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I met Walter just a few years ago...
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History
... when he came to Boston to give a talk about.....

THE SURVEY

277 citations (MathSciNet)

607 citations (Google Sch.)
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· · ·
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Transcendental dynamics
If f : C→ C (or to Ĉ) has an essential singularity at infinity we say
that f is transcendental.

Transcendental maps may have Fatou components that are not basins
of attraction nor rotation domains:

U is a Baker domain of period 1 if f n |U→∞ loc. unif.

U is a wandering domain if f n(U) ∩ f m(U) = ∅ for all n 6= m.

z + a + b sin(z) [Figures: Christian Henriksen] z + 2π + sin(z)
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Singular values

Holomorphic maps are local homeomorphisms everywhere except at the
critical points

Crit(f ) = {c | f ′(c) = 0}.

The set of singular values S(f ) = Sing(f −1), consists of points for which
some local branch of f −1 fails to be well defined.

These can be

Critical values CV = {v = f (c)|c ∈ Crit(f )};
Asymptotic values AV = {a = limt→∞ f (γ(t)); γ(t)→∞}.

c
v
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These can be

Critical values CV = {v = f (c)|c ∈ Crit(f )};
Asymptotic values AV = {a = limt→∞ f (γ(t)); γ(t)→∞};
Accumulation of the above.

f : C \ f −1(S(f )) −→ C \ S(f ) is a covering map of infinite degree.

Define the postsingular set of f as

P(f ) = ∪s∈S ∪n≥0 f n(s).
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Singular values

Singular values play a very special role.

Basins of attraction of attracting or parabolic cycles contain at least
one singular value

U ∩ P(f ) 6= ∅

Boundaries of Siegel disks belong to P(f ).

U ∩ P(f ) = ∅ but ∂U ⊂ P(f )

So iterating the singular values, S(f), one finds the periodic stable
components.

What about Baker domains and wandering domains?
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Newton’s method of entire transcendental maps
Can these map have a wandering domain?

Newton’s method for F (z) = z + ez .
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Walter’s questions

We can find these type of questions in Walter’s survey.
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Baker domains

The best result for Baker domains is the following, and answers Q4 - Q5.

Theorem (Bergweiler’95, Mihaljevic-rempe’13, Baranski-F-Jarque-Karpinska’17)

f transcendental meromorphic, U invariant Baker domain, U ∩ S(f ) = ∅.
Then ∃pn ∈ P(f ) st

1 |pn| → ∞
2

∣∣∣pn+1

pn

∣∣∣→ 1

3
dist(pn,U)
|pn| → 0

The theorem is sharp: there exists an (ETF) example for which
dist(pn,U) > c > 0.
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Walter’s example

f (z) = 2− log 2 + 2z − ez

Lift of a function of ”finite
type” with two
superattracting fixed points
(and no other singular
values).
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Special classes

Some classes of maps are singled out depending on their singular values.

The Speisser class or finite type maps:

S = {f ETF (or MTF) such that S(f ) is finite}

Example: z 7→ λ sin(z)

Maps in S have NO WANDERING OR BAKER DOMAINS.
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Special classes

The Eremenko-Lyubich class

B = {f ETF (or MTF) such that S(f ) is bounded}

Example: z 7→ λ z
sin(z) .

Maps in class B have no Baker domains and NO ESCAPING
WANDERING DOMAINS (Escaping set ⊂ J(f )).

If U is a wandering domain, and L(U) is the set of limit functions of f n on
U, then, all limit functions are constant and

U is


escaping if L(U) = {∞}
oscillating if {∞, a} ⊂ L(U) for some a ∈ C.

“bounded” if ∞ /∈ L(U).

N. Fagella (Universitat de Barcelona) Fatou components and singularities ICMS Edinburgh 15 / 27



Special classes

The Eremenko-Lyubich class

B = {f ETF (or MTF) such that S(f ) is bounded}

Example: z 7→ λ z
sin(z) .

Maps in class B have no Baker domains and NO ESCAPING
WANDERING DOMAINS (Escaping set ⊂ J(f )).

If U is a wandering domain, and L(U) is the set of limit functions of f n on
U, then, all limit functions are constant and

U is


escaping if L(U) = {∞}
oscillating if {∞, a} ⊂ L(U) for some a ∈ C.

“bounded” if ∞ /∈ L(U).

N. Fagella (Universitat de Barcelona) Fatou components and singularities ICMS Edinburgh 15 / 27



Existence of wandering domains

Question

Can maps in class B have wandering domains at all?

Answer: yes.

Theorem (Bishop’15, Mart́ı-Pete+Shishikura’18)

There exists an entire map f ∈ B such that f has an (oscillating)
wandering domain.

The proof is based on a qc surgery construction, more delicate than
usual.

Incidentally, Un ∩ P(f ) 6= ∅ for all n.

Open question Q17

Does there exist a map with a “bounded” wandering domain?
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Examples of wandering domains

Examples of wandering domains are not abundant. Usual methods are:

Lifiting of maps of C∗ [Herman’89, Henriksen-F’09]. The relation with the
singularities is limited to the finite type possibilities.

Infinite products and clever modifications of known functions
[Bergweiler’95, Rippon-Stallard’08’09...]

Approximation theory [Eremenko-Lyubich’87]. No control on the singular
values of the global map.

Quasiconformal surgery [Kisaka-Shishikura’05, Bishop’15,

Mart́ı-Pete+Shishikura’18].
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Wandering domains and singularities: Motivating examples

The relation of a wandering domain with the postcritical set is not so clear.

Example 1 (escaping):

z 7→ z + 2π + sin(z) One critical point in each WD.
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Wandering domains and singularities: Examples
Example 2 (escaping and Univalent, ∂U ⊂ P(f )):

Left: Siegel disk of g(w) = e2−λ

2−λ w
2e−w with λ = e2πi(1−

√
5)/2), around

w = 2− λ. Right: Lift to a wandering domain U.
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Wandering domains and singularities: Examples

Example 3 [Kisaka-Shishilkura’05, Bergweiler-Rippon-Stallard’13] [Q10].
Wandering orbit of annuli such that

U ∩ P(f ) = ∅ P(f ) ⊂ F (f ).

Example 4 [Bishop’15, Mart́ı-Pete+Shishikura’18]
The oscillating domains in class B contains critical points of arbitrary high
multiplicity, responsible for the high contraction necessary.

Question

Does there exist an oscillating wandering domain in class B on which f n is
univalent for all n > 0? (In part. P(f ) ∩ Un = ∅?)

Answer: yes. [F. - Jarque - Lazebnik’18 (to appear)]
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Known results

Recall, for U a wandering domain, the set of limit functions

L(U) = {a ∈ Ĉ | f nk |U ⇒ a for some nk →∞}.

Theorem (Bergweiler et al’93, Baker’02, Zheng’03)

Let f be a MTF with a wandering domain U. If a ∈ L(U) then
a ∈ P(f )′ ∩ J(f ).

Theorem (Mihaljevic-Rempe’13)

If f ∈ B and f n(S(f )) ⇒∞ uniformly (+ extra geometric assumption),
then f has no wandering domains.
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Wandering domains and singular orbits

Theorem B ( Baranski-F-Jarque-Karpinska’17 [Q11])

Let f be a MTF and U be a wandering domain of f . Let Un be the Fatou
component such that f n(U) ⊂ Un. Then for every z ∈ U there exists a
sequence pn ∈ P(f ) such that

dist(pn,Un)

dist(f n(z), ∂Un)
→ 0 as n→∞.

In particular, if for some d > 0 we have dist(f n(z), ∂Un) < d for all n (for
instance if the diameter of Un is uniformly bounded), then
dist(pn,Un)→ 0 as n tends to ∞.

Proof: normal families argument, hyperbolic geometry.... Based on the

improvement of a technical lemma from Bergweiler on Baker domains. Compare

also [Mihaljevic-Rempe’13]. More details .
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Application: Topologically hyperbolic functions

A MTF is topologically hyperbolic if

dist(P(f ), J(f ) ∩ C) > 0.

This condition can be regarded as a kind of weak hyperbolicity in the
context of transcendental meromorphic functions since
|(f n)′(z)| → ∞ for all z ∈ J(f ) [Stallard’90, Mayer-Urnbanski’07’10].

Topologically hyperbolic maps do not possess parabolic cycles,
rotation domains or wandering domains which do not tend to infinity

Examples include many Newton’s methods of entire functions.
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Application: Topologically hyperbolic functions

Corollary C

Let f be a MTF topologically hyperbolic. Let U be a wandering domain
s.t. Un ∩ P(f ) = ∅ for n > 0. Then for every compact set K ⊂ U and
every r > 0 there exists n0 such that for every z ∈ K and every n ≥ n0,

D(f n(z), r) ⊂ Un.

In particular,

diamUn →∞ and dist(f n(z), ∂Un)→∞

for every z ∈ U, as n→∞.

This can be applied to show that many functions, including Newton’s
method of h(z) = aez + bz + c with a, b, c ∈ R, have no wandering
domains
[c.f. Bergweiler-Terglane,Kriete].
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No wandering domains

Newton’s method for F (z) = z + ez .
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Happy birthday Walter!

Topics in Complex Dynamics 2007
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Technical lemma

The technical lemma on the proof is the following.

Lemma

f TMF, U wandering domain, Un = f n(U). Then,
∀K compact, ε > 0, M ≥ 1,
there exists n0 such that
for all n > n0, z ∈ K , γ curve connecting f n(z) to w ∈ ∂U with

length(γ) ≤ M dist(f n(z), ∂Un)

there exists
p ∈ D(γ, ε length(γ)) ∩ P(f ).

Go back
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