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1. Smale’s Mean Value Conjecture

In 1981, Stephen Smale proved the following

Theorem 1.Let P be a non-linear polynomial and a ∈ C such

that P ′(a) ̸= 0. Then there exists a critical point b of P such

that ∣∣∣∣P (a)− P (b)

a− b

∣∣∣∣ ≤ 4|P ′(a)| (1.1)

Or equivalently, we have

min
b,P ′(b)=0

∣∣∣∣P (a)− P (b)

a− b

∣∣∣∣ ≤ 4|P ′(a)| (1.2)



Smale then asked whether one can replace the factor 4 in

the upper bound in (1.1) by 1, or even possibly by d−1
d , where

d = degP .

He also pointed out that the number d−1
d would, if true, be

the best possible bound here as it is attained (for any nonzero

λ) when P (z) = zd − λz and a = 0 in (1.1).



Note that if bi are the critical points of P (z) = zd − λz and

a = 0, then

∣∣∣∣ P (b1)

b1P ′(0)

∣∣∣∣ = · · · =
∣∣∣∣ P (bd−1)

bd−1P ′(0)

∣∣∣∣ = d− 1

d
.

Q: Is it also true for all extremal polynomials ?



min
b,P ′(b)=0

∣∣∣∣P (a)− P (b)

a− b

∣∣∣∣ ≤ 4|P ′(a)| (1.2)

Let M be the least possible values of the factor in the upper

bound in (1.2) for all non-linear polynomials and Md be the

corresponding value for the polynomial of degree d.

Then Smale’s theorem and example show that

d−1
d ≤ Md ≤ 4 and 1 ≤ M ≤ 4.



Smale’s Mean Value conjecture:

M = 1 or even Md = d−1
d , where d = degP .

• S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math.

Soc. 4 (1981), 1-36.

• S. Smale, Mathematical Problems for the Next Century, Mathematics: frontiers and

perspectives, eds. Arnold, V., Atiyah, M., Lax, P. and Mazur, B., Amer. Math. Soc., 2000.



Smale’s mean value conjecture is equivalent to the following

Normalised conjecture : Let P be a monic polynomial of

degree d ≥ 2 such that P (0) = 0 and P ′(0) = 1. Let

b1, . . . , bd−1 be its critical points. Then

min
i

∣∣∣∣ P (bi)

biP ′(0)

∣∣∣∣ ≤ d− 1

d
(∗)



Estimates of Md

Tischler (1989), Crane (2006), Sendov and Marinov

(2006)

For 2 ≤ d ≤ 5,

Md =
d− 1

d
.

Beardon, Minda and N. (2002)

Md ≤ 41−
1

d−1 = 4− 4 log 4

d
+O

(
1

d2

)
.



Conte, Fujikawa and Lakic (2007)

Md ≤ 4
d− 1

d+ 1
= 4− 8

d
+O

(
1

d2

)
.

Fujikawa and Sugawa (2006)

Md ≤ 4

(
1 + (d− 2)4−1/(d−1)

d+ 1

)
= 4−8 + 4 log 4

d
+O

(
1

d2

)
.



Crane (2007)

For d ≥ 8,

Md ≤ 4− 2√
d
.

• Q.I. Rahman and G. Schmeisser, Analytic theory of Polynomials, Oxford University Press,

Oxford, 2002.

• T. Sheil-Small, Complex polynomials. Cambridge Studies in Advanced Mathematics,

75. Cambridge University Press, Cambridge, 2002.



Motivation.

Smale discovered the Mean Value theorem as a by product

of his investigations of the efficiency of zero finding algorithms.

Newton’s map of P : NP (z) = z − P (z)
P ′(z).

Choose an initial point z0 suitably and let

zn+1 = NP (zn) = zn − P (zn)

P ′(zn)
,

then the sequence {zn} will converge to a zero of P .



If we consider the Taylor’s series of P at zn, then we have

P (zn+1) = P (zn) +
d∑

i=1

(−1)i
P (i)(zn)

i!

(
P (zn)

P ′(zn)

)i

.

It follows that
P (zn+1)
P (zn)

= 1 +
∑d

i=1(−1)iP
(i)(zn)P (zn)

i−1

i!P ′(zn)i
and

hence the efficiency of Newton’s method mainly depends on the

growth of

P (i)(zn)P (zn)
i−1

i!P ′(zn)i
,

i = 2, 3, ..., d;n = 0, 1, ...



By using Löwner’s theorem, Smale proved the following

result.

Theorem 2. (Smale, 1981) Let a be any non-critical point of

P . Then there exists a critical point b of P such that for each

k ≥ 2, ∣∣∣∣∣P (k)(a)

k!P ′(a)

∣∣∣∣∣
1

k−1

|P (a)− P (b)| ≤ 4|P ′(a)| (∗∗)

Let K be the least possible values of the factor in the upper

bound in (∗∗) and Kd,i be the corresponding value for the

polynomial of degree d and k = i.



Smale suggested six open problems (Problem 1A-1F) related

to the inequality (**).

Most of these problems are about the precise values of K

and Kd,i.

Smale also gave an example to show that 1 ≤ K ≤ 4 and

conjectured that K = 1.

Problem 1A: Reduce K from 4.

Problem 1B, 1C and 1D are about Kd,2.

Porblem 1E is the mean value conjecture.



The constant K is quite important for estimating the

efficiency of Newton’s Method.

Theorem 3. (Smale,1981) Let R0 = minb,P ′(b)=0{|P (b)|} > 0.

If |P (w)| < R0
3K+1, then the iterations of Newton’s method

starting at w will converge to some zero of P . In addition, if

P (w) ̸= 0, one has

|P (w′)|
|P (w)|

<
1

2

where w′ = w − P (w)
P ′(w).



When i = 2, Smale showed that for some critical point b,∣∣∣∣∣P (2)(a)

2P ′(a)

∣∣∣∣∣ |P (a)− P (b)| =

∣∣∣∣∣∣12
d−1∑
j=1

1

a− bj

∣∣∣∣∣∣ |P (a)− P (b)| ≤ 2|P ′(a)|

Problem 1B asked whether 2 can further be reduced to d−1
2d , i.e.

∣∣∣∣∣∣
d−1∑
j=1

1

a− bj

∣∣∣∣∣∣ |P (a)− P (b)| ≤ d− 1

d
|P ′(a)|.

• Kd,2 =
d−1
2d when d = 2, i.e. K2,2 =

1
4.



For Problem 1B, Y.Y. Choi, P.L. Cheung and N. showed that

K3,2 =
4

6
√
3
= 0.3845... >

2

6

K4,2 ≥ 0.473... >
3

8
, Kd,2 =?

For Problem 1A, we also showed that

K ≤ 4
d−2
d−1.



∣∣∣∣∣P (i)(a)

i!P ′(a)

∣∣∣∣∣
1

i−1

|P (a)− P (b)| ≤ Kd,i|P ′(a)|.

For i = d, V.N. Dubinin (2006), applies the method of

dissymmetrization to prove the sharp inequality.

∣∣∣∣∣P (d)(a)

d!P ′(a)

∣∣∣∣∣
1

d−1

|P (a)− P (b)| ≤ d− 1

d
d

d−1

|P ′(a)|.

Hence, Kd,d = d−1

d
d

d−1

.



2. Introduction to theory of amoeba

Let f = f(z1, ..., zn) be a non-constant polynomial.

Let Zf = {(z1, ..., zn) ∈ Cn
∗ |f(z1, .., zn) = 0} be the

hypersurface defined by f .

The amoeba Af is defined to be the image of Zf under the

map Log : Cn
∗ → Rn defined by

Log(z1, ..., zn) = (log |z1|, ..., log |zn|).

• Introduced by Gelfand, Kapranov and Zelevinsky in 1994.



I.N. Gelfand, M.M. Kapranov, and A.V. Zelevinsky,

Discriminants, Resultants, and Multidimensional Determinants,

Math. Theory Appl., Birkhauser, Boston, 1994.

M. Forsberg, M. Passare, and A. Tsikh, Laurent determinants

and arrangements of hyperplane amoebas, Adv. Math. 151

(2000), 45–70.



Components of the complement

Theorem (GKZ, 1994). Af is closed and any connected

component of Ac
f = Rn\Af is convex.

Ronkin function for the hypersurface, Nf : Rn → R defined

by:

Nf(x) =
1

(2πi)n

∫
Log−1

(x)

log |f(z)|dz1
z1

∧ . . . ∧ dzn
zn

.

Theorem (Ronkin,2001). Nf is convex. It is affine on each

connected component of Ac
f and strictly convex on Af .



3. A problem on extremal polynomials.

Recall that we can always assume that the polynomials are

monic. Note that any monic polynomial with zero constant

term is determined uniquely by its critical points.

Let B = (b1, . . . , bd−1) ∈ Cd−1 and PB(z) be a degree d

monic polynomial whose critical points are b1, . . . , bd−1.

If PB(0) = 0, then PB(z) = d
∫ z

0
(w − b1) · · · (w − bd−1)dw.

Assume that 0 is not be a critial point of PB(z).Then,

P ′
B(0) ̸= 0 or

∏
bi ̸= 0.



Let λ ̸= 0. Consider

PλB(z) = d

∫ z

0

(w − λb1) · · · (w − λbd−1)dw.

Then,

PλB(λbi)

λbiP ′
λB(0)

=
PB(bi)

biP ′
B(0)

.

Therefore, we may further assume that B is in the set

E =

{
(z1, ..., zd−1) ∈ Cd−1|

∏
zi =

(−1)d−1

d

}

so that P ′
λB(0) = 1.



Define Si : E → C by

Si(B) = Si(b1, . . . , bd−1) =
PB(bi)

biP ′
B(0)

=
PB(bi)

bi
.

To solve Smale’s conjecture, we need to show that

sup
B∈E

{ min
1≤i≤d−1

|Si(B)|} =
d− 1

d

• Not clear if a maximum point exists.



Theorem 4. (Crane, 2006). There exists some B∗ such that

max
B∈E

{ min
1≤i≤d−1

|Si(B)|} = |S1(B
∗)| = · · · = |Sd−1(B

∗)|.

Theorem 5. (Crane, 2006) If Md+1 > Md, then for all degree

d extremal polynomial PB∗,

max
B∈E

{ min
1≤i≤d−1

|Si(B)|} = |S1(B
∗)| = · · · = |Sd−1(B

∗)|.



Conjecture 1: For all degree d extremal polynomial PB∗, we

have

max
B∈E

{ min
1≤i≤d−1

|Si(B)|} = |S1(B
∗)| = · · · = |Sd−1(B

∗)|.

• True when 2 ≤ d ≤ 5.

Crane noticed that if Conjecture 1 is true, then for each

d ≥ 2, the set of all degree d extremal polynomials PB∗ is

compact.



An amoeba approach

Note that we have d − 1 homogeneous Si(b1, ..., bd−1)

polynomial in d− 1 variables, so there is a unique non-constant

irreducible symmetric complex polynomial f = fd such that

f(S1(B), . . . , Sd−1(B)) = 0

whenever B ∈ Cd−1
∗ .

Let Af be the amoeba of f . It follows from Smale’s theorem

that for all t > 4, t = (log t, ..., log t) lies in Ac
f .



For d = 3, f(z1, z2) = 18z1z2 − 9z1 − 9z2 + 4

−6 −5 −4 −3 −2 −1 0 1 2

−4

−3

−2

−1

0

1

2



Theorem 6. (N.) f has a leading term of the form

zk1 · · · zkd−1 for some k ∈ N. Let U be the unbounded

component of Ac
f containing (log 4, ..., log 4) +Rd−1

+ and d =

(log d−1
d , ..., log d−1

d ). Then the following are equivalent:

1) Smale’s mean value conjecture is true for degree d;

2) U contains d+ Rd−1
+ ;

3) U contains the ray {t(1, ..., 1) : t > log d−1
d };

4) d is a boundary point of U ;

5) Nf(d) = k(d− 1) log d−1
d .



In principle, one can use Nf(d) = k(d− 1) log d−1
d to verify

Smale’s mean value conjecture for small degree d. For example,

when d = 3, k = 1 and when d = 4, k = 3.

Nf(x) =
1

(2πi)n

∫
Log−1

(x)

log |f(z)|dz1
z1

∧ . . . ∧ dzn
zn

.



Theorem 5 (Crane, 2006). There exists some B∗ such that

max
B∈E

{ min
1≤i≤d−1

|Si(B)|} = |S1(B
∗)| = · · · = |Sd−1(B

∗)|.



Max-Min and Min-Max problem on hypersurfaces in Cn

For a non-constant polynomial f ∈ C[z1, . . . , zn] and the

hypersurface Zf ⊂ Cn
∗ defined by f , let

C(f) = sup
z∈Zf

(
min

1≤i≤n
|zi|
)

.

Problem: Characterize those polynomials f for which C(f)

is finite, and for such a polynomial to determine whether the

bound is attained by some point x ∈ Ck.



A monomial term of the polynomial f is the dominant

monomial of f if it is of maximal degree in each variable

separately.

Theorem 7. (Crane, 2006) f ∈ C[z1, . . . , zn] has a dominant

monomial if and only if C(f) < ∞.

Theorem 8. (Crane, 2006) Let f ∈ C[z1, . . . , zn] be non-

constant. If C(f) < ∞, then there exists some (z1, . . . , zn) ∈

Zf such that

|z1| = · · · = |zn| = C(f).



Related to the above max-min problem, we consider the dual

min-max problem.

For a non-constant polynomial f ∈ C[z1, . . . , zn] and the

hypersurface Zf ⊂ Cn
∗ defined by f , let

D(f) = inf
z∈Zf

(
max
1≤i≤n

|zi|
)

.



D(f) = inf
z∈Zf

(
max
1≤i≤n

|zi|
)

Theorem 9. (N.) f ∈ C[z1, . . . , zn] has a non-zero constant

term if and only if D(f) > 0.

Theorem 10. (N.) If D(f) > 0, then there exists at least one

(z1, . . . , zn) ∈ Zf such that

|z1| = · · · = |zn| = D(f).



fd(S1(B), . . . , Sd−1(B)) = 0.

Note that fd has a non-zero constant term. Apply the previous

result to f = fd.

Theorem 11. (N.) There exists some Nd > 0 such that if P

be a monic polynomial of degree d ≥ 2 with P (0) = 0 and

P ′(0) = 1 and b1, . . . , bd−1 are its critical points, then

max
i

∣∣∣∣ P (bi)

biP ′(0)

∣∣∣∣ ≥ Nd .



Moreover, at least one of the extremal polynomials for Nd

satisfies the condition

∣∣∣∣ P (b1)

b1P ′(0)

∣∣∣∣ = · · · =
∣∣∣∣ P (bd−1)

bd−1P ′(0)

∣∣∣∣ . (∗)



For d = 3, f(z1, z2) = 18z1z2 − 9z1 − 9z2 + 4

−6 −5 −4 −3 −2 −1 0 1 2

−4

−3

−2

−1

0

1

2



Dual Mean Value Conjecture:

Let P be a monic polynomial of degree d ≥ 2 such that

P (0) = 0 and P ′(0) = 1. Let b1, . . . , bd−1 be its critical points.

Then

max
i

∣∣∣∣ P (bi)

biP ′(0)

∣∣∣∣ ≥ 1

d
.

It is conjectured that the extremal polynomial should be

P (z) = (z − a)d − (−a)d, where a is some non-zero complex

number.



Note that Dubinin and Sugawa (2009) have also discovered

this dual mean value conjecture around the same time

independently and they are able to show that Nd ≥ 1/(d4d).

Theorem 13 (N. and Y.Q. Zhang (2017))

Nd >
1

4d
.

To prove this, we need to consider similar conjecture for

finite Blaschke products.



Finite Blaschke products.

A finite Blaschke product of degree n is a rational function

of the form

B(z) = eiα
n∏

k=1

z − zk
1− zkz

where α is a real number and z1, . . . , zn are complex numbers

on the standard unit disk D = {z : |z| < 1}.

First noted by Walsh (1952) that finite Blaschke products

can be viewed as non-euclidean polynomials in D and he proved

a version of Gauss-Lucas Theorem for finite Blaschke products.



This point of view was also propagated by Beardon and

Minda (2004), as well as Singer (2006).

Recently, a dictionary between polynomials and finite

Blaschke products has be established by N. and Tsang (2013)

based on the joint works with my former students M.X. Wang.

C.Y. Tsang and P.L. Cheung.



Smale’s mean value conjecture for finite Blaschke products

(Sheil-Small, 2002):

Let B(z) = z
d−1∏
i=1

(
z − ai
1− aiz

)
and has critical points

w1, . . . , wd−1, d ≥ 2. Then

min
i

∣∣∣∣ B(wi)

wiB′(0)

∣∣∣∣ ≤ 1

• There are examples showing that the constant 1 on the right

hand side cannot be reduced.



• For degree two finite Blaschke products, no extremal finite

Blaschke products exist.

• Sheil-Small (2002) showed that the conjecture for finite

Blaschke products implies that of polynomials.

• The two Smale’s mean value conjectures are actually

connected through suitable rescalings.



Connection through rescalings

Given P (z) = z
d−1∏
i=1

(z − ai) with critical points ci.

Define Bn(z) = z
d−1∏
i=1

(
z − ai

n

1− ai
n z

)
so that when n is

sufficiently large, Bn is a finite Blaschke product.

Let fn(z) = ndBn

(
1

n
z

)
= z

d−1∏
i=1

(
z − ai

1− ai
n z

)
.

Then fn(z) → P (z) locally uniformally on C as n → ∞.



If cn,i are the critical points of Bn, then dn,i = ncn,i are the

critical points of fn and

fn(dn,i)

dn,if ′
n(0)

=
ndBn(

1
n dn,i)

dn,ind−1B′
n(0)

=
Bn(cn,i)

cn,iB′
n(0)

.

So if for each n, there exists some 1 ≤ j ≤ d− 1 such that

∣∣∣∣ Bn(cn,j)

cn,jB′
n(0)

∣∣∣∣ ≤ K.



Then as n → ∞, we have there exists some 1 ≤ k ≤ d − 1

such that ∣∣∣∣ P (ck)

ckP ′(0)

∣∣∣∣ ≤ K.



Theorem 14 [N. & Y.Q. Zhang (2017)] Let B(z) =

z
d−1∏
i=1

(
z − ai
1− aiz

)
and has critical points w1, . . . , wd−1, d ≥ 2.

Then

min
i

∣∣∣∣ B(wi)

wiB′(0)

∣∣∣∣ ≤ 2
2d− 1 + (2d− 3)41/(1−d)

2d− 1
.

and

max
i

∣∣∣∣ B(wi)

wiB′(0)

∣∣∣∣ > 1

4d



• Hence, we can have Nd > 1
4d

instead of Nd ≥ 1
d4d

for

polynomials.

• As 22d−1+(2d−3)41/(1−d)

2d−1 is of the form 4 − O(1d), we do not

get a better upper bound Md for polynomials.



Applications of amoeba theory to Kd,i

Note that the existence of the extremal polynomials for any

Kd,i has never been proven and it is not clear if they exist at

all because the parameter space for the normalized polynomials

is not compact.

Using the amoeba theory, one can prove that for each Kd,i,

at least one extremal polynomial exists .



When i = 2, Smale showed that for some critical point bi,

Ti :=

∣∣∣∣∣P (2)(0)

2P ′(0)

∣∣∣∣∣ |P (bi)|
|P ′(0)|

=

∣∣∣∣∣∣12
d−1∑
j=1

1

bj

∣∣∣∣∣∣ |P (bi)|
|P ′(0)|

≤ 2.

One may ask if there is a dual inequality, i.e. there exists

some positive Ld,2 such that one can always find some bk so

that

Tk =

∣∣∣∣∣∣12
d−1∑
j=1

1

bj

∣∣∣∣∣∣ |P (bk)|
|P ′(0)|

≥ Ld,2 > 0



For g(z1, z2) = 432z21z
2
2−216z21z2−216z1z

2
2+27z21+27z22+

90z1z2 − 8z1 − 8z2, we have

g(T1, T2) = 0.

Since g has no constant term, no dual inequality for d = 3

(also true for general d).

The amoeba of g is given in the following figure.





Applications to Pareto optimal points

Recall that

Si(B) = Si(b1, . . . , bd−1) =
PB(bi)

biP ′
B(0)

.

In Problem 1D, Smale suggested to look for the Pareto

optimal points of those attain the following optimization

problem:

max
B∈E

{ min
1≤i≤d−1

|Si(B)|}



Definition: B∗ = (b∗1, . . . , b
∗
d−1) ∈ Cd−1

∗ is a Pareto optimal

point if there is no B ∈ Cd−1
∗ such that Sj(B) ≥ Sj(B

∗) for all

1 ≤ j ≤ d− 1 with strict inequality for some j.

For the past thirty years, no one knows if a Pareto optimal

point exists.

Using the amoeba theory, one can show that such a Pareto

optimal point does exist if the set of extremal polynomials is

compact.


