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Lecture plan:

Some early work on regularity and existence of minimal
hypersurfaces in Riemannian manifolds.

Recent work on regularity of minimal and CMC hypersurfaces.

An alternstive approach to the existence theory.

Aspects of the proofs of recent regularity results (time permitting).
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Early work: Schoen–Simon–Yau (1975), Schoen–Simon (1981).

A fundamental compactness theory for uniformly mass bounded stable
minimal hypersurfaces of any given Riemannian manifold.

Schoen–Simon–Yau established this for low dimensions, and
Schoen–Simon for general dimensions.

The methods employed in these two works were very different.

However both theories required the a priori assumption that the interior
singular sets (i.e. the set of non-embedded points) of the hypersurfaces
M are sufficiently small. In fact Schoen–Simon–Yau required that the
singularities are completely absent; the more general Schoen–Simon
theory required that

Hn−2 (singM) <∞
where n = dimM. Subject to this smallness hypothesis on the singular
set, the work established curvature estimates for M and a sharp bound
(in general dimensions) on the size of their singular set, namely, that

dimH (singM) ≤ n − 7.

Earlier work (1960-1970): De Giorgi, Federer, Fleming, Almgren, Simons:

If M is locally area minimizing, then dimH (singM) ≤ n − 7.
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Existence theory: Almgren (1960): A deep min-max theory for the area
functional, giving existence of a weak minimal k-dimensional submanifold
(a stationary integral k-varifold) in any given compact Riemannian
manifold N and any k < dimN.

Pitts (1970): an important strengthening of Almgren’s theory: allowed
regularity of min-max solutions to to be deduced from regularity of local
minimizers plus compactness under stability.

Outcome: The above compactness theory for stable hypersurfaces,
together with the regularity theory for area minimizing hypersurfaces,
implies embeddedness (away from a codim. 7 singular set) of the
Almgren–Pitts min-max minimal hypersurfaces.

Marques–Neves–Song: For 2 ≤ n ≤ 6 and some metrics (a dense set),
there are lots of Almgren–Pitts min-max minimal hypersurfaces.
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Recent work on regularity and compactness: In a series of works in
the past several years, the Schoen–Simon–Yau and Schoen–Simon
theories have been strengthened and extended.

(i) (Wic., 2014) A general regularity and compactness theory for stable
hypersurfaces, replacing the Schoen–Simon smallness hypothesis on
the singular set with a certain structural condition. This has lead to
a considerably more efficient PDE alternative to the Almgren–Pitts
min-max theory. (Guaraco, Hutchinson–Tonegawa, Tonegawa–Wic.).

(ii) (Bellettini–Wic., 2018) Generalisation of (i) to weakly stable CMC
(constant mean curvature) hypersurfaces; weak stability is the
natural notion of stability for CMC hypersurfaces. (Stable CMC
integral varifolds of codimension 1: regularity and compactness,
arXiv, 2018);

(iii) (Bellettini–Chodosh–Wic., 2018) Generalisation of the curvature
estimates of Schoen–Simon–Yau and Schoen–Simon (for (strongly)
stable hypersurfaces) to weakly stable CMC hypersurfaces
(Curvature estimates and sheeting theorems for weakly stable CMC
hypersurfaces, arXiv, 2018).

This work (ii) appears to be the key step in understanding regularity of
Morse index controlled hypersurfaces whose (scalar) mean curvature is
prescribed by an ambient function.
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To describe this work, assume that the ambient space is an open set
U ⊂ Rn+1. The local nature of the regularity theorems means that this
involves little loss of generality, and indeed the methods do carry over to
the general Riemannian setting with only technical modifications.

The work considers a general class of n-dimensional hypersurfaces:
codimension 1 integral n-varifolds V whose generalized mean curvature is
locally summable to a power p > n.

What are these?

First, V = (M, θ) where M ⊂ U is n-rectifiable and θ : M → N+ (the
multiplicity function) is locally Hn integrable.

Write ‖V ‖ = Hnbθ, i.e. ‖V ‖(A) =
∫
M∩A θ dH

n. This measure is called
the weight (or mass) measure associated with the varifold V .
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Generalized mean curvature of V : This is defined variationally:

Let X : U → Rn+1 be a smooth vector field with compact support. We
can use X to deform V by moving it by a smooth 1-parameter family of
diffeomorphisms ϕt : U → U, t ∈ (−ε, ε), with ϕ0 = identity ,
ϕt |U\sptX = identity |U\sptX and with initial velocity
d
dtϕt(x)

∣∣
t=0

= X (x).

For any such family ϕt , set ϕt #(V ) = (ϕt(M), θ ◦ ϕ−1
t ). Then a

calculation shows that the first variation

δX (V ) ≡ d

dt

∣∣∣∣
t=0

‖ϕt #(V )‖(U) =

∫
M

divM X d‖V ‖.

Here divM X (x) =
∑n

j=1 < τj ,∇τjX (x) > for any orthonormal basis

{τ1, τ2, . . . , τn} for Tx M. If M is a C 2 submanifold with mean curvature
HM and nice boundary and if θ = 1, then along M we can write
X = XT + X⊥, the sum of tangential and normal components. Since
divM X⊥ =

∑n
j=1 < τj ,∇τjX⊥ >= − < HM ,X >, we get by the

divergence theorem∫
M

divM X dHn = −
∫
M

< HM ,X > dHn +

∫
∂M

< X , ν > dHn−1.
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Definition: V = (M, θ) has generalized mean curvature HV if
HV ∈ L1

loc(‖V ‖) and∫
M

divM X d‖V ‖ = −
∫
M

< HV ,X > d‖V ‖

for every X ∈ C∞c (U;Rn+1).

Allard (1972): If HV ∈ Lploc (‖V ‖) for n < p <∞, then spt ‖V ‖ is
n-rectifiable, Hn ((spt ‖V ‖ \M) ∪ (M \ spt ‖V ‖)) = 0 and the C 1

embedded part reg1 V of spt ‖V ‖ is a relatively open, dense subset of
spt ‖V ‖. In fact reg1 V is of class C 1,1− n

p .

Brakke: a.e. regularity does not follow from HV ∈ Lploc; There is an
integral 2-varifold W in R3 with HW ∈ L∞loc such that singW has
positive H2 measure.

This example uses Catenoidal necks as bulilding blocks, and hence it has
a “lot of curvature.”
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Main new discovery in (Wic. 2014), (Bellettini–Wic., 2018): For
codimension 1 integral varifolds V with HV ∈ Lploc(‖V ‖) for some p > n
and satisfying appropriate variational hypotheses, certain structural
conditions (described below) are sufficient (and necessary) to give the
codimension 7 conclusion on the (genuine) singular set.

These structural conditions are easier to check in principle, and are less
stringent than the Schoen–Simon smallness hypothesis on the singular
set.
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First structural condition: V has no classical singularities.

A classical singularity is a point Y ∈ spt ‖V ‖ near which spt ‖V ‖ is the
union of three or more embedded C 1,α hypersurfaces-with-boundary for
some α ∈ (0, 1) that meet only along a common free boundary
containing Y .

No-classical-singularities is the only structural condition necessary in the
minimal case.

Theorem (Wic., 2014): a stationary (i.e. HV = 0) codimension 1
integral n-varifold with stable regular part and no classical
singularities is smoothly embedded away from a closed singular set of
dimension ≤ n − 7; moreover, any uniformly area bounded collection
of such varifolds is compact.

Important remark: No-classical-singularities condition is implied by the
following: There is a set Z ⊂ spt ‖V ‖ with Hn−1(Z ) = 0 such that no
tangent cone at a point Y ∈ spt ‖V ‖ \ Z is the union of three or more
half-hyperplanes meeting along a common axis.
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CMC varifolds: Next theorems generalise the above result to CMC
varifolds. Key new difficulties arise due the the combination of: (1)
failure of two-sided maximum principle for CMC hypersurfaces, and (2)
lack of any smallness hypothesis on the singular set.

An important feature of the regularity theorems in this more general
setting is that they require variational hypotheses only on the regular
parts of the varifold. So consider first the classical (i.e. C 2) setting.

Let M be an embedded, oriented, boundaryless C 2 hypersurface of an
open subset U of Rn+1, with ν a continuous choice of unit normal on M.
For open O ⊂⊂ U, write

AO (M) = Hn (M ∩ O),

volO (M) =
1

n + 1

∫
M∩O

x · ν(x) dHn(x).

volO (M) is the volume enclosed by M in case M is the boundary of an
open set Ω ⊂ O and ν is the outward pointing unit normal. (Proof:
divRn+1 x = n + 1; integrate this over Ω and use the divergence theorem.)

For fixed λ ∈ R, let JO (M) = AO (M) + λ volO (M).

Write HM for the mean curvature vector of M.
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Variational formulation of the CMC condition:

It is well known that the following are equivalent.

(a) M is CMC with HM · ν = λ.

(b) λ = 1
AΩ(M)

∫
M∩Ω

HM · ν dHn for some Ω ⊂⊂ U and, for each open

O ⊂⊂ U, M is stationary for AO(·) w. r. t. volO (·) preserving
deformations.

[i.e. for each compact K ⊂ O, d
dt

∣∣
t=0
AO(ϕt(M)) = 0 for

diffeomorphisms ϕt : O → O, t ∈ (−ε, ε), with ϕ0 = identity ,
ϕt |O\K = identity |O\K ∀t and volO (ϕt(M)) = volO (M) ∀t.]

(c) For every open O ⊂⊂ U, M is stationary for JO(·) for arbitrary
deformations (i.e. deformations ϕt as above but not necessarily with
volO (ϕt(M)) = volO (M) ∀t.)

Definition: A CMC hypersurface M of U is weakly stable if for every open

O ⊂⊂ U, d2

dt2

∣∣∣
t=0
AO (ϕt(M)) ≥ 0 for all volO (·) preserving ϕt as in (b)

above. ( =⇒
∫
M
|AM |2ζ2 ≤

∫
M
|∇ ζ|2 for ζ ∈ C 1

c (M) with
∫
M
ζ = 0.)
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CMC varifold regularity requires a second structural condition based on
the following:

Definition: Y ∈ spt ‖V ‖ is a touching singularity of V if
Y 6∈ singC V ∪ reg1 V and there is σ > 0 such that spt ‖V ‖ ∩ Bn+1

σ (Y )
is the union of two embedded C 1,α hypersurfaces for some α ∈ (0, 1).
singT V is the set of touching singularities of V .

If Y ∈ singT V , there are a σ > 0, an affine hyperplane L through p and
two C 1,α functions u1, u2 : L→ L⊥ such that
spt ‖V ‖ ∩ Bn+1

σ (Y ) = (graph u1 ∪ graph u2) ∩ Bn+1
σ (Y ).

Note: u1(Y ) = u2(Y ), Du1(Y ) = Du2(Y ).
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CMC REGULARITY THEOREM (Bellettini-Wic., 2018)

Let V be an integral n-varifold in open U ⊂ Rn+1 with HV ∈ Lploc(‖V ‖)
for some p > n. Suppose:
structural hypotheses:

(a) V has no classical singularities.

(b) For each y ∈ singT V , there is ρ > 0 such that

Hn ({z : Θ (‖V ‖, z) = Θ (‖V ‖, y)} ∩ Bn+1
ρ (y)) = 0;

variational hypotheses:

(c) stationarity: whenever O ⊂ U \ (spt ‖V ‖ \ reg1 V ) is such that
reg1 V ∩ O is orientable, there is a continuous choice of unit normal
ν on reg1 V ∩ O such that V bO is stationary for
JO (V ) = ‖V ‖(O) + λ

∫
reg1 V∩O

x · ν d‖V ‖;
(d) stability: the C 2 immersed part of spt ‖V ‖ (which contains reg1 V

by (c)) is stable (as a classical CMC immersion) w.r.t. vol (·)
preserving deformations.

Then except on a closed set Σ of dimension ≤ n − 7, spt ‖V ‖ ∩ U is
quasi-embedded, i.e. is locally either a single smoothly embedded disk or
the union of two smoothly embedded disks intersecting tangentially and
each lying on one side of the other; moreover, HV = λν on
(spt ‖V ‖ \ Σ) ∩ U.
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Remarks: (1) Hypothesis (a) (no-classical-singularities) cannot be
dropped. Consider e.g. a piece of two intersecting unit spheres. In the
presence of classical singularities, branch points may develop.

(2) If (b) is dropped, then C 2 regularity can fail.
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Important corollary: Caccioppoli sets. A measurable set E ⊂ Rn+1 is a
Caccioppoli set (a set of locally finite perimeter) if χE ∈ BVloc(Rn+1).
So there is a Radon measure µE on Rn+1 and a vector field νE with
|νE | = 1 µE -a.e. such that∫
E
divX dHn+1 =

∫
X · νE dµE for every X ∈ C∞c (Rn+1;Rn+1).

For open O ⊂⊂ Rn+1, let JO(E ) = µE (O) + λHn+1(E ∩ O).

THEOREM (Bellettini-Wic., 2018)

Let E be a Caccioppoli set in Rn+1 and let λ ∈ R. Suppose:

(a) no point p ∈ sptµE is a classical singularity of sptµE ;

(c) For each open O ⊂⊂ Rn+1, E is stationary with respect to JO(·) for
deformations that fix E outside O and

(d) the smoothly immersed part of sptµE is stable (as an immersion)
with respect to JO(·) for deformations that fix E outside O and
preserve Hn+1(E ∩ O).

Then except on a closed set of dimension ≤ n− 7, sptµE is locally either
a single smoothly embedded disk or the union of precisely two smoothly
embedded disks intersecting tangentially.

Proof: Follows from the preceding theorem since by De Giorgi’s structure
theory for Caccioppoli sets, the structural condition (b) is automatic.
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Advantage of the structural conditions: they involve only the parts of the
varifold consisting of regular pieces coming together in a regular fashion.
You are allowed to assume regularity in checking them!

In fact in the above results, surprisingly, all hypotheses except for
HV ∈ Lploc(‖V ‖) concern only the regular parts of the varifold, making
them easy to check in principle.
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Proofs of the above theorems use the Schoen–Simon estimates (for
stable hypersurfaces with small singular sets), the powerful machinery
developed by L. Simon in his work on asymptotics for minimal
submanifolds in multiplicity 1 classes, as well as ideas and results from a
number of other fundamental works in GMT due to: De Giorgi, Allard,
Almgren, Federer, Simons and Hardt–Simon.
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CMC COMPACTNESS THEOREM (Bellettini-Wic., 2018)

Let (Vj) be a sequence integral n-varifolds in open U ⊂ Rn+1 satisfying
HVj ∈ Lploc(‖Vj‖) for some p > n and (a)-(d) as in the above theorem
with V = Vj . If lim supj→∞ ‖Vj‖(K ) <∞ for each compact K ⊂ U,
then there is an integral n-varifold V in U satisfying (a)-(d), and a
subsequence {j ′} such that Vj′ → V as varifolds in U.

Remark: Hn−1 (singV ) = 0 =⇒ both structural conditions (a) & (b).

Proof of regularity under this assumption requires not much more than
minor modification to the argument in the minimal case.

But this hypothesis is undesirable; compactness fails, and results not
directly applicable to Caccioppoli sets.
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Effective versions of compactness: curvature estimates

THEOREM (Bellettini-Chodosh-Wic., 2018)

If M ⊂ B1(0) ⊂ Rn+1 is a quasi-embedded, weakly stable CMC
hypersurface with Hn(M) ≤ Λ and |HM | ≤ H0 then
(a) if 2 ≤ n ≤ 6 and singM ∩ B1(0) = ∅ then

sup
x∈M∩B1/2(0)

|AM |(x) ≤ C ,

where C = C (H0,Λ) and AM is the second fundamental form of M.

(b) For general n, there is δ0 = δ0(n,H0,Λ) ∈ (0, 1) such that if
additionally dimH(singM) ≤ n − 7 and M ⊂ {|xn+1| ≤ δ0}, then
M ∩ (Bn

1/2(0)× R) separates into the union of graphs of functions

u1 ≤ · · · ≤ uk defined on Bn
1/2(0) satisfying

sup
Bn

1/2
(0)

(
|Dui |+ |D2ui |

)
≤ δ0

for i = 1, . . . , k ; moreover, each ui is separately a smooth CMC graph.
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A remark on the proof of the curvature estimates:

The methods used by Schoen–Simon–Yau and Schoen–Simon for
strongly stable hypersurfaces involve the use of positive test functions φ
in the stability inequality, and since these never integrate to zero, it is not
clear how to carry over these methods to the setting of weak stability.

The strategy employed here is different: we take a geometric approach,
combining the results of Schoen–Simon–Yau and Schoen–Simon for
strongly stable hypersurfaces with the fact that complete weakly stable
minimal hypersurfaces have only one end, a result due to
Cheng–Cheung–Zhou and generalized here to allow the hypersurfaces to
have a small singular set. (This generalization is only necessary for part
(b), the sheeting theorem).

The proof uses a blow-up procedure relying on the above compactness
theorem for weakly stable CMC hypersurfaces.
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Recent new proof of existence of minimal hypersurfaces:

Let N be compact Riemannian manifold of dimension n + 1 ≥ 3.

For ε ∈ (0, 1), consider the Allen–Cahn functionals

Eε(u) =
∫
N
ε|∇ u|2

2 + W (u)
ε dHn+1, u ∈W 1,2(N).

W : R→ R is a fixed smooth non-negative double-well potential with
precisely two non-degenerate minima at ±1 with W (±1) = 0.

Critical points uε of Eε have a close connection to minimal hypersurfaces:
as ε→ 0, the level sets u−1

ε (t) for |t| < 1 concentrate near a minimal
hypersurface. (Modica, Sternberg in the 1980’s for minimizers.)

Hutchinson–Tonegawa (1999): If εj → 0+, uj ∈W 1,2(N) is a critical
point of Eεj (so −εj∆ uj + ε−1

j W ′(uj) = 0) and
Eεj (uj) + supN |uj | ≤ c for fixed c , then
σ−1εj′ |∇ uj′ |2 dHn+1 → θ dHn where σ = σ(W ) is an explicit
constant and θ : N → N ∪ {0}. If M ≡ {x ∈ N : θ(x) > 0} then M
is n-rectifiable and Vac = (M, θ) is a stationary integral varifold in N.

This is the elliptic version of the pioneering work of Ilmanen (1993):
Convergence of the parabolic Allen-Cahn equation to Brakke flow.
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Tonegawa (2005): If additionally uj are stable, i.e. if

d2

dt2

∣∣∣∣
t=0

Eεj (uj+tϕ) =

∫
N

εj |∇ϕ|2+ε−1
j W ′′(uj)ϕ

2 ≥ 0 ∀ ϕ ∈ C 1(N),

then Vac is stable on its regular part.

Applying the regularity theory of (Wic, 2014) to Vac gives the following:

Tonegawa–Wic., (2012): If uj are stable then Vac is an embedded
stable minimal hypersurface of N with dim (singVac) ≤ n − 7.
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Full strength of (Wic., 2014) is used because:

(1) There is no a priori control of the size of the set T of singularities of
Vac where one tangent cone is planar. Convergence of level sets is not
known to be strong enough to give any information about T .

(2) The second fundamental form of the level sets could concentrate near
some set Z ⊂ spt ‖Vac‖. Easy to show that dimH (Z ) ≤ n − 2, but no
more control on Z is available.

The regularity theory (Wic, 2014) requires no control of T , and it only
requires ruling out classical tangent cones away from Z , which is not
difficult to do.
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Recent work of Guaraco completes the existence proof:

Guaraco (2018): For each ε ∈ (0, 1), there is a min-max critical
point uε of Eε such that

(i) Morse index of uε ≤ 1;

(ii) supN |uε| ≤ 1 and

(iii) 0 < lim infε→0+ Eε(uε) ≤ lim supε→0+ Eε(uε) <∞.

Elementary observation: Because Index (uε) ≤ 1, for any ambient ball B,
uε is stable either in B or in N \ closB.
Hence by applying Tonegawa–Wic., Guaraco deduces:
Corollary: If uε are as in the construction above, any sequence εj → 0+

has a subsequence εj′ such that σ−1εj′ |∇ uεj′ |
2 dHn+1 → ‖Vac‖ for some

non-trivial stationary integral varifold Vac with dimH (singVac) ≤ n − 7.

Remark: Chodosh–Mantoulidis: In dimension n = 2, strong convergence
of level sets of stable Allen–Cahn solutions hold. Hence get existence of
minimal surfaces in compact 3 manifolds by entirely PDE methods,
without the need of any GMT regularity theory.

Riviére, Pigati–Riviére: A viscocity approach, also for n = 2, giving
branched minimal immersions in arbitrary codimension.
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A brief outline of the proof of the CMC regularity and
compactness theorems:

First reduce to the case where “strong stability” holds. i.e.∫
gen-regV

|A|2ζ2 ≤
∫

gen-regV

|∇ζ|2 for every ζ ∈ C 1
c (gen-regV )

where gen-regV = C 2 immersed part of spt ‖V ‖.

To describe the proofs, fix H0 > 0 and p > n, and let SH0 be the set of
integral n-varifolds V on the open ball Bn+1

2 (0) ⊂ Rn+1 satisfying(∫
|HV |p d‖V ‖

)1/p ≤ H0 and the hypotheses:

(a) V has no classical singularities;

(b) Hn ({y : Θ (‖V ‖, y) = Θ (‖V ‖, z)} ∩ Bn+1
ρ (z)) = 0 for each

z ∈ singT V and some ρ > 0;

(c) V is stationary with respect to the functional J away from
spt ‖V ‖ \ reg1 V ; and

(d) V is strongly stable on gen-regV .

The regularity and compactness theorems are proved by establishing the
following three theorems, all proved simultaneously by induction on
multiplicity/density.
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Sheeting Theorem

Let q be a positive integer. There exists ε = ε(n, q,H0) ∈ (0, 1) such that
if V ∈ SH0 , q − 1/2 ≤ ω−1

n ‖V ‖ (Bn
1 × R) < q + 1/2 and

E ≡
∫
Bn

1 (0)×R |x
n+1|2 d‖V ‖(X ) + 1

ε

(∫
Bn

1 (0)×R |HV |p d‖V ‖(X )
) 1

p

< ε then

V b
(
Bn

1/2(0)× R
)

=

q∑
j=1

|graph uj |

where uj ∈ C 1,α (Bn
1/2(0);R), u1 ≤ . . . ≤ uq and ‖uj‖2

C 1,α(Bn
1/2

(0)) ≤ CE

for some fixed α = α(n, q,H0) ∈ (0, 1/2), C = C (n, q,H0) ∈ (0,∞).

Minimum Distance Theorem

Let C be a stationary cone in Rn+1 such that spt ‖C‖ consists of three or
more n-dimensional half-hyperplanes meeting along a common
(n − 1)-dimensional subspace. There exists ε = ε(C,H0) ∈ (0, 1) such
that if V ∈ SH0 and (ωn2n)−1‖V ‖(Bn+1

2 (0)) < Θ (‖C‖, 0) + 1/2 then

distH (spt ‖V ‖ ∩ Bn+1
1 (0), spt ‖C‖ ∩ Bn+1

1 (0)) > ε.

Note: Θ (‖C‖, 0) ∈ {q − 1/2, q} for some integer q ≥ 2.
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Higher Regularity Theorem

Assume q ≥ 2 and that V ∈ SH0 is such that

V b
(
Bn

1/2(0)× R
)

=

q∑
j=1

|graph uj |

with uj ∈ C 1,α (Bn
1/2(0);R) and u1 ≤ u2 ≤ . . . ≤ uq, with α ∈ (0, 1

2 ).
Then

spt‖V ‖ ∩
(
Bn

1/2(0)× R
)

= ∪q̃j=1graph ũj

for some q̃ ≤ q; ũj 6≡ ũj+1 for each j ∈ {1, ..., q̃ − 1} and moreover

(i) the q̃ graphs ũj can touch at most in pairs, i.e. if there exist
x ∈ Bn

1/2(0) and i ∈ {1, 2, ..., q̃ − 1} such that ũi (x) = ũi+1(x) then

Dũi (x) = Dũi+1(x) and ũj(x) 6= ũi (x) for all j ∈ {1, 2, ..., q̃} \ {i , i + 1}.

(ii) each ũj is of class C 2 and solves individually the CMC equation (and
hence it is in C∞).
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Note that the higher regularity assertion is only for spt ‖V ‖; the functions
uj as in the conclusion of the Sheeting Theorem need not be C 2.

In the minimal hypersurface case, the Higher Regularity Theorem is a
trivial consequence of the Hopf boundary point lemma, and yields strict
inequality ũi < ũi+1 for each i .

In the CMC setting too The Higher Regularity Theorem is easy to prove
if we assume that Hn−1(sing V ) = 0.

In the above generality however, considerable difficulties arise due to the
combination of the failure of two-sided strong maximum principle and the
fact that we only have hypothesis (b) concerning the touching
singularities p, i.e. Hn ({y : Θ (‖V ‖, y) = Θ (‖V ‖, p)} ∩ Bn+1

ρ (p)) = 0
for some ρ > 0.
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The induction scheme for the three theorems is the following: Let q ≥ 2
be an integer.

induction hypotheses:

(H1) Sheeting Theorem holds with any q′ ∈ {1, . . . , q − 1} in place of q.

(H2) Minimum Distance theorem holds whenever
Θ (‖C‖, 0) ∈ {3/2, . . . , q − 1/2, q}.

(H3) Higher Regularity Theorem holds with any q′ ∈ {1, . . . , q − 1} in
place of q.

Completion of induction is achieved by carrying out, assuming (H1),
(H2), (H3), the following three steps in the order they are listed:

(i) prove the Sheeting Theorem (for the case of q sheets);

(ii) prove the Minimum Distance Theorem in case Θ (‖C‖, 0) = q + 1/2;

(iii) prove the Minimum Distance Theorem in case Θ (‖C‖, 0) = q + 1;

(iv) prove the Higher Regularity Theorem (for the case of q sheets).
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Final Remark: Although the Sheeting Theorem and the Minimum
Distance Theorem are meaningful independently of each other, it appears
to be impossible to prove them one after the other, inductively or
otherwise. The reason is the following:

For the Sheeting Theorem, it is possible to make good use of the
monotonicity formula whenever there are singular points with density
≥ q. In regions where all singularities have density < q on the other
hand, one has to find a way to use the stability hypothesis to rule out the
Catenoid-like behavior. However, in the presence of a potentially large
singular set, it is impossible to get information from the stability
inequality. This demands controlling the size of the singular set in regions
of density < q, and to do this (by applying dimension reduction), one
needs the Minimum Distance Theorem.

For the Minimum Distance Theorem, the argument is by contradiction,
and involves showing that if there is a sequence of varifolds Vj ∈ SH0

converging to C (a cone supported on three or more half-hyperplanes
meeting along an axis), then there has to be a classical singularity
somewhere in Vj for sufficiently large j . In order to do this, asymptotic
decay estimates have to be proved, which demands as a very first step
showing that Vj are “well-behaved” away from the axis of C. This
demands something like a Sheeting Theorem.
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