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In the dynamics of polynomials, external rays play a fundamental role.

The Böttcher map conjugate the dynamics on B(∞) to zd on C \ D.

If the Julia set — J = ∂B(∞) — is locally connected this conjugacy
extends to the boundary.
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The dynamics on J is then semi-conjugated to the multiplication by 2 on
(R/Z)/ ∼

.
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Julia set of a rational maps

more complicate
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One can understand the dynamics using a partition of the dynamical plane

with equipotentials for Cantor sets
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Tool : Branner-Hubbard-Yoccoz jigsaw puzzles for polynomials.

Yoccoz Theorem : The map is renormalizable or the impression of puzzle
pieces is one point
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How to generalize to rational maps a partition in order to understand the
dynamics ?

No general result
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First example : Newton map

.
The Newton’s method NP of a polynomial P is defined by

NP(z) = z − P(z)

P ′(z)
.

The roots of P are super-attracting fixed points of NP .
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The Newton maps can be viewed as a dynamical system

as well as a root-finding algorithm.

The Julia set is defined as the unique minimal compact subset of the
Riemann sphere Ĉ totally invariant ( by N and N−1) containing at least 3
points.
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In 1879, Arthur Cayley generalized the Newton’s method to complex roots
of polynomials with degree greater than 2 and complex initial values. Some
dynamical properties :

The simple connectivity of the immediate attracting basins of cubic
Newton maps was first proven by Przytycki.
Shishikura proved that the Julia sets of the Newton maps of
polynomials are always connected by means of quasiconformal surgery.
The combinatorial structure of the Julia sets of cubic Newton maps
was first studied by Janet Head.
With the help of Thurston’s theory on characterization of rational
maps, Tan Lei showed that every post-critically finite cubic Newton
map can be constructed by mating two cubic polynomials.
With Magnus Aspenberg we generalize this to non-postcritcally finite
cases with some assumptions using puzzles.
Lodge, Mikulich and Schleicher gave a combinatorial classification of
post-critically finite Newton maps.
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The dynamics of Newton’s method has been also studied for transcendental
entire maps. It is a meromorphic map.

Bergweiler, Drasin, Langley show that there exists an entire function
without finite asymptotic values for which the associated Newton
function has an invariant Baker domain.
Walter Bergweiler proved the existence of an entire function f without
zeros for which the associated Newton map is a transcendental
meromorphic functions without Baker domains.
Haruta showed that when the Newton’s method is applied to the
exponential function of the form PeQ (where P,Q are polynomials),
the attracting basins of roots have finite area.
For the Newton maps of entire functions, Mayer and Schleicher showed
that the immediate basins are simply connected and unbounded.
Buff, Rückert and Schleicher further investigated the dynamical
properties.
Barański, Fagella, Jarque, Karpińska proved that the Julia set of
Newton’s method for entire map is connected.
For the higher dimensional cases, Hubbard and Papadopol , Roeder
studied the Newton’s methods for two complex variables.
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Sketch of the mating (images courtesy of A. Chéritat)
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Understand rational map via the two polynomials
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Definition
Two polynomials f1 and f2 are said mateable, if there exist a rational map
R and two semi-conjugacies φj : Kj → Ĉ conformal on the interior of Kj ,
such that φ1(K1) ∪ φ2(K2) = Ĉ and

∀(z ,w) ∈ Ki × Kj , φi (z) = φj(w) ⇐⇒ z ∼r w .

The relation ∼r is generated by :
the landing point of R1(t) is equivalent to the landing point of R2(−t).
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Theorem (Aspenberg, R)
There exists a subset RC of renormalizable cubic polynomials, a subset RN
of renormalizable cubic Newton maps and a map M : RC → RN which is
onto and such that M(f ) is the mating of f with the polynomial
f∞(z) = z(z2 + 3

2).

One can understand the dynamics of N through the dynamics of the
polynomials. But there is no external rays any more.
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Idea of the proof : use puzzle. Cut the Julia set in small pieces. Need to
construct the equivalent to external ray.

There are 3 basins corresponding to the 3 roots of P , ∞ is a common
point, landing of fixed internal rays in the basins.
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Except in the symmetric case, only two basins intersect and there is a last
angle of intersection
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Construction of articulated rays by iterated pull back

It is a curve γ such that f k(γ) = γ ∪ R1(t) ∪ R2(−t). It consists in
infinitely many internal rays alternating from basin 1 et 2.
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Using the following two graphs,

Theorem (R)
The intersection of the puzzle piece is either a point or the homeomorphic
image of the filled Julia set of a quadratic polynomial.

Using similar puzzles for the cubic polynomials Julia sets, we can construct
the semi-conjugacies to the Julia set of the Newton map.
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Difference

Theorem (R)
Except some definite particular cases the Julia set is locally connected.

Theorem (R)
In particular J(N) ⊃ h(J(P)) where J(P) is a non locally connected Julia
set of quadratic polynomials P and J(N) is locally connected.
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To find the cubic Newton map, one has to investigate the space of cubic
Newton map.

It is a one parameter slice with symmetries.
More precisely any Newton map is conjugate to one of the form

Nλ(z) =
2z3 − (λ2 − 1

4)

3z2 − (λ2 + 3
4)

with λ ∈ C \ {±3
2
, 0}

The graphs exist and define puzzles in some precise regions of the
parameter plane called para-puzzle pieces.
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To define them one has to transfer to the parameter plane the articulated

rays and all the pre-images.
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Para-puzzles are technical. New technics : rigidity to investigate the
parameter plane of cubic Newton method.

It has the advantage that it can be generalized to higher degree Newton
maps.
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Theorem (Wang, R, Yin)
Any ray in any hyperbolic component lands. The boundary of any
hyperbolic component is a Jordan curve.

It generalizes the proof done with para-puzzle pieces of the following

Theorem (R)
The boundary of the principal hyperbolic components are Jordan curves.
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Sketch of the proof in the case of the principal hyperbolic component:
Assume λ1 and λ2 are two accumulation points of an irrational ray so
that Rλi

(t) lands at the free critical point of Nλi
.

Then the Newton maps Nλ1 and Nλ2 share the combinatorial dynamics
with respect to the puzzles constructed with the same angles.
There is a topological conjugacy ψ between Nλ1 and Nλ2 , which is
holomorphic in the Fatou set of Nλ1 .
The conjugacy is a quasi-conformal map.
The Lebesgue measure of J(Nλi

) is zero ( Lyubich, Shishikura
arguments on rational like maps with an admissible puzzle)
The distortion on puzzle pieces based on J(Nλ1) is bounded.
The conjugacy is a Möbius transformation
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More recent progress in the dynamical plane

Theorem (Wang, Yin, Zeng)
Let fp be the Newton map for any non-trivial polynomial p. Then the
boundary of any immediate root basin B is locally connected. Moreover,
∂B is a Jordan curve if and only if deg(f p|B) = 2.

This is proved by generalizing the work for cubic Newton maps. Namely
the puzzles.
As a corollary this puzzle allows to get the rigidity for higher degree
Newton maps.

Theorem ( Drach, Lodge, Schleicher, Sowinski)
There exists an invariant graph for higher degree Newton maps that gives a
Fatou-Shihikura inequality.
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McMullen maps

We consider the maps

fλ : z 7→ zn +
λ

zn
.

For small λ, the map fλ is a "perturbation" of zn whose Julia set is the
unit circle.

McMullen showed that the Julia set of fλ is a Cantor set of simple closed
curves provided
n 6= 1, 2 and λ is small.

We restrict to n ≥ 3.
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There exist also maps which are renormalizable and contain copies of

polynomial Julia sets.

Rœsch P. (IMT) Resonances 2018 30 / 44



In the parameter plane appear :
the unbounded component which is the Cantor set region
the neighborhood of 0 where J(fλ) is a Cantor set of circles
the other "holes" where the Julia set is a Sierpinsky carpet.

n = 3

H∞ : the set of λ so that the
critical points converge to ∞.

.
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H0

H2

H0 is the unbounded component

H2 is the component contaning 0

Precisely,

Theorem (Devaney-Look-Uminsky; Devaney-Russell)
If λ ∈ H0, then J(fλ) is a Cantor set ;
If λ ∈ H2 \ {0}, then J(fλ) is homeomorphic to the product of a
Cantor set and a circle ;
If λ ∈ H∞ \ (H0 ∪H2) , then J(fλ) is a Sierpinsky carpet ;
If λ /∈ H∞ then J(fλ) is connected.
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H0

H2

Theorem (Devaney)
The boundary of H2 is a Jordan curve.

Conjecture (Devaney)
The boundary of any connected component of H∞ is a Jordan curve.
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Theorem (Qiu, Rœsch, Wang, Yin )
Let H be any connected component of H∞. Then H is a Jordan domain.

Moreover

Proposition (Qiu, Rœsch, Wang, Yin )
The parametrization extends to the boundary as a function ν(θ).

If θ is periodic then the dynamical ray lands at a parabolic point.
If θ is not periodic then the dynamical ray lands at the critical value.

A parameter λ is a cusp if fλ has a parabolic cycle.

Corollary
The cusps are dense in the boundary of H0.
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Some symmetries :

fλ(z) = fλ(z) and fλ(ωz) = ωfλω−2(z) where ω = e
2iπ
n−1 .

We will always restrict to the fundamental domain :

F = {λ ∈ C∗ | 0 ≤ argλ <
2π

n − 1
}

F

n = 4
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Some dynamics

The maps fλ(z) = zn + λ/zn are the composition of two simple maps

z 7→ z +
λ

z
and zn.

The map

z 7→ z +
λ

z

is just conjugated to

z 7→ z +
1
z
.
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z + 1/z

.
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The critical set of the map fλ(z) = zn + λ/zn is

Crit = {0,∞} ∪ Cλ

where
Cλ = {c | c2n = λ} = {c0e

ikπ
n | k ∈ [0, .., 2n − 1]}

n = 4

.
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In each sector the map is one to one onto C \ ±v0[1,+∞].

fλ

On can pull back any sector except the ones containing ±v0.
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S1 \ (Θ0 ∪Θn) =
( 1

2n ,
1
2

]
∪
(1

2 + 1
2n , 1

]

τ(θ) = nθ mod 1.

θ has itinerary (s0, · · · , sk , · · · )

if τk(θ) ∈ Θsk

Θ =
{
θ | τk(θ) ∈ S1 \ (Θ0 ∪Θn) ∀k ≥ 0

}

.
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Pulling back to the sectors without critical values

−→
fλ

n = 4

The intersection of a decreasing sequence of sectors shrinks to a curve in
some cases.
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Theorem (Devaney, Qiu-Wang-Yin)
For any λ in the interior of the fundamental domain F and for any θ ∈ Θ
with itinerary (s0, s1, · · · , ) the set

Ωθ
λ :=

⋂
k≥0

f −k
λ (Sλ

sk
∪ Sλ

−sk
)

is a Jordan curve intersecting the Julia set under a Cantor set.
 

 

 

 

"cut rays" Ω1
λ = Ω

1/2
λ

n = 3.

There is a similar construction for λ ∈ R.
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The "cut rays" are used in order to construct a puzzle.

Theorem ( Qiu-Wang-Yin)
If J(fλ) is not a Cantor set, then the boundary of Bλ is a Jordan curve.

The result in parameter plane uses rigidity arguments.
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Happy Birthday Walter

Picture studied with Jordi Canela and Antonio Garijo
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