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Basic definitions

f : C→ C is transcendental entire

Definition

The Fatou set (or stable set) is

F (f ) = {z : (f n) is equicontinuous in some neighbourhood of z}.

Definition

The Julia set (or chaotic set) is

J(f ) = C \ F (f ).
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The escaping set

Definition

The escaping set is

I(f ) = {z : f n(z)→∞ as n→∞}.

Definition

The fast escaping set is A(f ) =
⋃

L∈N f−L(AR(f )) where:

AR(f ) = {z ∈ C : |f n(z)| ≥ Mn(R) for n ∈ N},

assuming R > 0 is such that Mn(R)→∞ as n→∞.
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Classification of periodic Fatou components

If U is a component of the Fatou set and f p(U) ⊂ U, then there
are four possibilities:

1 Attracting basin U contains an attracting p-periodic
point z0. For all z ∈ U, we have f np(z)→ z0 as n→∞.

2 Parabolic basin ∂U contains a parabolic p-periodic
point z0. For all z ∈ U, we have f np(z)→ z0 as n→∞.

3 Siegel disc There is a conformal mapping φ : U → D,
where D is the unit disc, such that φ(f p(φ−1(z))) = e2πiθz,
where θ is irrational.

4 Baker domain For all z ∈ U, we have f np(z)→∞ as
n→∞.
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Wandering domains

A Fatou component U is a wandering domain if

f n(U) ∩ f m(U) = ∅ for n 6= m.

Rational functions have no wandering domains, but there are
many examples of wandering domains for transcendental entire
functions.

Question Can we classify wandering domains?
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A wandering cauliflower

f (z) = z cos z + 2π

Picture courtesy of David Marti-Pete



Multiply connected Fatou components – basic
properties
Baker (first two properties), R+S

Let U be a multiply connected Fatou component and

Un = f n(U), for n ∈ N.

Then

U is a wandering domain in I(f )
Un+1 surrounds Un for large n ∈ N
Un ⊂ AR(f ) for large n ∈ N
for large n, each component of the boundary of Un is a
component of AR(f ) ∩ J(f )
AR(f ) is a spider’s web.
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Structure of multiply connected wandering domains
Bergweiler+R+S, 2013

Theorem

Let U be a multiply connected wandering domain and D ⊂ U be
an open neighborhood of z0. Then there exists α > 0 such that

f n(D) ⊃ A(|f n(z0)|1−α, |f n(z0)|1+α), for large n ∈ N.

Theorem

Let U be a multiply connected wandering domain, z0 ∈ U and
rn = |f n(z0)|. For large n ∈ N, the maximal annulus

Bn = A(ran
n , rbn

n ) ⊂ Un, satisfies 0 < an < 1− α < 1 + α < bn.

Also, for every compact set C ⊂ U, f n(C) ⊂ Bn for n ≥ N(C).
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Application to a question about commuting functions

Question

If f , g are analytic with f ◦ g = g ◦ f , does J(f ) = J(g)?

Both Fatou and Julia showed that the answer is ‘yes’ if f and g
are rational.

Fatou’s proof
Fatou showed that g(F (f )) ⊂ F (f ) and hence F (f ) ⊂ F (g) by
Montel’s Theorem.

Julia’s proof
Based on repelling periodic points (in J(f )!).
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Commuting transcendental entire functions

Theorem (Baker, 1984)

If f ◦ g = g ◦ f and U is a Fatou component of f , then
g(U) ⊂ F (f ) unless U ⊂ I(f ).

Theorem (Bergweiler and Hinkkanen, 1999)

If f ◦ g = g ◦ f and U is a Fatou component of f , then
g(U) ⊂ F (f ) unless U ⊂ A(f ).

Corollary

If f ◦ g = g ◦ f and f , g have no fast escaping Fatou
components, then J(f ) = J(g).
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Fast escaping Fatou components

Theorem (Bergweiler and Hinkkanen, 1999)

If U is a fast escaping Fatou component, then U is a wandering
domain.

Theorem (R+S, 2005)

If U is a multiply connected wandering domain, then U is fast
escaping.

There are only two known examples of functions with simply
connected fast escaping wandering domains:

one due to Bergweiler and one due to Sixsmith.
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Multiply connected wandering domains

Using the two theorems above about multiply connected
wandering domains, we obtain the following.

Theorem (Benini+R+S, 2015)

If f ◦ g = g ◦ f and U is a multiply connected wandering domain
of f , then g(U) ⊂ F (f ).

Corollary

If f ◦ g = g ◦ f and f , g have no simply connected fast escaping
wandering domains, then J(f ) = J(g).
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Happy Birthday Walter (Bergweiler)!


