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Diffraction Spectrum

We want to study the diffraction of a mass density µ on a tiling,

µ =
∑

i

wi

∑

x∈Λi

δx

where Λi = {positions of tiles of type i}. Using correlation coefficients

νij(z) =
dens

(
Λi ∩ (Λj − z)

)

dens(Λ)

we get the autocorrelation measure γ of µ,

γ = dens(Λ)
∑

i,j

w iwj

∑

z∈Λi−Λj

νij(z)δz

whose Fourier transform γ̂ is the diffraction measure of µ.
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Inflation Tilings

Under an inflation ρ, a tiling is expanded by a factor λ, and each expanded

tile is replaced by a union of tiles. Their relative positions are given in

Tij := {relative positions of tiles of type i in a supertile of type j}

The inflation matrix Mρ has leading eigenvalue λd and entries card(Tij).

The same information is also encoded in the Fourier matrix

Bij(k) =
∑

t∈Tij

e
2π it·k

Note that ρn has Fourier matrix B(n)(k) = B(k)B(λk) . . .B(λn−1k).
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What is Known About the Spectral Type

◮ non-trivial pp part if and only if inflation factor λ is Pisot

◮ if λ is Pisot, support of pp part is known (up to extinctions)

◮ if λ is Pisot, one can algorithmically determine whether spectrum is pp

(overlap algorithm by Solomyak and Akiyama–Lee, extending earlier

work by Dekking for the constant-length case)

◮ for integer inflation factor (equivalent to constant-length case),

all spectral components can be determined algorithmically

(Bartlett, extending work of Queffélec)

◮ multiple-to-1 extensions of pp systems cannot be pp

◮ irreducible Pisot inflations are conjectured to be pp

(Pisot substitution conjecture)
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Recursion Relations for the Pair Correlation

The pair correlation satisfies exact recursion relations:

x y

z

νmn(z) = 1

λd

∑

i ,j

∑

x∈Tmi

∑

y∈Tnj

νij

(
z + x − y

λ

)

Υmn =
∑

z∈Λm−Λn

νmn(z) δz = 1

λd

∑

i ,j

∑

x∈Tmi

∑

y∈Tnj

δy−x ∗
(
f .Υij

)
.

where f (x) := λx and
(
f.µ

)
(E) = µ

(
f −1(E)

)
for any Borel set E .
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Fourier Transform of Pair Correlation

As f̂ .µ = 1
λd (f

−1.µ̂), we get

Υ̂mn = 1

λ2d

∑

i ,j

∑

x∈Tmi

∑

y∈Tnj

e
−2π i(y−x)(.)

(
f −1.Υ̂ij

)
.

Writing the Υ̂mn in one big vector, we get Υ̂ = 1
λ2d A(.)

(
f −1.Υ̂

)
, with

A(k) = B(k)⊗ B(k).

This relation is satisfied separately by each component of the decompositon

Υ̂ =
(
Υ̂
)
pp

+
(
Υ̂
)
sc
+

(
Υ̂
)
ac
.
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AC Spectrum

Suppose now there is an ac part in the spectrum, described by a vector

h(k) of density functions. This vector satisfies

h(k) = 1

λd
A(k)h(λk), for a.e. k

Note: one factor λ−d has been eaten up by a change of variables.

Writing h(k) again as entries of a (Hermitian, positive semi-definite) matrix

H(k), we get

H(k) = λ−dB(k)H(λk)B†(k).

H(k) can be decomposed into a sum of terms Hi (k) = v (i)(k)
(
v (i)

)†
(k) of

rank 1, and we can study the growth of each v (i)(k) separately.
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Lyapunov Exponents

Assuming that B(k) is invertible, we must study the growth of the iteration

v(λk) = λd/2 B−1(k)v(k),

The maximal and minimal growth is governed by the Lyapunov exponents

χmax(k) = log λd/2 + lim sup
n→∞

1
n
log

∥∥B−1(λn−1k) · · ·B−1(k)
∥∥
F

χmin(k) = log λd/2 + lim inf
n→∞

1
n
log

∥∥B(k)B(λk) · · ·B(λn−1k)
∥∥−1

F
.

As v(k) must be translation bounded, it can be non-trivial only if it is

possible to have no growth, i.e., if χmin(k) 6 0.
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Estimates on Lyapunov Exponents

Setting

χB(k) := lim sup
n→∞

1

n
log

∥∥B(n)(k)
∥∥
F

we get χmin(k) = log λd/2 − χB(k).

In order to show absence of ac spectrum, we need χB(k) < c · log λd/2 for

almost all k and some c < 1.

Fortunately, for a sub-multiplicative norm like the Frobenius norm, we get

χB(k) = lim sup
n→∞

1
n
log ‖B(n)(k)‖F 6

1
N
M(log ‖B(N)(k)‖F ),

for any fixed N, where M(f ) is the mean of the quasiperiodic function f .
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Estimates on Lyapunov Exponents II

To compute the mean of the quasiperiodic function log ‖B(n)(k)‖F , or
rather its square, log ‖B(n)(k)‖2F , we observe that it can be lifted to a

section through a periodic function, and the mean can be computed as an

integral over its unit cell:

1
N
M
(
log ‖B(N)(.)‖2F

)
= 1

N

∫

TD

log
(∑

i ,j

∣∣P(N)
ij

(
k̃
)∣∣2

)
dk̃ .

For each N, this yields an upper bound for χB(k), which is readily

computable for many examples, and can serve as a criterion for the

absence of ac spectrum: 2χB(k) < c · 2 log λd/2, c < 1.
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Three Examples with Bar Swap Symmetry

TSM: a → aba, b → a Eigenvalues: 1±
√
2, ±i

F2: a → aba, b → ab Eigenvalues: 1
2(3±

√
5), 1

2(1±
√
5)

F3: a → abaab, b → aba Eigenvalues: 2±
√
5, 1± 2i

All three are almost 2-to-1 extensions of a system with pp spectrum.

The spectrum is either pp + sc or pp + ac.

Estimates on Lyapunov exponents χB show it is pp+sc in all three cases.

Other large eigenvalues are unrelated to λ (which is Pisot), and do not

prevent the existence of a pp part.

Franz Gähler Absence of absolutely continuous diffraction spectrum



Frank–Robinson Tiling

◮ Non-Pisot:

λ = (1 +
√
13)/2

◮ Non-FLC, but finitely

many tiles up to

translation

◮ Expectation:

singular continuous

spectrum
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Frank–Robinson Inflation

Inflation factor λ = (1 +
√
13)/2 (non-Pisot)

−→ Bragg peak at 0 + continuous spectrum

Estimates for Lyapunov exponent 2χB drop below 2 log(λ) ≈ 1.668:

N 5 6 7 8 9 10

1
N
M
(
log ‖B(N)(.)‖2

F

)
1.752 1.695 1.653 1.621 1.596 1.576

Continuous spectrum is singular continuous.
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Penrose and Lançon–Billard Tilings

Penrose Lançon–Billard
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Lançon-Billard Inflation

Inflation factor 2 + τ (non-Pisot) −→ Bragg peak at 0 + cont. spectrum

Estimates for Lyapunov exponent 2χB drop below 2 log(2 + τ) ≈ 2.57186:

N 9 10 11 12 13 14

1
N
M
(
log ‖B(N)(.)‖2

F

)
2.594 2.563 2.537 2.516 2.498 2.482

Continuous spectrum is singular continuous.
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Example with ac Spectrum: Rudin–Shapiro

RS: a → ab, b → ab, a → ab, b → ab

A decoration odd under the bar swap yields a structure with ac spectrum.

Due to the bar swap symmetry, the Fourier matrix can be brought to block

diagonal form:

B(k) =




1 + e2πik 0

−e2πik 0
O

O
1 1

e2πik −e2πik




Second block is
√
2 × unitary, so χB = log

√
2, and ac spectrum is possible.
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