Multiply connected wandering domains of entire functions

Phil Rippon (joint work with Gwyneth Stallard, together with Walter Bergweiler and with Anna Benini)

The Open University

Edinburgh July 2018

Walter explains something that should have been obvious!

Photo taken at UCL by Matt Buck

Basic definitions

$f: \mathbb{C} \to \mathbb{C}$ is transcendental entire

Basic definitions

$f: \mathbb{C} \to \mathbb{C}$ is transcendental entire

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

Basic definitions

$f: \mathbb{C} \to \mathbb{C}$ is transcendental entire

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

Definition

The Julia set (or chaotic set) is

$$J(f) = \mathbb{C} \setminus F(f).$$

Definition

The escaping set is

$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}.$$

Definition

The escaping set is

$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}.$$

Definition

The fast escaping set is $A(f) = \bigcup_{L \in \mathbb{N}} f^{-L}(A_R(f))$ where:

$$A_R(f)=\{z\in\mathbb{C}:|f^n(z)|\geq M^n(R) ext{ for } n\in\mathbb{N}\},$$

< ロ ト < 得 ト < 三 ト < 三 ト つ Q (C)</p>

assuming R > 0 is such that $M^n(R) \to \infty$ as $n \to \infty$.

If *U* is a component of the Fatou set and $f^{p}(U) \subset U$, then there are four possibilities:

If *U* is a component of the Fatou set and $f^{p}(U) \subset U$, then there are four possibilities:

1 Attracting basin *U* contains an attracting *p*-periodic point z_0 . For all $z \in U$, we have $f^{np}(z) \to z_0$ as $n \to \infty$.

If *U* is a component of the Fatou set and $f^p(U) \subset U$, then there are four possibilities:

- **1** Attracting basin *U* contains an attracting *p*-periodic point z_0 . For all $z \in U$, we have $f^{np}(z) \to z_0$ as $n \to \infty$.
- **2 Parabolic basin** ∂U contains a parabolic *p*-periodic point z_0 . For all $z \in U$, we have $f^{np}(z) \to z_0$ as $n \to \infty$.

If *U* is a component of the Fatou set and $f^p(U) \subset U$, then there are four possibilities:

- **1** Attracting basin *U* contains an attracting *p*-periodic point z_0 . For all $z \in U$, we have $f^{np}(z) \to z_0$ as $n \to \infty$.
- **2 Parabolic basin** ∂U contains a parabolic *p*-periodic point z_0 . For all $z \in U$, we have $f^{np}(z) \to z_0$ as $n \to \infty$.
- **3 Siegel disc** There is a conformal mapping $\phi : U \to \mathbb{D}$, where \mathbb{D} is the unit disc, such that $\phi(f^p(\phi^{-1}(z))) = e^{2\pi i\theta}z$, where θ is irrational.

If *U* is a component of the Fatou set and $f^p(U) \subset U$, then there are four possibilities:

- **1** Attracting basin *U* contains an attracting *p*-periodic point z_0 . For all $z \in U$, we have $f^{np}(z) \to z_0$ as $n \to \infty$.
- **2 Parabolic basin** ∂U contains a parabolic *p*-periodic point z_0 . For all $z \in U$, we have $f^{np}(z) \to z_0$ as $n \to \infty$.
- **3** Siegel disc There is a conformal mapping $\phi : U \to \mathbb{D}$, where \mathbb{D} is the unit disc, such that $\phi(f^p(\phi^{-1}(z))) = e^{2\pi i \theta} z$, where θ is irrational.

4 Baker domain For all $z \in U$, we have $f^{np}(z) \to \infty$ as $n \to \infty$.

A Fatou component U is a wandering domain if

 $f^n(U) \cap f^m(U) = \emptyset$ for $n \neq m$.

A Fatou component U is a wandering domain if

$$f^n(U) \cap f^m(U) = \emptyset$$
 for $n \neq m$.

Rational functions have no wandering domains, but there are many examples of wandering domains for transcendental entire functions.

A Fatou component U is a wandering domain if

$$f^n(U) \cap f^m(U) = \emptyset$$
 for $n \neq m$.

Rational functions have no wandering domains, but there are many examples of wandering domains for transcendental entire functions.

- ロト・日本・日本・日本・日本・日本

Question Can we classify wandering domains?

A wandering cauliflower

$$f(z)=z\cos z+2\pi$$

Picture courtesy of David Marti-Pete

Let U be a multiply connected Fatou component and

 $U_n = f^n(U)$, for $n \in \mathbb{N}$.

Then

Let U be a multiply connected Fatou component and

$$U_n = f^n(U)$$
, for $n \in \mathbb{N}$.

Then

• *U* is a wandering domain in *I*(*f*)

Let U be a multiply connected Fatou component and

$$U_n = f^n(U)$$
, for $n \in \mathbb{N}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Then

- *U* is a wandering domain in *I*(*f*)
- U_{n+1} surrounds U_n for large $n \in \mathbb{N}$

Let U be a multiply connected Fatou component and

$$U_n = f^n(U)$$
, for $n \in \mathbb{N}$.

(日) (日) (日) (日) (日) (日) (日)

Then

- *U* is a wandering domain in *I*(*f*)
- U_{n+1} surrounds U_n for large $n \in \mathbb{N}$
- $U_n \subset A_R(f)$ for large $n \in \mathbb{N}$

Let U be a multiply connected Fatou component and

$$U_n = f^n(U)$$
, for $n \in \mathbb{N}$.

Then

- *U* is a wandering domain in *I*(*f*)
- U_{n+1} surrounds U_n for large $n \in \mathbb{N}$
- $U_n \subset A_R(f)$ for large $n \in \mathbb{N}$
- for large *n*, each component of the boundary of U_n is a component of A_R(f) ∩ J(f)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let U be a multiply connected Fatou component and

$$U_n = f^n(U)$$
, for $n \in \mathbb{N}$.

Then

- *U* is a wandering domain in *I*(*f*)
- U_{n+1} surrounds U_n for large $n \in \mathbb{N}$
- $U_n \subset A_R(f)$ for large $n \in \mathbb{N}$
- for large *n*, each component of the boundary of U_n is a component of A_R(f) ∩ J(f)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $A_R(f)$ is a spider's web.

Theorem

Let U be a multiply connected wandering domain and $D \subset U$ be an open neighborhood of z_0 . Then there exists $\alpha > 0$ such that

 $f^n(D) \supset A(|f^n(z_0)|^{1-lpha}, |f^n(z_0)|^{1+lpha}), \quad \text{for large } n \in \mathbb{N}.$

Theorem

Let U be a multiply connected wandering domain and $D \subset U$ be an open neighborhood of z_0 . Then there exists $\alpha > 0$ such that

 $f^n(D) \supset A(|f^n(z_0)|^{1-lpha}, |f^n(z_0)|^{1+lpha}), \quad \text{for large } n \in \mathbb{N}.$

Theorem

Let U be a multiply connected wandering domain, $z_0 \in U$ and $r_n = |f^n(z_0)|$. For large $n \in \mathbb{N}$, the maximal annulus

 $B_n = A(r_n^{a_n}, r_n^{b_n}) \subset U_n$, satisfies $0 < a_n < 1 - \alpha < 1 + \alpha < b_n$.

・ コット (雪) (小田) (コット 日)

Theorem

Let U be a multiply connected wandering domain and $D \subset U$ be an open neighborhood of z_0 . Then there exists $\alpha > 0$ such that

 $f^n(D) \supset A(|f^n(z_0)|^{1-lpha}, |f^n(z_0)|^{1+lpha}), \quad \text{for large } n \in \mathbb{N}.$

Theorem

Let U be a multiply connected wandering domain, $z_0 \in U$ and $r_n = |f^n(z_0)|$. For large $n \in \mathbb{N}$, the maximal annulus

 $B_n = A(r_n^{a_n}, r_n^{b_n}) \subset U_n$, satisfies $0 < a_n < 1 - \alpha < 1 + \alpha < b_n$.

Also, for every compact set $C \subset U$, $f^n(C) \subset B_n$ for $n \ge N(C)$.

・ロット (雪) (日) (日) (日)

Application to a question about commuting functions

Question

If f, g are analytic with $f \circ g = g \circ f$, does J(f) = J(g)?

Application to a question about commuting functions

Question

If f, g are analytic with $f \circ g = g \circ f$, does J(f) = J(g)?

Both Fatou and Julia showed that the answer is 'yes' if f and g are rational.

Question

If f, g are analytic with $f \circ g = g \circ f$, does J(f) = J(g)?

Both Fatou and Julia showed that the answer is 'yes' if f and g are rational.

Fatou's proof

Fatou showed that $g(F(f)) \subset F(f)$ and hence $F(f) \subset F(g)$ by Montel's Theorem.

Question

If f, g are analytic with $f \circ g = g \circ f$, does J(f) = J(g)?

Both Fatou and Julia showed that the answer is 'yes' if f and g are rational.

Fatou's proof

Fatou showed that $g(F(f)) \subset F(f)$ and hence $F(f) \subset F(g)$ by Montel's Theorem.

Julia's proof Based on repelling periodic points (in J(f)!).

Theorem (Baker, 1984)

If $f \circ g = g \circ f$ and U is a Fatou component of f, then $g(U) \subset F(f)$ unless $U \subset I(f)$.

Theorem (Baker, 1984)

If $f \circ g = g \circ f$ and U is a Fatou component of f, then $g(U) \subset F(f)$ unless $U \subset I(f)$.

Theorem (Bergweiler and Hinkkanen, 1999)

If $f \circ g = g \circ f$ and U is a Fatou component of f, then $g(U) \subset F(f)$ unless $U \subset A(f)$.

Theorem (Baker, 1984)

If $f \circ g = g \circ f$ and U is a Fatou component of f, then $g(U) \subset F(f)$ unless $U \subset I(f)$.

Theorem (Bergweiler and Hinkkanen, 1999)

If $f \circ g = g \circ f$ and U is a Fatou component of f, then $g(U) \subset F(f)$ unless $U \subset A(f)$.

Corollary

If $f \circ g = g \circ f$ and f, g have no fast escaping Fatou components, then J(f) = J(g).

・ コット (雪) (小田) (コット 日)

If U is a fast escaping Fatou component, then U is a wandering domain.

If U is a fast escaping Fatou component, then U is a wandering domain.

Theorem (R+S, 2005)

If U is a multiply connected wandering domain, then U is fast escaping.

If U is a fast escaping Fatou component, then U is a wandering domain.

Theorem (R+S, 2005)

If U is a multiply connected wandering domain, then U is fast escaping.

There are only two known examples of functions with *simply connected* fast escaping wandering domains:

If U is a fast escaping Fatou component, then U is a wandering domain.

Theorem (R+S, 2005)

If U is a multiply connected wandering domain, then U is fast escaping.

There are only two known examples of functions with *simply connected* fast escaping wandering domains:

one due to Bergweiler and one due to Sixsmith.

Theorem

Let U be a multiply connected wandering domain and $D \subset U$ be an open neighborhood of z_0 . Then there exists $\alpha > 0$ such that

 $f^n(D) \supset A(|f^n(z_0)|^{1-lpha}, |f^n(z_0)|^{1+lpha}), \quad \text{for large } n \in \mathbb{N}.$

Theorem

Let U be a multiply connected wandering domain, $z_0 \in U$ and $r_n = |f^n(z_0)|$. For large $n \in \mathbb{N}$, the maximal annulus

 $B_n = A(r_n^{a_n}, r_n^{b_n}) \subset U_n$, satisfies $0 < a_n < 1 - \alpha < 1 + \alpha < b_n$.

Also, for every compact set $C \subset U$, $f^n(C) \subset B_n$ for $n \ge N(C)$.

・ロット (雪) (日) (日) (日)

Using the two theorems above about multiply connected wandering domains, we obtain the following.

Theorem (Benini+R+S, 2015)

If $f \circ g = g \circ f$ and U is a multiply connected wandering domain of f, then $g(U) \subset F(f)$.

Using the two theorems above about multiply connected wandering domains, we obtain the following.

Theorem (Benini+R+S, 2015)

If $f \circ g = g \circ f$ and U is a multiply connected wandering domain of f, then $g(U) \subset F(f)$.

Corollary

If $f \circ g = g \circ f$ and f, g have no simply connected fast escaping wandering domains, then J(f) = J(g).

Happy Birthday Walter (Bergweiler)!

