = ker ε.

G acts on U(LieG) by conjugation.
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Setting

Definition
An affine Hopf algebra H is commutative-by-finite if it is a finitely-generated
left (or right) module over some normal commutative Hopf subalgebra A.

A being normal means

adl(h)(a) :=
∑

h1aS(h2) ∈ A and adr(h)(a) :=
∑

S(h1)ah2 ∈ A,

for every a ∈ A, h ∈ H.

A normal ⇒ A+H is a Hopf ideal of H

⇒ H := H/A+H f.d. quotient Hopf algebra
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Examples:

Finite-dimensional Hopf algebras.

Commutative Hopf algebras.

Group algebras of finitely-generated abelian-by-finite groups G.

Quantum groups Uε(g) and Oε(G) at a root of unity ε.

Prime regular affine Hopf algebras of Gelfand-Kirillov dimension 1. (Wu,
Liu & Ding [arXiv:1410.7497]).

Noetherian PI Hopf domains of Gelfand-Kirillov dimension 2. (Goodearl
& Zhang [arXiv:0905.0621]).

Non-example: Gelaki & Letzter [arXiv:math/0112038].
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Example 1

D = 〈a, b : a2 = 1, aba = b−1〉

N = 〈b〉 / D
D/N = C2

H = kD
A = kN
H = kC2

Example 2
H = T (n, t, q) = k〈g, x : gn = 1, xg = qgx〉,

∆(g) = g ⊗ g ε(g) = 1 S(g) = g−1

∆(x) = x⊗ gt + 1⊗ x ε(x) = 0 S(x) = −xg−t

where q is a primitive nth root of unity and 0 < t < n. Assume (n, t) = 1.

A = k[xn].

H = k〈ḡ, x̄ : ḡn = 1, x̄n = 0, x̄ḡ = qḡx̄〉 = Tf (n, t, q).
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Proposition

Let H be a commutative-by-finite Hopf algebra. Then,

1 H and A are affine and noetherian.

2 H is a faithfully flat and projective A-module.

If H is pointed, H is a free A-module.

3 H is a PI-ring.

4 [Skryabin] The antipode S is bijective.

5 [Skryabin] H is a finitely-generated module over Z(H).

6 [Wu-Zhang] H is Auslander-Gorenstein, AS-Gorenstein and
GK-Cohen-Macaulay.

In general, these Hopf algebras are not regular.
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6 [Wu-Zhang] H is Auslander-Gorenstein, AS-Gorenstein and
GK-Cohen-Macaulay.

In general, these Hopf algebras are not regular.

Miguel Couto (U. of Glasgow) Com.-by-fin. Hopf algebras and duals 14 June 2018 10 / 24



Proposition

Let H be a commutative-by-finite Hopf algebra. Then,

1 H and A are affine and noetherian.
2 H is a faithfully flat and projective A-module.

If H is pointed, H is a free A-module.

3 H is a PI-ring.

4 [Skryabin] The antipode S is bijective.

5 [Skryabin] H is a finitely-generated module over Z(H).

6 [Wu-Zhang] H is Auslander-Gorenstein, AS-Gorenstein and
GK-Cohen-Macaulay.

In general, these Hopf algebras are not regular.

Miguel Couto (U. of Glasgow) Com.-by-fin. Hopf algebras and duals 14 June 2018 10 / 24



Proposition

Let H be a commutative-by-finite Hopf algebra. Then,

1 H and A are affine and noetherian.
2 H is a faithfully flat and projective A-module.

If H is pointed, H is a free A-module.

3 H is a PI-ring.

4 [Skryabin] The antipode S is bijective.

5 [Skryabin] H is a finitely-generated module over Z(H).

6 [Wu-Zhang] H is Auslander-Gorenstein, AS-Gorenstein and
GK-Cohen-Macaulay.

In general, these Hopf algebras are not regular.

Miguel Couto (U. of Glasgow) Com.-by-fin. Hopf algebras and duals 14 June 2018 10 / 24



Proposition

Let H be a commutative-by-finite Hopf algebra. Then,

1 H and A are affine and noetherian.
2 H is a faithfully flat and projective A-module.

If H is pointed, H is a free A-module.

3 H is a PI-ring.

4 [Skryabin] The antipode S is bijective.

5 [Skryabin] H is a finitely-generated module over Z(H).

6 [Wu-Zhang] H is Auslander-Gorenstein, AS-Gorenstein and
GK-Cohen-Macaulay.

In general, these Hopf algebras are not regular.

Miguel Couto (U. of Glasgow) Com.-by-fin. Hopf algebras and duals 14 June 2018 10 / 24



Proposition

Let H be a commutative-by-finite Hopf algebra. Then,

1 H and A are affine and noetherian.
2 H is a faithfully flat and projective A-module.

If H is pointed, H is a free A-module.

3 H is a PI-ring.

4 [Skryabin] The antipode S is bijective.

5 [Skryabin] H is a finitely-generated module over Z(H).

6 [Wu-Zhang] H is Auslander-Gorenstein, AS-Gorenstein and
GK-Cohen-Macaulay.

In general, these Hopf algebras are not regular.

Miguel Couto (U. of Glasgow) Com.-by-fin. Hopf algebras and duals 14 June 2018 10 / 24



Proposition

Let H be a commutative-by-finite Hopf algebra. Then,

1 H and A are affine and noetherian.
2 H is a faithfully flat and projective A-module.

If H is pointed, H is a free A-module.

3 H is a PI-ring.

4 [Skryabin] The antipode S is bijective.

5 [Skryabin] H is a finitely-generated module over Z(H).

6 [Wu-Zhang] H is Auslander-Gorenstein, AS-Gorenstein and
GK-Cohen-Macaulay.

In general, these Hopf algebras are not regular.

Miguel Couto (U. of Glasgow) Com.-by-fin. Hopf algebras and duals 14 June 2018 10 / 24



Finite Dual of this Class

Let H be commutative-by-finite.

Idea: decompose H◦ in terms of H
∗

and A◦.

π : H � H ι : A ↪→ H Π : H � A
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π : H � H := H/A+H

Lemma (B.-C.-J.)

π∗ : H
∗
↪→ H◦ is an embedding of Hopf algebras.

H
∗ ∼= {f ∈ H◦ : f(A+H) = 0}.

ι : A ↪→ H

Proposition (B.-C.-J.)

ι◦ : H◦ � A◦ is a surjection of Hopf algebras.
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Lemma (Radford)

H decomposes into A⊕X, as a left (or right) A-module.

Π : H � A is a left A-module projection map

Proposition (B.-C.-J.)

Π◦ : A◦ ↪→ H◦ is an embedding of right A◦-comodules.
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Theorem (B.-C.-J.)

Let H be commutative-by-finite. We write H = A⊕X as A-modules.

1 If X is a coideal of H, then as algebras

H◦ ∼= H
∗
#A◦.

2 If X is an ideal of H, then as algebras

H◦ ∼= H
∗
#σA

◦.
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Theorem (B.-C.-J.)

Let H be commutative-by-finite. We write H = A⊕X as A-modules.

1 If X is a coideal of H, then as algebras H◦ ∼= H
∗
#A◦.

Decomposes the Hopf dual of:

Group algebras of finitely-generated abelian-by-finite groups G.

Prime regular affine Hopf algebras of Gelfand-Kirillov dimension 1.

Noetherian PI Hopf domains of Gelfand-Kirillov dimension 2.

Quantum groups Uε(sl2(k)) and Uε(sl3(k)).
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Examples

Example 1

H = kD = k〈a, b : a2 = 1, aba = b−1〉

A = k〈b〉 = O(k∗), H = kC2

H◦ ∼= H
∗
#A◦ = kC2 ⊗ k[x]⊗ k(k∗, ·).

Example 2

H = T (n, t, q) = k〈g, x : gn = 1, xg = qgx〉 with (n, t) = 1

A = k[xn] = O(k), H = Tf (n, t, q)

H◦ ∼= H
∗
#A◦ = Tf (n, t, q)⊗ k[z]⊗ k(k,+).
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A little more about the dual

Recall: A is affine commutative⇒ A = O(G) for some affine algebraic group G

A◦ ∼= U(LieG) ∗ kG,

U(LieG) = {f ∈ A◦ : f((A+)n) = 0, for some n ∈ N}, where A+ = ker ε.

kG = {f ∈ A◦ : f(mg1 ∩ . . . ∩mgr ) = 0, for some gi ∈ G}.

Under certain hypotheses,

H◦ ∼= H
∗
#σ(U(LieG) ∗ kG).

Extend these identifications of kG and U(LieG) to H.
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The tangential component

A◦ ∼= U(LieG) ∗ kG,
U(LieG) = {f ∈ A◦ : f((A+)n) = 0, for some n ∈ N}.

Definition
Let H be a commutative-by-finite Hopf algebra. The tangential component of
H◦ is

W := {f ∈ H◦ : f((A+H)n) = 0, for some n ∈ N}.

Theorem (B.-C.-J.)

Let H be commutative-by-finite. Then,

1 W is a normal Hopf subalgebra of H◦;

2 and as algebras
W ∼= H

∗
#σU(LieG).
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The character component

A◦ ∼= U(LieG) ∗ kG,
kG = {f ∈ A◦ : f(mg1 ∩ . . . ∩mgr ) = 0, for some gi ∈ G}.

Extending to H:

H acts on A by adjoint actions: for every a ∈ A, h ∈ H

adl(h)(a) :=
∑

h1aS(h2) ∈ A and adr(h)(a) :=
∑

S(h1)ah2 ∈ A.

H acts on G = MaxSpec(A).

This action restricts to an action of H.

Definition
Let H be commutative-by-finite.

1 Let m ∈ MaxSpec(A). We define mH = {a ∈m : h · a ∈m,∀h ∈ H}.
2 The character component of H◦ is

k̂G = {f ∈ H◦ : f(mH
g1H ∩ . . . ∩mH

grH) = 0, for some gi ∈ G}.
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h1aS(h2) ∈ A and adr(h)(a) :=
∑

S(h1)ah2 ∈ A.

H acts on G = MaxSpec(A).

This action restricts to an action of H.

Definition
Let H be commutative-by-finite.

1 Let m ∈ MaxSpec(A). We define mH = {a ∈m : h · a ∈m,∀h ∈ H}.

2 The character component of H◦ is

k̂G = {f ∈ H◦ : f(mH
g1H ∩ . . . ∩mH

grH) = 0, for some gi ∈ G}.
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k̂G = {f ∈ H◦ : f(mH
g1H ∩ . . . ∩mH

grH) = 0, for some gi ∈ G}.

Definition

Let H be commutative-by-finite. We say it is orbitally semisimple if A/mH
g is

semisimple for every g ∈ G.

Theorem (B.-C.-J.)

Let H be an orbitally semisimple commutative-by-finite Hopf algebra.

1 k̂G is a Hopf subalgebra of H◦.

2 If H◦ decomposes as H
∗
#σA

◦, then

k̂G ∼= H
∗
#σkG.
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Under certain hypotheses,

•

•

• •

•

H
∗

W ∼= H
∗
#σ U(LieG) k̂G ∼= H

∗
#σ kG

H◦ ∼= H
∗
#σ(U(LieG) ∗ kG)
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Examples

Example 1

H = kD = k〈a, b : a2 = 1, aba = b−1〉

A = k〈b〉, H = kC2

H◦ ∼= H
∗
#A◦ = kC2 ⊗ k[x]⊗ k(k∗, ·).

W ∼= H
∗
#σU(LieG) = kC2⊗k[x] and k̂G ∼= H

∗
#σkG = kC2⊗k(k∗, ·).

Example 2

H = T (n, t, q) = k〈g, x : gn = 1, xg = qgx〉

A = k[xn], H = Tf

H◦ ∼= H
∗
#A◦ = Tf ⊗ k[z]⊗ k(k,+).

W ∼= H
∗
#σU(LieG) = Tf ⊗ k[z] and k̂G ∼= H

∗
#σkG = Tf ⊗ k(k,+).
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Thank you.
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