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General relativity: Lorentzian geometry

A spacetime is a time-oriented (3 + 1)-dimensional Lorentzian
manifold (M, g).

The manifold is equipped with a Lorentzian metric g : a
symmetric bilinear form on the tangent space with signature
(−,+,+,+).

Basic example: Minkowski spacetime (R3+1,m),

m = −dt2 + dx2 + dy2 + dz2

A Lorentzian metric g defines a lightcone on the tangent space
of each point. Accordingly, a vector X can be classified as

spacelike, if g(X ,X ) > 0
timelike, if g(X ,X ) < 0
null, if g(X ,X ) = 0
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General relativity: Einstein equation

The Einstein equations (Tµν describes some matter fields) for
(3 + 1)-dimensional Lorentzian manifold (M, g) is given by

Ricµν(g)− 1

2
gµνR = 2Tµν .

In vacuum (Tµν = 0), this reduces to

Ricµν(g) = 0.

Matter fields determine the geometry, and freely-falling
observers follow timelike/null geodesics.

In an appropriate coordinate system, the Einstein vacuum
equations form to a system of quasilinear wave equations for
the metric components.
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Initial value problem in general relativity

Theorem (Choquet-Bruhat–Geroch)

Given

a (smooth) three dimensional manifold Σ

with a (smooth) Riemannian metric ĝ ,

and a (smooth) symmetric 2-tensor k̂

satisfying the constraint equations, there exists a unique maximal
Cauchy development (M, g) solving the Einstein vacuum
equations such that ĝ and k̂ are the induced first and second
fundamental forms respectively.

Appropriate matter fields can be added in the initial value
problem.
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PDE questions for the Einstein equations

Given the initial value formulation, we are interested in the
following PDE questions:

Given initial data set, is the maximal Cauchy development
global-in-time (geodesically complete)?

Are special solutions globally nonlinearly stable?

If the maximal Cauchy development is not global, what
happens? Is there a singularity?

Can a solution be extended further (e.g. beyond the
singularity)? Are extensions unique?
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Minkowski spacetime

Recall again that the Minkowski metric is given by

g = −dt2 + dx2 + dy2 + dz2

on the manifold R3+1.

This is the maximal Cauchy development of data
(ḡ , k̄) = (δ, 0) on R3,

δ = dx2 + dy2 + dz2

The maximal Cauchy development is geodesically complete
and is inextendible with a C 0 metric.

(Christodoulou–Klainerman 1993) Minkowski is globally
nonlinearly stable.
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Future development of a flat ball

Consider as data (B(0, 1), δ, 0).

By domain of dependence arguments, the maximal Cauchy
development is a strict subset of Minkowski.

The solution is geodesically incomplete and smoothly
extendible, but this is due to incompleteness of data.

This motivates the study of complete initial data — we will in
fact consider only complete asymptotically flat data in this
talk.
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The Schwarzschild spacetime

The (maximal) Schwarzschild spacetime (M = R2× S2, gSch)

solves Ric(gSch) = 0,
and in local coordinates

gSch = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2γS2 ,

where M > 0 and γS2 is the standard round metric.

(M, gSch) has complete 2-ended asymptotically flat initial
data and is geodesically incomplete.

Associated to the incompleteness is a singularity where
RαβµνR

αβµν →∞.

Moreover, (M, gSch) is inextendible in C 0.
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The Schwarzschild spacetime
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Figure: Maximal future Cauchy development of Schwarzschild
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The Kerr spacetime

The Schwarzschild family of solutions turns out to be a subfamily
of the larger Kerr family of solutions (to the Einstein vacuum
equations). The manifold is again R2 × S2 and the metric is given
in a local coordinate system (with 0 ≤ |a| < M) by

gKe = −(1−2Mr

Σ
)dt2+

Σ

∆
dr2+Σdθ2+R2 sin2 θdφ2−4Mar sin2 θ

Σ
dφdt,

where

Σ = r2+a2 cos2 θ, R2 = r2+a2+
2Ma2r sin2 θ

Σ
, ∆ = r2+a2−2Mr .
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The Kerr spacetime

Kerr has complete 2-ended asymptotically flat initial data.

The maximal Cauchy development is geodesically incomplete.

However, when 0 < |a| < M, there is no singularity.

Instead, there is a smooth Cauchy horizon.

In fact, it has infinitely many smooth extensions that solve the
Einstein vacuum equations!
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The Kerr spacetime
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Figure: Maximal future Cauchy development of Kerr and a non-unique
extension
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Strong cosmic censorship conjecture

The above discussion motivates the following

Conjecture (Strong cosmic censorship, Penrose)

Maximal future Cauchy developments to generic asymptotically
flat initial data are future inextendible as suitably regular
Lorentzian manifold.

In particular, the smooth Cauchy horizon of Kerr is expected to be
unstable!
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C 0 formulation of strong cosmic censorship

The original expectation of strong cosmic censorship was modeled
on the Schwarzschild solution. One possible way to formulate it is
the following:

Conjecture (C 0 formulation of strong cosmic censorship)

Maximal future Cauchy developments to generic asymptotically
flat initial data are future inextendible as a Lorentzian manifold
with a C 0 metric.

This would be consistent with (though not equivalent to) blow up
of Jacobi fields, which has the interpretation that “tidal
deformations are infinite in the interior of black holes”.
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Blue shift instability

Strong cosmic censorship conjecture has been extensively
studied in the physics literature, (Penrose, Penrose–Simpson, McNamara,

Gürsel–Sandberg–Novikov–Starobinsky, Chandrasekhar–Hartle, Hiscock, Poisson–Israel, Ori, . . . )

The original conjecture of Penrose was based in part of the
blue shift instability of the Cauchy horizon.
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The Reissner–Nordström spacetime

To simply the problem, we first impose spherical symmetry —
but Kerr is not spherically symmetric!

The Reissner-Nordström spacetime is a 2-parameter family of
solutions to the Einstein–Maxwell system. The metric in local
coordinates take the form

g = −(1− 2M

r
+

e2

r2
)dt2 + (1− 2M

r
+

e2

r2
)−1dr2 + r2dσS2 .

For 0 < |e| < M, the Reissner–Nordström spacetime has the
same global structure of Kerr spacetime. In particular, it has a
smooth Cauchy horizon and can be extended smoothly and
non-uniquely as solutions to the Einstein–Maxwell system.
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The spherically symmetric Einstein–Maxwell–scalar field
system

Consider the Einstein–Maxwell–scalar field system with spherically
symmetric initial data.

Ricµν − 1
2gµνR = 2(T

(sf )
µν + T

(em)
µν ),

T
(sf )
µν = ∂µφ∂νφ− 1

2gµν(g−1)αβ∂αφ∂βφ,

T
(em)
µν = (g−1)αβFµαFνβ − 1

4gµν(g−1)αβ(g−1)γσFαγFβσ,

where F is a 2-form and φ is a real-valued function satisfying

�gφ = 0, dF = 0, (g−1)αµ∇αFµν = 0.

Without a scalar field, Minkowski, Schwarzschild and
Reissner–Nordström are the only solutions.
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C 0-formulation of strong cosmic censorship is false!

The C 0 formulation of strong cosmic censorship conjecture is false
within the class of spherically symmetric spacetimes:

Theorem (Dafermos, Dafermos–Rodnianski, 2005)

Consider spherically symmetric, 2-ended asymptotically flat
admissible initial data to the Einstein–Maxwell–scalar field system
with non-trivial Maxwell field. Then the maximal future Cauchy
development is C 0-future-extendible.
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Solutions arising from spherically symmetric data
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C 2 formulation of strong cosmic censorship in spherical
symmetry

Theorem (L.-Oh, 2017)

There exists a generic (open in C 1, dense in C∞) set G of
spherically symmetric two-ended asymptotically flat admissible
smooth initial data to the Einstein–Maxwell–scalar field system
with compactly supported initial scalar field such that the maximal
future Cauchy development is C 2-future-inextendible.
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Comments on the spherically symemtric model

The C 0-extendibility result can be viewed as a stability result,
which can be understood completely independently of the
singular nature of the boundary.

The singularity in the interior of the black hole is highly
related to the decay rate of the scalar field in the exterior
region. As a consequence of our proof, we also establish a
lower bound of such decay rate in the generic case.

The lower bound of the decay rate is in turn a consequence of
the geometry of the asymptotically flat end.

See work of Van de Moortel (2017,2018) on generalizations to
a more realistic spherically symmetric problem.
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Stability of Kerr exterior conjecture

We now study the problem with no symmetry assumptions.

One may first try to study the strong cosmic censorship
conjecture in a neighborhood of the Kerr solution.

The exterior region of Kerr is widely believed to be stable —
but even this remains an open problem (see the next talk)!

Conjecture (Stability of Kerr exterior)

Given an initial data set to the Einstein vacuum equation which is
globally close to Kerr initial data with 0 ≤ |a| < M. The maximal
future Cauchy development has an exterior region which converges
to a nearby Kerr spacetime.
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Stability of Kerr exterior conjecture
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Figure: The conjectured stability of the Kerr exterior
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Stability of the Kerr Cauchy horizon

We turn to the nonlinear problem with no symmetry
assumptions. For this purpose, we assume the validity of the
stability of Kerr exterior conjecture.

Theorem (Dafermos–L., 2017)

If the stability of Kerr exterior conjecture is true (with quantitative
decay rates), then the maximal future Cauchy development to any
small perturbation of Kerr data (with 0 < |a| < M) has a bifurcate
Cauchy horizon. Moreover, the metric is continuously extendible to
the Cauchy horizon and (in appropriate coordinate systems) is
C 0-close to the Kerr metric.
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Stability of the Kerr Cauchy horizon
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Figure: The global stability of the Kerr Penrose diagram
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C 0 formulation of strong cosmic censorship is false!

As a consequence, we also have the following conditional result:

Corollary

If the stability of Kerr exterior conjecture is true (with quantitative
decay rates), then the C 0 formulation of the strong cosmic
censorship conjecture is false.
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Instability conjectures

While we showed that the Cauchy horizon is C 0 stable, our
theorem is consistent with higher derivatives of the metric blowing
up.

Conjecture (Christodoulou)

For generic perturbations as in the theorem before, the metric
cannot be extended in W 1,2

loc and hence spacetime cannot be
extended as weak solutions to Einstein equations.
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Linear instability on Kerr spacetime

As a first step, one can study instability for the linear wave
equation �gφ = 0 on a fixed Kerr spacetime:

Theorem (Dafermos–Shlapentokh-Rothman (2016), L.–Sbierski
(2016), L.–Oh–Shlapentokh-Rothman (to appear))

Linear instability for the wave equation holds on any fixed
subextremal, strictly rotating Kerr spacetime.
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Idea of proof I: Model problem for null singularities

One main difficulty is that the linear theory already suggests a
blowup at the Cauchy horizon.

In fact linear theory suggests that the metric
g ∈ (C 0 ∩W 1,1) \ ∪α>0, p>1(Cα ∪W 1,p).

This is way below the threshold for solving the Einstein
equations in general.
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Idea of proof I: Model problem for null singularities

We need to take advantage of specific properties of the
singularities (as suggested by linear theory):

Away from the Cauchy horizon, the spacetime is smooth.

Only the derivatives of the metric transversal to the Cauchy
horizon are singular.

The derivative of the metric in the “worst direction” is still
integrable, and is moreover “bounded above” by an explicit
integrable function.

Let us first consider a model problem with a spacetime singularity
capturing these features.
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Idea of proof I: Model problem for null singularities

As a model problem, let us consider on R3+1

�φ = Q0(∂φ, ∂φ) = (∂tφ)2 −
3∑

i=1

(∂x iφ)2.

Let v = t + x1 and u = t − x1. Consider a characteristic initial
problem where the data

|∂vφ|(u = 0) . (v∗ − v)−1 log−2(1/(v∗ − v)),

|∂uφ|(v = 0) . (u∗ − u)−1 log−2(1/(u∗ − u))

and one has a similar profile after taking higher derivatives with
respect to x2, x3.
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Idea of proof I: Model problem for null singularities

Note the already non-trivial fact that this can be solved
locally if φ is independent of x2 and x3.

The equation takes the form

∂u∂vφ = −(∂uφ)(∂vφ).

A null condition present in the nonlinearity. It takes the form
∂uφ∂vφ, not (∂uφ)2 or (∂vφ)2.

We want to show that the profile “persists”, i.e. for all u,
|∂vφ| is bounded by the same profile.

Note that

|∂u∂vφ| . (v∗−v)−1 log−2(1/(v∗−v))(u∗−u)−1 log−2(1/(u∗−u)).
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Idea of proof I: Model problem for null singularities

Without symmetry one necessarily uses L2-based estimates,
but one can build in the profile into the norms, e.g.∫ v∗

0

∫
R2

f (v)(∂vφ)2 + h(u)
3∑

i=2

(∂x iφ)2 dx2 dx3 dv ,

∫ u∗

0

∫
R2

h(u)(∂uφ)2 + f (v)
3∑

i=2

(∂x iφ)2 dx2 dx3 du,

for some f , h→ 0 towards the singularity.

These norms also generate “good terms” when the weights are
differentiated.
To close the problem, we need higher derivatives of φ: It
suffices to take ∂x2 and ∂x3 derivatives for which no additional
singular terms are generated.
Sufficient to handle nonlinear terms due to null condition.
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Idea of proof II: Null singularities for Einstein equations

In view of the significance of null coordinates even in the
model problem, we introduce the double null coordinates:

−4Ω2du dv + γAB(dθA − bAdv)(dθB − bBdv).

Correspondingly, define a double null frame

e3 = ∂u, e4 =
1

Ω2
(∂v + bA∂Aθ ), eA = ∂θA .

Define frame coefficients and curvature components with
respect to {eµ}:

Γ = g(Deµeν , eβ), Ψ = R(eµ, eν , eβ, eα).

Need to control these quantities for a metric singular in u, v
similar to the model problem.
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Idea of proof II: Null singularities for Einstein equations

The Einstein equations can be recast as a system for Γ and Ψ.

Γ satisfies nonlinear transport equations and elliptic equations
with Ψ as a source.
Ψ satisfies a system of hyperbolic equations with Γ as
coefficients.

Ψ are second derivatives of metric — considerably more
singular!

Consider only a subset of (more regular) components and
introduce a renormalization Ψ̌ = Ψ + Γ · Γ. Ψ̌ still satisfies a
hyperbolic system.
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Idea of proof II: Null singularities for Einstein equations

We then use the insights from the model problem:

The singular profiles are incorporated into the energy norms.

Uncontrollable terms that are generated have good signs!

Take higher derivatives only in the θA directions.

No additional singular terms are generated by differentiation!

Remarkably, due to the null structure of the Einstein equations,
these weak norms are already sufficient to control the
nonlinearities.
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Thank you!
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