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Abstract

These are notes of the expository lectures that will be delivered for the LMS Au-
tumn Algebra School, 21-25 September 2020. The aim is to introduce beginning Ph.D.
students to the theory of totally disconnected locally compact groups. The exposition
then includes basic properties of topological groups, a proof of van Dantzig’s theorem
and some of the most popular examples of totally disconnected locally compact groups.

The focus is on totally disconnected locally compact groups that satisfy some finite-
ness conditions with more emphasis on compact generation: for compactly generated
totally disconnected locally compact groups, the notion of Cayley-Abels graph permits
to deal with the topological group as a geometric object.
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1 Introduction

The class of locally compact groups generalises discrete and Lie groups. Locally com-
pact groups came to light in the first half of 20th century, and since then they have
played a central role among topological groups. The 20th century witnessed intense
activity on the structure theory of many algebraic objects, e.g., simple finite groups,
fields, division algebras, rings with ACC or DCC. What about the general structure
of locally compact groups? A basic strategy to understand the structure of a locally
compact group G is to split it into smaller factor groups: let G0 be the largest con-
nected subset of G containing the identity element, which is a closed subgroup (see
Proposition 2.1.2) and produce the short exact sequence

1→ G0 → G→ G/G0 → 1,

where G0 is a connected locally compact group and G/G0 is a totally disconnected
locally compact group (i.e., the connected components of G/G0 are reduced to single-
tons). In other words, G is an extension of its connected component G0 by the totally
disconnected piece G/G0; for example, G could be (semi)direct product of G0 and
G/G0. It follows that, at least in theory, questions about the structure of locally com-
pact groups may be dealt with by treating separately the cases where G is connected
and where G is totally disconnected and then combining the two answers.

On one hand, with the solution of Hilbert’s fifth problem, our understanding of
connected locally compact groups has significantly increased: they can be approximated
by Lie groups (see Corollary 2.3.4). Therefore, the contemporary structure problem
on locally compact groups concerns the class of totally disconnected locally compact
groups.

The first part of these notes is devoted to the definition of the main characters of the
mini-course, i.e., topological groups that are locally compact and totally disconnected.
In particular, it includes basic properties of topological groups, a proof of van Dantzig’s
theorem [32], which is the classical theorem on the structure of totally disconnected
locally compact groups, and several examples.

The investigation of the class of totally disconnected locally compact groups can
be made more manageable by dividing the infinity of objects under investigation into
classes of types with“similar structure”. For example, in the second part, we focus on
totally disconnected locally compact groups satisfying some finiteness conditions.

The most common finiteness condition for totally disconnected locally compact
groups is compact generation, i.e., the topological group is algebraically generated
by a compact subset. Compact generation naturally generalises the notion of finite
generation that has been widely (and fruitfully) used in group theory to study abstract
groups. Since every totally disconnected locally compact group is a directed union of
compactly generated open subgroups (see Fact 4.1.2), one can reduce to the case of
groups that are compactly generated without losing to much information (at least from
a local perspective).

All compactly generated totally disconnected locally compact groups fall in the class
of automorphism groups of locally finite connected graphs (see § 3.3). Indeed, Abels
[1] proved that, by using van Dantzig’s theorem, we can always construct a locally
finite connected graph on which the group acts vertex transitively with compact open
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vertex stabilisers, the so-called Cayley-Abels graph (see § 4.2). What is more striking
is that the Cayley-Abels graph of a compactly generated totally disconnected locally
compact group is unique up to quasi-isometry. Therefore, as for finitely generated
groups, we can produce geometric group invariants1 and study a compactly generated
totally disconnected locally compact group as a geometric object.

Indeed, totally disconnected locally compact groups are now viewed as simultane-
ously geometric groups and topological groups so that the interaction between the local
structure (i.e., the topological one) and the large-scale structure (i.e., the geometric
one) becomes also relevant for the general theory. Since profinite groups are trivial as
geometric groups and discrete groups are trivial as topological groups, it is not sur-
prising that the profinite groups and the discrete groups constitute the atomic pieces
in the theory of totally disconnected locally compact groups.

The final part of the fourth chapter attempts to introduce the reader to those
finiteness conditions for totally disconnected locally compact groups that generalise
compact generation in higher dimension. Since these notes are meant to be on the
non-specialist level, we only provide definitions (without details) and references (where
the details are), letting the reader decide how deep dig into the subject.

The conclusive part of these notes briefly introduces the main ingredients of the
theory of scale for totally disconnected locally compact groups. The seminal work
of George Willis [36, 37] was a fundamental breakthrough in the theory of totally
disconnected locally compact groups after several years of stillness. Willis’ theory made
a systematic study of totally disconnected locally compact groups feasible, giving then
start to the research interest we now benefit from.

Pre-requisites and Notation: These notes aim to help non-specialists and be-
ginning Ph.D. students moving the first steps towards the theory of totally disconnected
locally compact groups. Therefore, this text is (supposed to be) accessible to people
not familiar with the topic and I have tried to keep it essentially self-contained (most of
the results are proved in these notes) but, as with any advanced topic, there are limits
and some of the results are stated without proofs. In such a case, references - where
the reader will be able to find complements and proofs of the corresponding results -
are provided.

The interested reader can also have a look at a few conference proceedings that
collect part of the progress made with the general theory of totally disconnected locally
compact groups and include some open problems; see [12, 41].

The reader is supposed to have mastered linear algebra, fundamental topological
notions (topologies, continuity, neighbourhood basis, compactness, etc...) and basic
notions from group theory.

We denote by

- N the set of natural numbers {0, 1, 2, ...},
- Z the ring of rational integers,

- R the field of real numbers,

1That are properties invariant up to quasi-isometriy. The number of ends, growth and hyperbolicity are
examples of such geometric invariants.
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- R+ the subset of non-negative real numbers,

- R×+ the group of positive real numbers,

- C the field of complex numbers.

- If R is a commutative ring with unit, R× stands for its multiplicative group of
units.

For example, R× = R \ {0}.

2 Preliminaries on topological groups

A complete and detailed introduction to the theory of topological groups can be found
in several textbooks; for example, [19]. For convenience, all topological spaces appear-
ing below are assumed to satisfy the Hausdorff separation axiom.

2.1 Warming-up

Definition 2.1.1 (Topological group). A topological group is a group (G, ·) which
is also a topological space such that the following maps are continuous:

• the group operation

· : G×G→ G, (x, y) 7→ x · y, ∀x, y ∈ G

where G×G is endowed with the product topology;

• the inversion map

−1 : G→ G, x 7→ x−1, ∀x ∈ G.

If the underlying group G is cyclic (resp., abelian, nilpotent, etc.), the topological group
G is also called cyclic (resp. abelian, nilpotent, etc.). The additive notation (G,+) can
be used to describe some topological groups but only in the case when the topological
group is abelian.

Remark 2.1.1. Clearly, topological rings and topological fields2 can be defined in
an analogous way.

Every group G can be viewed as a topological group if given the discrete topology.
In such a case, G is called a discrete group and, since these notes concern topological
groups, we will often refer to (abstract) groups as discrete groups.

Exercise 2.1.1. Let G be a topological group. Prove the following properties:

1. If a subgroup H ≤ G is open, then it is also closed. (Hint: the complement of H
is union of cosets)

2. A subgroup containing an open set is automatically open.

3. A connected subset C is contained in the intersection of all clopen3 subsets of G.

2By “field” we always mean “commutative field”
3A set which is both closed and open
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4. If G is connected, then the only open subgroup of G is G itself.

5. Every quotient map of a topological group is open.

6. For H ≤ G normal, the quotient group G/H is discrete iff H is open.

Other examples of a topological group are provided by the additive group (R,+) of
the reals equipped with the usual topology, its subgroups Z and Q (with the subspace
topology) and its quotient T := R/Z (with the quotient topology). This extends to
all powers (Rd,+), and so (C,+), because it can be easily proved that products of
topological groups are again topological groups. Moreover, if R is a topological ring,
then the ring M(n,R) of all n × n matrices with entries in R is a topological ring if
endowed with the product topology of Rn×n.

Exercise 2.1.2. Let R be a commutative topological ring such that inversion is con-
tinuous on the set of invertible elements (for example, if R is a topological field). Prove
that

1. the group (GL(n,R), ·) of all invertible n × n matrices with entries in R is a
topological group (notice thatGL(n,R) is a subset ofM(n,R) but not a subgroup.
Hint: Cramer’s rule can be used to prove that inversion is continuous);

2. the set SL(n,R) = {M ∈ GL(n,R) | det(M) = 1} is closed in GL(n,R).

A topology τ on the group G such that the space (G, τ) is a topological group is
called a group topology on G. Obviously, a topology τ on G is a group topology
if, and only if, the map

G×G→ G, (x, y) 7→ xy−1,

is continuous for all x, y ∈ G. Notice that, for every g ∈ G, the left translation
x 7→ gx, the right translation x 7→ xg, as well as the conjugation x 7→ gxg−1

are continuous (in other words, every topological group is a homogeneous topological
space).

Exercise 2.1.3. Prove the assertions above.

As a consequence, the topology of G is determined by a neighbourhood basis4 at
the identity 1G: a family {Uα}α∈I of arbitrarily small neighbourhoods of 1G determines
the family {gUα}α∈I of arbitrarily small neighbourhoods of any other group element g.

Exercise 2.1.4. The group G is discrete iff the point 1G is isolated, i.e., the singleton
{1G} is open.

Example 2.1.1. One can define group topologies on G by declaring well-behaved
collections of subsets to be the neighbourhood basis at 1G (see [7]):

- the pro-finite topology is determined by the family of all normal subgroups of
finite index of G;

- the pro-p topology is determined, for a prime p, by all normal subgroups of G
of finite index that is a power of p;

4A family B of neighbourhoods of the point x is said to be a basis of neighborhoods of x if for every
neighbourhood U of x there exists V ∈ B contained in U .
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- the p-adic topology is determined, for a prime p, by the family {Un}n∈N of
normal subgroups of G, where Un is generated by the powers {gpn | g ∈ G}.

Example 2.1.2 (Absolute values on fields). An absolute value on a field K is a
function | | : K→ R satisfying

(av.1) |x| ≥ 0 for every x ∈ K, and |x| = 0 if and only if x = 0,

(av.2) |xy| = |x||y|, for all x, y ∈ K,

(av.3) |x+ y| ≤ |x|+ |y|, for all x, y ∈ K.

The absolute value | | is said to be non-archimedean if it satisfies the stronger
condition

(av.3’) |x+ y| ≤ max{|x|, |y|}, for all x, y ∈ K,

otherwise it is archimedean. For example, the usual absolute value on R is an
archimedean absolute value.

It is clear that d(x, y) = |x−y| gives K a structure of metric space, and the topology
for which the balls

{x ∈ K | |x| < ε}, ε > 0,

form a basis of neighbourhoods of 0 is a field topology.

Exercise 2.1.5. Let K be a field equipped with the absolute value | |. The field
topology defined on K by | | is discrete iff |x| = 1 for all x 6= 0.

Example 2.1.3 (The field of p-adic numbers). For a given prime p, the p-adic
absolute value on Q is

|x|p = p−n, x ∈ Q,

where n is the unique integer such that x = pn(ab ) and neither of the integers a and b
is divisible by p (with the convention, |0|p = 0). It is an example of non-archimedean
absolute value. The p-adic metric dp(x, y) = |x − y|p induces a field topology on
Q which is called p-adic topology. As it happens with the topology inherits from
R, the metric space (Q, dp) is not complete (i.e., not every Cauchy sequence converges
in (Q, dp)). Let Qp denote the completion of Q with respect to the p-adic metric.
In particular, Qp is a field of characteristic zero that is called the field of p-adic
numbers. The metric dp (and so the p-adic topology) can be extended to Qp to
obtain a topological field (see [24, § 12.3.4]).

The identity component of G. Let X be a topological space. Recall that it is
defined an equivalence relation ∼ on X as follows: x ∼ y if there exists a connected
subspace C ⊆ X such that x, y ∈ C. Each equivalence class is a maximal connected
subspace which is called a connected component of X.

Definition 2.1.2. For a topological group G, the connected component of the space
G containing the identity 1G is called identity component, and it is denoted by
G0. Clearly, G0 is the union of all connected subspaces of G containing 1G, and the
topological group G is connected if, and only if, G = G0. A topological group is said
to be totally disconnected if the identity 1G is its own connected component, that
is, G0 = {1G}.
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Notice that, for every g ∈ G, the set gG0 = G0g is nothing but the connected com-
ponent containing g because continuous maps preserve connectedness and translations
are continuous. As a consequence, one has the following important fact.

Proposition 2.1.2. Given a topological group G, the connected component G0 is a
closed normal subgroup.

Proof. The subspace G0 is closed since the closure of a connected subspace is still
connected and so one has: 1G ∈ G0 ⊆ G0, i.e., G0 = G0.

For every x ∈ G0, the translate x−1G0 3 1G is connected. It follows that x−1 ∈
x−1G0 ⊆ G0 and G0 is closed under taking inverses. On the other hand, for all
x, y ∈ G0, one has xy ∈ xG0 but xG0 is the connected component of x which is in the
same connected component as 1G (because x ∼ 1G), i.e., xy ∈ xG0 = G0.

Finally, G0 is characteristic (and in particular normal) because continuous homo-
morphisms preserve connectedness.

Remark 2.1.3. The identity component needs not to be open: for a totally disconnected
group G, {1G} is the identity component which is open iff G is discrete.

Due to the maximal connected nature of G0, one has the following.

Proposition 2.1.4. Let G be a topological group and let G0 be the identity component.
Then G/G0 is a totally disconnected group.

Proof. Let π : G → L := G/G0 be the canonical quotient homomorphism. We claim
that π−1(L0) ⊇ G0 is connected and, hence, π−1(L0) = G0 which finally implies that
L = G/G0 is totally disconnected. To prove the claim, suppose we can decompose
π−1(L0) into a disjoint union C1 ∪ C2 of non-empty closed subsets of G. Since G0 is
connected, for every g ∈ π−1(L0), we have either gG0 ⊆ C1 or gG0 ⊆ C2. It follows
that C1 and C2 are union of G0-cosets. Passing to the quotient, L0 is the disjoint union
of non-empty closed subsets, contradiction.

2.2 Profinite groups

For a complete introduction to the realm of profinite groups the reader is referred to
[25, 40] and [12, Chapter 3]. We recall here the terminology which is necessary for the
definition of a profinite group and provide a few easy examples.

A directed poset (I,�) is a set I with a binary relation � satisfying:

1. i � i, for i ∈ I;

2. i � j and j � k imply i � k, for i, j, k ∈ I;

3. i � j and j � i imply i = j, for i, j ∈ I; and

4. if i, j ∈ I, there exists some k ∈ I such that i � k and j � k.

An inverse system of topological groups over I consists of a family {Gi | i ∈ I} of
topological groups together with continuous group morphisms ϕij : Gi → Gj , defined
whenever j � i, such that the diagrams

Gi
ϕik //

ϕij   

Gk

Gj

ϕjk

>>
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commutes whenever k � j � i. In addition, we assume that ϕii is the identity morphism
for every i ∈ I. A projective system of topological groups is said to be surjective if
every morphism ϕij is surjective. A family of continuous group morphisms ϕi : G→ Gi
is said to be compatible with the inverse system (Gi, ϕij , I) if, for every i � j, the
diagram

G
ϕi //

ϕj ��

Gi

Gj

ϕji

>>

commutes. A topological group G together with a compatible family of continuous
morphisms ϕi : G→ Gi, (i ∈ I) is an inverse limit of the inverse system (Gi, ϕij , I)
if the following universal property is satisfied: for every topological group G̃ together
with a compatible family of continuous group morphisms (ψi, i ∈ I), there exists a
continuous group morphism ψ : G̃→ G such that the diagram

G̃
ψ //

ψi ��

G

ϕi��
Gi

commutes for every i ∈ I. In such a case, we denote the inverse limit by

G = lim←−
i∈I

(Gi, ϕij),

and call the maps ϕi : G → Gi projection morphisms. If the family ϕij is clear from
the context, we use simply G = lim←−i∈I Gi.

Proposition 2.2.1 ([25, Proposition 1.1.1]). Let (Gi, ϕij , I) be an inverse system of
topological groups over a directed poset I. Then the following hold:

(a) There exists an inverse limit of the inverse system (Gi, ϕij , I);

(b) This limit is unique in the following sense: if (G,ϕi) and (H,ψi) are two limits of
(Gi, ϕij , I), then there is a unique topological isomorphism φ : G → H such that
ψiφ = ϕi for each i ∈ I.

In particular, the inverse limit (G,ϕi) can be constructed as follows:

- G is the subgroup of the direct product
∏
i∈I Gi of topological groups consisting

of those tuples (gi)i∈I that satisfy the condition ϕij(gi) = gj if j � i;
- the morphisms ϕi : G→ Gi are the restriction of the canonical projection∏

i∈I
Gi → Gi;

- the group topology on G is the subspace topology inherited by the product topol-
ogy of

∏
i∈I Gi.

Fact 2.2.2 ([25, Lemma 1.1.2]). If (Gi, ϕij , I) is an inverse system of topological
groups, then lim←−i∈I Gi is a closed subgroup of the product

∏
i∈I Gi.
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Definition 2.2.1. A profinite group G is the inverse limit lim←−i∈I Gi of a surjective

inverse system (Gi, ϕij , I) of finite groups Gi, where each finite group Gi is assumed to
have the discrete topology and the group topology on G is inherited from the product
topology on

∏
i∈I Gi.

For a profinite group G, a neighbourhood basis at 1G is given by the set

{ker(ϕi) | i ∈ I},

where ϕi : G→ Gi are the canonical projection homomorphisms.

Fact 2.2.3. A profinite group G is compact and totally disconnected.

Proof. It is an easy consequence of the fact that G is a closed subset of the product of
finite groups.

Example 2.2.1. • Let R be a profinite commutative ring with unit. Then the
following groups (with topologies naturally induced from R) are profinite groups:
R× (the group of units of R), GL(n,R) and SL(n,R).

• Consider the natural numbers I = N, with the usual partial ordering, and the
group of integers Z. Form the inverse system {Z/nZ, φnm}, where the map
φnm : Z/nZ → Z/mZ is the natural projection for m ≤ n. The inverse limit
produces the profinite group

Ẑ := lim←−
n∈N

Z
nZ

which can be identified with the set of equivalence classes of tuples of integers

{(x1, x2, x3, . . .) | xn ∈ Z,∀n ∈ Z, and xm = xn modm whenever m|n}.

Note that Ẑ naturally inherits a structure of profinite ring from the finite rings
Z/nZ. The ring Ẑ is called profinite completion of Z.

• Let p be a prime and form the profinite group defined by the following inverse
limit

lim←−
n∈N

Z
pnZ

,

over the system of canonical projections. It is called pro-p completion of Z.

The set of its elements can be identified with the set of all equivalence classes
of sequences (a1, a2, a3, . . .) of natural numbers such that am = an(mod pm),
whenever m ≤ n.

Remark 2.2.4. The ring of p-adic integers Zp is topologically isomorphic to lim←−n∈N Z/pnZ:

it suffices to prove that Zp is the inverse limit of its quotients Zp/pnZp (where the fam-
ily {pnZp}n∈N is the neighbourhood basis at 0 in the group of p-adic integers) and that
each Zp/pnZp is isomorphic to the finite group Z/pnZ.

Exercise 2.2.1. Let {Gi | i ∈ I} be a collection of finite groups. Is the direct product∏
i∈I Gi profinite?

Exercise 2.2.2. Consider the natural numbers I = N, with the usual partial ordering,
and form the constant inverse system {Z, id}. Compute the inverse limit.

9



Exercise 2.2.3. Let G be a profinite group.

1. A closed normal subgroup H ≤ G is open if and only if it has finite index.

2. Every open subgroup H of G contains a subgroup HG that is normal and open
in G. (Hint: Let HG =

⋂
g∈G gHg

−1 . . .)

2.3 Locally compact groups

An arbitrary topological space X is locally compact if every point admits a compact
neighbourhood (if in addition X is Hausdorff, then every point admits a fundamental
system of compact neighbourhoods). A topological group G is thus locally compact
if the identity 1G admits a compact neighbourhood.

The additive group (R,+) with its usual topology is a locally compact, non-compact,
abelian group. Clearly, the multiplicative group (R×, ·) is also locally compact (here
R× carries the induced topology) and the same holds for the groups (C,+) and (C×, ·).
On the other hand, Q is not locally compact with the topology inherited by R (see
Proposition 2.3.2), therefore local compactness is not inherited by all the subgroups.

Different examples of locally compact groups are discrete groups and profinite
groups. If T = R/Z is the circle group, then Tychonov’s theorem yields that every
power TI of T is again compact and, in particular, locally compact. This is actually
the most general example of a compact abelian group: every compact abelian group is
isomorphic to a closed subgroup of a power of T (via Pontryagin duality).

Example 2.3.1 (Non-discrete locally compact fields). Non-discrete locally compact
fields have been completely classified by van Dantzig [33]. A non-discrete locally com-
pact field K is either Archimedean (see Example 2.1.2), and then isomorphic to either
R or C, or non-Archimedean, in which case it is defined to be a local field5. A non-
discrete locally compact field is connected if and only if it is Archimedean. See [24,
§ 12.3.4] and references there.

Exercise 2.3.1. 1. A closed subgroup of a locally compact group is again locally
compact (and the closure condition is necessary, see Proposition 2.3.2).

2. If R is a locally compact ring and n is a natural number, then Rn×n is a locally
compact ring.

3. Every quotient of a locally compact group is locally compact.

4. The product of a finite family of locally compact groups is locally compact (for
infinite products to be locally compact is necessary the condition “all but a finite
number of factors are actually compact”).

5. If K is a topological field, thenGL(n,K) is open in Kn×n. Consequently, (GL(n,K), ·)
is locally compact exactly if K is.

6. If K is a locally compact field, then (SL(n,K), ·) is a locally compact group.

Proposition 2.3.1. A locally compact countable group is discrete.

Proof. Recall that a Baire space is a topological space with the property that for each
countable collection of open dense sets {Un}n∈N their intersection

⋂
n∈N Un is dense.

5Some authors define a local field to be any commutative non-discrete locally compact field
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By the Baire category theorem, every locally compact group is a Baire space. Let G
be a non-discrete locally compact group; in particular, each singleton {g} is closed but
not open in G. If G is countable, then

G = {g1, . . . , gn, . . . } =
⋃
n∈N

(G \ {gn})

but
⋂
n∈N(G \ {gn}) = ∅, contraddiction.

Proposition 2.3.2 ([19, Theorem 5.11]). If a subgroup H of a topological group G is
locally compact, then it is closed.

Since the identity component G0 is a closed normal subgroup of the locally compact
group G (see Proposition 2.1.2), one can form the quotient group G/G0. By Exer-
cise 2.3.1(3), G/G0 is locally compact. Moreover, the locally compact group G/G0 is
totally disconnected by Proposition 2.1.4. Therefore, one has the short exact sequence

1→ G0 → G→ G/G0 → 1 (2.1)

and every locally compact group G is then an extension of a totally disconnected locally
compact group G/G0 by the connected locally compact group G0.

Connected locally compact groups can be approximated by Lie groups as the fol-
lowing important theorem implies:

Theorem 2.3.3 (Gleason-Yamabe). Let G be a locally compact group. Then, for any
open neighbourhood U of the identity, there exists an open subgroup G′ of G and a
compact normal subgroup K of G′ in U such that G′/K is isomorphic to a Lie group.

Corollary 2.3.4. Every connected locally compact group is inverse limit of Lie groups.

As Terrence Tao writes on his blog [29]: this theorem asserts the “mesoscopic”
structure of a locally compact group (after restricting to an open subgroup G′ to re-
move the macroscopic structure, and quotienting out by K to remove the microscopic
structure) is always of Lie type.

We omit the proof of Gleason-Yamabe theorem but the reader is referred to [30]
where an exposition on the celebrated solution of Hilbert’s fifth problem can be found.

3 Totally disconnected locally compact groups

3.1 A proof of van Dantzig’s theorem

By using arguments from [19], we prove van Dantzig’s theorem which can be considered
as the key theorem in the theory of totally disconnected locally compact groups. In
fact, it shows that the topology of a totally disconnected locally compact group admits
a well-behaved basis of identity neighbourhoods.

Theorem 3.1.1 (van Dantzig, 1936). Let G be a totally disconnected locally compact
group. Then every neighbourhood of the identity contains a compact open subgroup.
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Proof. Let G be a totally disconnected locally compact group. By Vedenissov’s Theo-
rem, there exists a compact open neighbourhood K of 1G. For each x ∈ K, there are
an open set Ux 3 1G with xUx ⊆ K (because left translation by x is continuous at 1G)
and an open set Vx 3 1G with VxVx ⊆ Ux (because the multiplication µ : G×G→ G is
continuous at (1G, 1G)). Moreover, since also the inversion map is continuous, the open
set Vx can be chosen to be symmetric. For K is compact, it suffices a finite number of
elements of K, say x1, . . . , xn, to have K ⊆ x1Vx1 ∪ . . .∪xnVxn . Set V = Vx1 ∩ . . .∩Vxn
and notice that

KV ⊆
( n⋃
i=1

xiVxi
)
V ⊆

n⋃
i=1

xiVxiVxi ⊆
n⋃
i=1

xiUxi ⊆ K.

The inclusion V = 1GV ⊆ KV ⊆ K implies that V V ⊆ U , V V V ⊆ U , etc. Since V is
symmetric, the subgroup H generated by V is given by

H =
⋃
n∈N

V · · ·V︸ ︷︷ ︸
n

⊆ K.

By Exercise 2.1.1, H is open (and so closed) and, for H ⊆ K, H is also compact.

Hence, every totally disconnected locally compact group contains arbitrarily small
(compact) open subgroups. This is the opposite of what occurs in the connected case,
where the only open subgroup is the whole group (see Exercise 2.1.1). This is also the
opposite of what occurs in Lie Groups, which admit a neighbourhood of the identity
that contains only the trivial subgroup.

3.2 Consequences of van Dantzig’s theorem

Here we collect a few consequences of van Dantzig’s theorem.

Proposition 3.2.1. Given a locally compact group G, the connected component G0

coincides with the intersection of all open subgroups of G.

Proof. To prove that G0 is contained in the intersection of all open subgroups of G, it
suffices to notice that every open subgroup H of G is a clopen set (see Exercise 2.1.1(3)).

For the reverse inclusion, we show that, for every x ∈ G \ G0, there is an open
subgroup Hx not containing x. By Proposition 2.1.4, the group G/G0 is totally discon-
nected and locally compact. Therefore, van Dantzig’s theorem yields a neighbourhood
basis at G0 given by compact open subgroups of G/G0. It follows that there is a com-
pact open subgroup K ⊆ G/G0 not containing xG0 (because we can separate points).
Given the quotient map π0 : G→ G/G0, we set Hx = π−1

0 (K).

Corollary 3.2.2. If a topological group G admits a neighbourhood basis B at 1G con-
sisting of compact open subgroups, then G is totally disconnected and locally compact.

Proof. The only part that needs some work is the total disconnectedness of G. By
Proposition 3.2.1, G0 =

⋂
{U | U ∈ B}. But

⋂
{U | U ∈ B} = {1G} since we assume

topological groups to be Hausdorff.

12



In other words, van Dantzig’s theorem characterises totally disconnected locally
compact groups among topological (Hausdorff) groups: they are topological groups
admitting a neighbourhood basis at 1G formed by compact open subgroups.

The abundance of compact open subgroups will reveal itself to be the most fruitful
property of this class of groups.

In general, total disconnectedness is not preserved under taking quotients. Thanks
to van Dantzig’s theorem this is not the case for locally compact groups.

Proposition 3.2.3. The quotient of a TDLC-group by a closed normal subgroup is
totally disconnected.

Proof. Let G be a TDLC-group and let N be a closed normal subgroup of G. It follows
from van Dantzig’s theorem that the collection of all compact open subgroups of G
form a neighbourhood basis at 1G. Since quotient maps are open, the quotient G/N
admits a neighbourhood basis at N formed by compact open subgroups, that are the
quotients of all compact open subgroups of G. Thus G/N is totally disconnected by
Corollary 3.2.2.

Proposition 3.2.4. Every locally compact group G contains an open subgroup H which
is compact-by-connected.

Proof. One applies van Dantzig’s theorem to the TDLC-group G/G0 and then pulls
back the resulting compact open subgroup.

Proposition 3.2.5. A compact totally disconnected group is a projective limit of finite
groups. In particular, a topological group is profinite if, and only if, it is compact and
totally disconnected.

Proof. Let G be a compact totally disconnected group. By van Dantzig’s theorem, the
set O of all compact open subgroups of G form a neighbourhood basis at 1G. Since
G is compact, every subgroup H ∈ O contains a subgroup which is both open and
normal in G (see Exersice 2.2.3(2)). Thus, the family NO = {H ∈ O | H E G} is a
neighbourhood basis at 1G. Therefore, the morphism G →

∏
H∈NOG/H of compact

groups is injective and continuous, and provides a topological isomorphism from G to
a closed subgroup of the above product of finite groups.

3.3 Examples of totally disconnected locally compact groups

From now on, we shall use TDLC-group as shorthand. In the list below, it will become
clear that examples of TDLC-groups can be produced by using van Dantzig’s theorem.

• Discrete groups and profinite groups are rather trivial examples of TDLC-groups.

• (Local fields) Let K be a local field, i.e., a non-Archimedean locally compact field
(see [24, § 12.3.4]). Then K has a unique maximal compact subring

oK = {x ∈ K | {xn | n ≥ 1} is relatively compact}

and oK has a unique maximal ideal

pK = {x ∈ K | lim
n→∞

xn = 0}.

13



Both oK and pK are compact and open in K. The ideal pK is principal in oK:
there is π ∈ K such that pK is the ideal (π) generated by π. The nested sequence
of ideals

(π) ⊃ · · · ⊃ (πn) ⊃ (πn+1) ⊃ · · ·

constitutes a basis of compact open subgroups at 0 in K. Therefore, by van
Dantzig’s theorem, K is totally disconnected.

Local fields fall into two families, namely:

1. the fields of p-adic numbers, Qp and their finite extensions, and

2. the fields of formal Laurent series, Fq((t)), over some finite field Fq.

Note that Qp admits {pnZp}n∈N as basis of compact open subgroups, where Zp
is the ring of p-adic integers, and Fq((t)) has {tnFq(t)}n∈N as basis of compact
open subgroups, where Fq(t) is the ring of formal Taylor series over Fq.

• (Linear groups over local fields) Let K be a local field. The group GLn(K) with
the topology inherited as a subset of Kn2

is TDLC.

• (Automorphism group of a connected locally-finite graph) All graphs will be as-
sumed to be undirected. Therefore, a graph Γ is a pair (V Γ, EΓ) where V Γ
is a set and EΓ is a collection of unordered distinct pairs of elements from V Γ.
The elements of V Γ are called vertices and the elements of EΓ are called edges.
We will need a bit of terminology for graphs: vertices v and u are said to be
adjacent, if {v, u} is an edge in Γ; a graph is locally finite if each vertex v have
a finite number of adjacent vertices; a path of length n from v to u is a se-
quence (v = v0, v1, . . . , vn = u) of vertices, such that vi and vi+1 are adjacent for
i = 0, 1, . . . , n− 1; a graph is connected if for any two vertices v and u there is
a path from v to u in the graph. An automorphism of a graph Γ is a bijection
ϕ : V Γ → V Γ such that {ϕ(v), ϕ(w)} ∈ EΓ if and only if {v, w} ∈ EΓ. The
collection of automorphisms forms a group under composition, and it is denoted
by Aut(Γ).

Let Γ be a connected graph and endow Aut(Γ) with the compact-open topology
via considering V Γ to be a discrete space. Namely, a basis of this topology is
given by the sets

Σv,w = {g ∈ Aut(Γ) | g(vi) = wi},

where v = (v1, . . . , vn) and w = (w1, . . . , wn) range over all finite6 tuples of
vertices of Γ. In particular, two automorphisms of Γ are “closed” to each other
if they agree on “many” vertices.

Exercise 3.3.1. 1. Aut(Γ) with the compact-open topology is a topological
group.

2. The compact-open topology of Aut(Γ) coincides with the pointwise conver-
gence topology.

Remark 3.3.1. The compact-open topology on Aut(Γ) is often called permuta-
tion topology.

Let G = Aut(Γ). The identity element of G belongs to an open set Σa,b iff a = b.
Consequently, the compact-open topology on G has a neighbourhood basis at the

6Notice that the length of the tuples is arbitrary
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identity formed by the pointwise stabalizers of finite sets of vertices. Recall that,
given a vertex v ∈ Γ, the set G(v) = {g ∈ G | g(v) = v} is a subgroup of G which
is called the stabilizer of v. Given a finite set of vertices V, the intersection
G(V) =

⋂
v∈V G(vi) is the poitwise stabilizer of the set V. Clearly, pointwise

stabilizers of finite set of vertices are open subgroups of G.

Theorem 3.3.2. Let Γ be a connected locally finite graph. Poinwise stabilizers
of finite sets of vertices are compact in the compact-open topology. In particular,
G = Aut(Γ) is a TDLC-group.

Sketch of Proof. Let v ∈ V Γ. The proof consists of several steps:

Construction of the group morphism φv: for k > 0, set

Sv,k = {w ∈ V Γ | the shortest path connecting v and w has length at most k},

which is called the k-sphere around v. The stabiliser G(v) permutes the ele-
ments in each k-sphere, i.e., there exists a group homomorphism φv,k : G(v) →
Sym(Sv,k). Define

φv : G(v) →
∏
k>0

Sym(Sv,k), φv(g) := (φv,k(g))k>0, ∀g ∈ G(v).

The topology on
∏
k>0 Sym(Sv,k): Since Γ is locally finite, it follows that

every k-sphere around v is finite. Give the finite groups Sym(Sv,k) the
discrete topology and

∏
k>0 Sym(Sv,k) the product topology. Therefore,∏

k>0 Sym(Sv,k) is a compact topological group;

Properties of φv: The group morphism φv is continuous, closed and injective.
Therefore, φv is a topological group isomorphism onto its image; see [35] for
details.

Conclusion: Since G(v) is isomorphic to a closed subgroup of a compact group,
it is compact. It follows that every G(V) is compact because it is finite
intersection of compact open subgroups of G. Thus, G is TDLC since it
admits a neighbourhood basis at 1G consisting of compact open subgroups.

Remark 3.3.3. For connected locally finite graphs, Theorem 3.3.2 shows that
Aut(Γ) is a TDLC-group but does not say anything on the “non-discreteness” of
Aut(Γ). In the theory of TDLC-groups, it is notoriously a difficult problem to
determine if a given TDLC-group is non-discrete.

• (Neretin group Nd of spheromorphism of a d-regular tree) Firstly, we need a bit
of terminology on trees. A tree is a connected graph without nontrivial cycles,
where for nontrivial cycle we mean a path (v0, . . . , vn) such that n ≥ 1 and
v0 = vn. A vertex v ∈ V T of degree 1 (i.e., has a unique adjacent vertex) is called
a leaf. For d ∈ N, an infinite d-regular tree is an infinite tree whose vertices
have degree d+ 1. A finite d-regular tree is a finite tree, whose every vertex is
either a leaf, or has degree d+ 1, i.e., it is an internal vertex (see Figure 1).

15



Figure 1: Finite 2-regular tree Figure 2: Finite rooted 2-regular tree

A rooted tree is a tree with a distinguished vertex o ∈ T , called its root. For
rooted trees, the definition of d-regularity is slightly modified: the root has degree
d instead of d+ 1 (see Figure 2).

An important property of a tree T is given by the fact that there exists a unique
path connecting two vertices v and u. A ray in T is defined to be an infinite path,
i.e., a sequence (v0, v1, . . . ) of distinct vertices of T such that the consecutive ones
are adjacent. Two rays are said to be asymptotic if, after removing some finite
initial subsequences, they become equal. Namely, two rays are asymptotic if they
have common tails. Equivalence classes of asymptotic rays in T are called the
ends of T . All ends of T form the set ∂T which is called the boundary of T .

Figure 1: Asymptotic rays and the boundary

The group of spheromorphisms of a d-regular tree has been introduced by Neretin
[23] by analogy with the diffeomorphism group of a circle. Roughly speaking, a
spheromorphism of ∂T is a transformation induced in the boundary ∂T by a
piecewise tree automorphism. Indeed, spheromorphisms are often called almost
automorphisms of T .

Construction of Neretin’s group Nd: Here we follow the construction used
in [12, Chapter 8].
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Let T be a d-regular tree. For every finite d-regular subtree F ⊆ T , denote by
T \F the (no longer connected) graph obtained by removing from T all the edges
and internal vertices of F . The connected components of T \ F are rooted d-
regular trees whose roots are the leaves of F . In particular, T \ F is a rooted
d-regular forest such that ∂(T \ F )7 = ∂T .

T2 T2 \ F

Let F1, F2 ⊆ T be two finite d-regular subtrees. Each forest isomorphism φ : T \
F1 → T \ F2 induces a homeomorphism φ∗ of ∂T , called spheromorphism of T .
Clearly, different choices of subtrees F1, F2 can induce the same spheromorphism.
Therefore, φ is just a representative of φ∗. This is important because, for each pair
of spheromorphisms φ∗ and ψ∗ we may find representatives which are compos-
able: we can always enlarge the finite trees that represent the speromorphisms
in order to make the isomorphisms of the forests composable. This procedure
shows that there exists also the spheromorphism ψ∗ ◦φ∗. Hence, the set Nd of all
spheromorphisms of a d-regular tree is a group, which is called Neretin’s group.

Fact 3.3.4. The set of all spheromorphisms is a subgroup of the homeomorphism
group of the boundary ∂T . Moreover, every automorphism φ of T induces an
isomorphism T \ F → T \ φ(F ) of forests which is independent on the finite
d-regular subtree F . Thus, Aut(T ) can be regarded as a subgroup of Nd.
Remark 3.3.5. Let φ∗ be a spheromorphism of Td and suppose that φ∗ admits
a representative φ : Td \ F → Td \ F that leaves the trees of Td \ F in place.
Then φ can be extended to an automorphism of the tree Td which belongs to
the pointwise stabiliser of the finite tree F . As a consequence, φ∗ belongs to the
image of Aut(Td) in Nd.
In order to topologize the group Nd, the first attempt is to endow Homeo(∂T )
with the compact-open topology and then give Nd the subspace topology. Unfor-
tunately, the resulting topological group is not locally compact: Nd is not closed
in Homeo(∂T ) with respect to the compact-open topology (see Proposition 2.3.2).

Instead of restricting a topology from a larger topological group, we could try to
“copy and paste around” a topology of subgroup which is a topological group.

Lemma 3.3.6 ([12, Lemma 8.4, pg. 137]). Suppose that an abstract group G
contains a topological group H as a subgroup. If, for all open subsets U ⊆ H and

7Since a forest is a disjoint union of trees the notion of bouandary can be easily extended to the context
of forests
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g, g′ ∈ G, the intersection gUg′ ∩H is open in H, then G admits a unique group
topology such that the inclusion H → G is continuous and open.

Theorem 3.3.7. Neretin group Nd admits a unique group topology such that the
natural embedding Aut(Td)→ Nd is continuous and open. With this topology, Nd
is a TDLC-group.

Proof. By the lemma above, one needs to show that for every open U ⊆ Aut(Td)
and all φ∗, ψ∗ ∈ Nd, the subset Aut(Td) ∩ φ∗Uψ∗ is open in Aut(Td). A sub-
basis of the compact-open topology on Aut(Td) is given by vertex stabilisers and
therefore one has to show the claim only for the sets in the sub-basis.

To this end, let v be a vertex of Γ. Let S be a sufficiently large sphere centred in v
such that the spheromorphisms φ∗ and ψ∗ admit representatives φ : Td\F1 → Td\S
and ψ : Td \ S → Td \ F2. Denote by G(S) the pointwise stabilizer of S. Since
G(S) is an open subgroup of Aut(Td) contained in G(v), there exist finitely many
elements g1, . . . , gn ∈ G(v) such that G(v) =

⊔n
i=1 giG(S). Therefore,

ψ∗G(v)φ∗ =

n⊔
i=1

ψ∗giG(S)φ∗ =

n⊔
i=1

ψ∗giφ∗(φ
−1
∗ G(S)φ∗).

By Remark 3.3.5, φ−1
∗ G(S)φ∗ coincides with the pointwise stabiliser of the finite

tree F1 and, therefore, it is contained in the image of Aut(Td) in Nd. It then
follows that ψ∗G(v)φ∗ ∩ Aut(Td) is open in Aut(Td) (it is union of translates of
the open subgroup G(F1)).

• (Topological semi-direct products) Let G and H be topological groups. Suppose
that G acts on H continuously, i.e., there is a group action of G on H such that
the map α : G ×H → H defined by the action is continuous. The topological
semi-direct product is the abstract semi-direct product H oG endowed with
the product topology.

Proposition 3.3.8. Let G and H be TDLC-groups such that G acts continuously
on H. The topological semi-direct product H oG is a TDLC-group.

• (Powers of topological groups) Let G be a locally compact group. For I infinite,
the power GI fails to be locally compact as soon as G is non-compact. To deal
with this issue, given a compact open subgroup U in G, one defines the semi-
restricted power

GI,U = {(gi)i∈I ∈ GI | gi ∈ U for all but finitely many i ∈ I}.

There is a unique group topology on GI,U that makes the embedding of U I a topo-
logical isomorphism onto an open subgroup. Moreover, such a group topology is
locally compact; see [16, Proposition 2.4]. TDLC-groups are full of compact open
subgroups, and therefore they are amenable to this construction; in particular,
semi-restricted powers of TDLC-groups are again TDLC-groups.

Remark 3.3.9. The semi-restricted power is a special case of the restricted prod-
uct, which is also available in the context of TDLC-groups. Notice that in liter-
ature the term “(semi)restricted” is often replaced by the term “local”.
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4 Finiteness properties for TDLC-groups

4.1 Compact generation and presentation

There are several finiteness conditions that a TDLC-group can satisfy. At this early
stage, we are interested in two finiteness conditions that naturally generalise the notions
of finite generation and finite presentation in the context of locally compact groups.

Definition 4.1.1. A locally compact group G is said to be

(CG) compactly generated if it has a compact generating set S.

(CP) compactly presented if it has a presentation 〈S | R〉 as an abstract group with
the generating set S compact in G and the relators in R of bounded length.

It is straightforward that being compactly presented implies being compactly gen-
erated. The converse is not true (see [17, Example 8.A.28]). The notion of compact
presentation was introduced in 1964 by Kneser but it has received little attention (com-
pared to compact generation) until recently. For example, in [15, § 5.8] it is provided
an equivalent definition of compact presentation based on van Dantzig’s theorem and
the notion of fundamental group of finite graphs.

Remark 4.1.1. The finiteness conditions above are both equivalent to a metric condition
as shown in [17].

Example 4.1.1. 1. Every profinite group is trivially compactly generated and com-
pactly presented.

2. Every compactly generated abelian TDLC-group is topologically isomorphic to
Zn×K, where n ∈ N and K is a compact abelian group; see [18, Theorem 12.5.5].
In particular, it is compactly presented.

3. The field of p-adic numbers Qp is not a compactly generated because it is the
ascending union of nested compact open subgroups, i.e., Qp =

⋃
n∈Z p

nZp.

4. The automorphism group of a d-regular tree is compactly generated; see Corol-
lary 4.2.2.

5. The special linear group SL2(Qp) is compactly generated. Indeed, by Ihara’s
Theorem, we can decompose SL2Qp into the amalgamated free product

SL2Qp
∼= SL2Zp ∗I SL2Zp,

where I is a compact open subgroup.

6. Neretin’s groups Nd are compactly presented (see [10, 21]).

Fact 4.1.2. Every locally compact group is directed union of compactly generated open
subgroups.

Proof. It suffices to notice that, for any g ∈ G and any compact open neighbourhood
Vg of g, the subgroup

⋃
n>0(Vg ∪ V −1

g )n is open in G and compactly generated.
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4.2 The Cayley-Abels graphs

Recall that a group G acts on a graph Γ if the set of vertices V Γ is a G-set and,
for every g ∈ G, {gv, gw} ∈ EΓ if and only if {v, w} ∈ EΓ. The group G acts
vertex-transitively on Γ if V Γ is a transitive G-set. Given a vertex v ∈ V Γ, the set
G(v) = {g ∈ G | gv = v} is the vertex stabiliser of v in G.

Definition 4.2.1. For a TDLC-group G, a locally finite connected graph Γ on which G
acts vertex-transitively with compact open vertex stabilizers is called a Cayley-Abels
graph of G.

Exercise 4.2.1. Let Γ be a Cayley-Abels graph of G. Let V Γ be endowed with the
discrete topology. Prove that the map G× V Γ→ V Γ is continuous; that is, a TDLC-
group G always acts continuously on its Cayley-Abels graphs. Moreover, prove that,
as far as G is non-discrete, the action of G on Γ is never free8.

Proposition 4.2.1. Let G be a TDLC-group. If G has a Cayley-Abels graph, then G
is compactly generated.

Proof. Let Γ be a Cayley-Abels graph of G and v ∈ V Γ. Since Γ is locally finite, we
can list all neighbours of v by v1, . . . , vn. Since G acts on Γ vertex-transitively, there
are g1, . . . , gn ∈ G such that vi = giv for all i = 1, . . . , n. We claim that, for every
g ∈ G, there is h ∈ 〈g1, . . . , gn〉 such that gv = hv. This implies that h−1g ∈ G(v),
which is compact and open by hypothesis. In other words, G = 〈G(v), g1, . . . , gn〉 and
this concludes the proof.

Let us prove the claim: for every g ∈ G there is a path in Γ connecting v and
gv because Γ is connected. We proceed by induction on the length of the path. For
k = 0 there is nothing to prove. Suppose the hypothesis for k and prove it for k + 1.
For Γ is vertex-transitive, a path of length k + 1 connecting v and gv is given by a
(k + 1)-tuple (v, γ1v, . . . , γkv, gv) with γ1, . . . , γk ∈ G. By the inductive hypothesis,
there is h ∈ 〈g1, . . . , gn〉 such that γkv = hv. Therefore, the group element h−1 maps
the edge {γkv, gv} to the edge {v, h−1gv}. In other words, h−1gv is adjacent to v, i.e.,
h−1gv = gjv for some j ∈ {1, . . . , n} and the claim holds.

Corollary 4.2.2. For every d-regular tree Td, Aut(Td) is compactly generated.

Proof. Let Td be a regular tree. Then G = Aut(Td) with the compact-open topology
is a TDLC-group for which Td is a Cayley-Abels graph.

Now, we do the converse: we start with a compactly generated TDLC-group G and
we construct a (family of) Cayley-Abels graph(s) of G. In particular, we show that,
for every compact open subgroup U of G, there is a Cayley-Abels graph admitting U
as stabiliser of some vertex.

Let U be a compact open subgroup of G. For every symmetric subset S = S−1 ⊆
G \ U define the graph ΓGU,S such that

V ΓGU,S = {gU | g ∈ G}, and EΓGU,S = {{gU, gsU} | g ∈ G, s ∈ S}.

Clearly, G acts transitively on the set of vertices of ΓGU,S .

8A groups acts freely on a set if point stabilisers are trivial.
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Proposition 4.2.3. With the above notation, the following hold:

1. if S is a finite set, then ΓGU,S is locally finite;

2. Γ is connected if, and only if, G = 〈S,O〉.

In particular, if G is compactly generated, then there exists a Cayley-Abels graph of G
and there is a vertex v such that G(v) is compact and open.

Proof. 1. Since the action is vertex-transitive, it suffices to prove that the vertex U has
finitely many neighbours if S is finite. Since U = xU , for every x ∈ U , one has that
the set {xU, xsU} is an edge for every s ∈ S, and therefore the set of all neighbours
of U coincides with {xsU | x ∈ U, s ∈ S}. In order to determine the cardinality of
such a set, one must count the number of left cosets of U that are necessary to cover
each double coset UsU . But this number is finite because U is open and the double
coset UsU is compact (since U is compact). Therefore, if S is finite, the graph ΓGU,S is
locally finite.

2. Suppose the graph ΓGU,S is connected. For every g ∈ G, there is a path p =
(v0, . . . , vn) connecting the vertex U to the vertex gU . In particular, the vertices of
the path can be written as v0 = U, v1 = u1s1U, . . . , vn = u1s1 · · ·unsnU , where each
ui ∈ U and each sj ∈ S. Since u1s1 · · ·unsnU = vn = gU , it follows that g belongs to
the subgroup generated by U ∪ S.

Conversely, suppose that G = 〈U, S〉. Let gU and hU be any two vertices of the
graph. The group element g−1h can be then written as a word u1s1 · · ·unsnun+1 such
that each ui ∈ U and each sj ∈ S. Thus, the sequence of vertices

(gU, gu1s1U, gu1s1u2s2U, · · · , gu1s1 · · ·unsnun+1U = hU)

is a path in Γ connecting gU and hU .

Remark 4.2.4. The first (technical) construction of the Cayley-Abels graph of a TDLC-
group G is due to Abels [1]. A less technical approach to Cayley-Abels graphs was
provided in [20], where the Cayley-Abels graphs were at the time called rough Cayley
graphs. Today the widely accepted nomenclature is “Cayley-Abels graph”.

Proposition 4.2.5. Let G be a TDLC-group and Γ a Cayley-Abels graph of G. If
Aut(Γ) is given the compact-open topology, then the group homomorphism ψ : G →
Aut(Γ) defined by the action of G on Γ is continuous, the kernel of ψ is compact and
the image of ψ is closed.

Proof. A basis of the compact-open topology of Aut(Γ) is given by the family S of
pointwise stabilisers in Aut(Γ) of finite sets of vertices. The pre-image of each of these
sets is the intersection of finitely many open subgroups of G, that are the stabilisers
in G of the single vertices in the finite set. Since the stabiliser G(v) is open for every
v ∈ V Γ, the pre-image of each set in S is open, i.e., ψ is continuous.

The kernel of ψ is then closed in G (because it is pre-image of the closed set {1}).
Since ker(ψ) ⊆ G(v), ∀v ∈ V Γ, we deduce that it is compact because G(v) is so.

Finally, in order to prove that the image ψ(G) is closed, it suffices to prove that
ψ(G) ∩ H is closed for every H ∈ S. Since every element H of S is the intersection
of finitely many vertex stabilisers in Aut(Γ), we only need to prove that ψ(G) ∩ H
is closed whenever H is the stabiliser in Aut(Γ) of a single vertex v. In such a case,
ψ(G) ∩H coincides with ψ(G(v)) which is compact because ψ is continuous and G(v)

is compact. In particular, ψ(G) ∩H is closed.
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The representation ψ : G → Aut(Γ) is called the Cayley-Abels representation
of G. Hence, there is an equivalence between compactly generated TDLC-groups and
closed subgroups of automorphism groups of connected locally finite graphs.

Remark 4.2.6. Actually, one could say even more on the image ψ(G) of the Cayley-
Abels representation: ψ(G) is a cocompact subgroup of Aut(Γ), see [35, Lemma 3.12].

Exercise 4.2.2. Suppose G is a compactly generated TDLC-group and Γ is a Cayley-
Abels graph of G. Show that a closed subgroup K ≤ G is compact if and only if, for
all v ∈ V Γ, the set Kv := {kv | k ∈ K} is finite.

The geometric structure of compactly generated TDLC-groups:

Definition 4.2.2 (Gromov). Two metric spaces (X, dX) and (Y, dY ) are said to be
quasi-isometric if there is a map φ : X → Y and constants a ≥ 1 and b ≥ 0 such
that, for all x1, x2 ∈ X, one has

1

a
dX(x1, x2)− b

a
≤ dY (φ(x1), φ(x2)) ≤ adX(x1, x2) + ab,

and, for all y ∈ Y ,
dY (y, φ(X)) ≤ b.

Such a map φ is called a quasi-isometry. Moreover, being quasi-isometric is an
equivalence relation on the class of metric spaces.

Every connected graph Γ can be regarded as a metric space: two vertices v and w
are points at distance 1 if, and only if, there is an edge connecting v and w. In other
words, we endow the set V Γ with the path-length metric dΓ : V Γ × V Γ → N defined
as follows:

dΓ(v, w) = min{length of p | p path connecting v and w}, v, w ∈ V Γ.

Theorem 4.2.7 ([1],[20, Theorem 2]). Let G be a compactly generated totally discon-
nected locally compact group. Any two Cayley-Abels graphs of G are quasi-isometric.

This quasi-isometric invariance of Cayley-Abels graphs allows us to define geometric
invariants of a compactly generated TDLC-group G by considering quasi-isometric
invariants of a Cayley-Abels graph associated to G. For example, one can give the
following definitions (that are long-known for discrete groups):

(Hyp) A compactly generated TDLC-group G is said to be hyperbolic if some (and
hence any) Cayley-Abels graph of G is hyperbolic.

(Ends) The number of ends of a compactly generated TDLC-group is defined to be
the number of ends of some (and hence any) Cayley-Abels graph of G.

The class of hyperbolic TDLC-groups is a rich source of compactly presented TDLC-
groups; see [17]. Indeed, geometric invariants often reflect structural properties of
the group (see [1, Struktursatz 5.7 and Korollar 5.8], [20, Theorem 1.3] and [13] for
Stallings’ decomposition theorem in the context of TDLC-groups).
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4.3 Finiteness conditions in higher dimension

For discrete groups, finite generation is the first of two sequences of increasingly
stronger properties: the homological finiteness conditions, the types (FPn)n∈N, and
the homotopical finiteness conditions, the types (Fn)∈N. We recall here the definitions
but the reader is referred to [9, Chapther VIII] for details:

(FPn over R) A discrete group G is of type FPn over R (0 ≤ n <∞) if there is a projective
resolution {Pi} of the trivial module R over R[G] such that each projective R[G]-
module Pi is finitely generated for i ≤ n. (If R = Z, the reference to the ring in
the notation usually drops)

(Fn) A discrete group G is of type Fn (0 ≤ n <∞) if there exists a contractible G-
CW-complex with trivial cell stabilisers and such that G acts on the n-skeleton
with finitely many orbits.

The conditions above are known to satisfy the following:

- A discrete group G is of type F1 over R if, and only if, it is finitely generated if,
and only if, it is of type FP1 over R.

- A discrete group G is of type F2 if and only if it is finitely presented but being
of type FP2 over R is strictly weaker than finite presentation; see [6].

- For each n ≥ 1, a discrete group of type Fn is of type FPn over R but the
converse is not true (the converse becomes true if the group is suppose to be
finitely presented).

- Being of type FPn over R (resp. of type Fn) is a geometric property of the group.

A first attempt at generalising this to the realm of locally compact groups is due
to Abels and Tiemeyer [3]. They introduced compactness properties for locally
compact groups - we avoid here the too much technical definitions - that are two
sequences (CPn)n≥0 and (Cn)n≥0 of increasingly stronger properties satisfying:

- for all n ≥ 1, a discrete group is of type (CPn) (resp. Cn) if and only if it is of
type FPn (resp. Fn);

- a locally compact group is of type C1 if, and only if, it is compactly generated
if, and only if, it is of type CP1;

- a locally compact group is of type C2 if and only if it is compactly presented but
being of type CP2 is strictly weaker than compact presentation;

- for each n ≥ 1, a locally compact group of type Cn is also of type CPn but the
converse is not true;

- being of type CPn (resp. Cn) is invariant “up to compactness”: the compactness
properties remain unchanged by passing to a cocompact9 subgroup or by taking
the quotient by a compact normal subgroup.

9A closed subgroup H is cocompact if the quotient G/H, equivalently H\G, equipped with the quotient
topology is compact.
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For the (more amenable) class of TDLC-groups, a different approach to finiteness
conditions was recently introduced in [13].

(FPn ) A TDLC-group G is of type FPn (0 ≤ n <∞) if there is a (projective) resolu-
tion {Pi} of the trivial module Q over Q[G] such that each Pi is a permutation
Q[G]-module10 with compact open stabilisers and finitely many orbits.

(Fn) A TDLC-group G is of type Fn (0 ≤ n < ∞) if there exists a contractible
G-CW-complex X with compact open cell stabilisers such that G acts on the
n-skeleton of X with finitely many orbits.

These finiteness conditions for TDLC-groups satisfy the following properties:

- for all n ≥ 1, a discrete group is of type FPn in the category of TDLC-groups
(resp. Fn) if and only if it is of type FPn over Q (resp. Fn) in the classical
notion;

- a TDLC-group is of type F1 if, and only if, it is compactly generated if, and only
if, it is of type FP1 over Q;

- a TDLC-group is of type F2 if and only if it is compactly presented but being of
type FP2 is strictly weaker than compact presentation;

- for each n ≥ 1, a TDLC-group of type Fn is also of type FPn but the converse is
not true (but the converse becomes true if the group is supposed to be compactly
presented);

- being of type FPn (resp. Fn) is a geometric property (see [14, Theorem 5.5]).

Remark 4.3.1. All the finiteness conditions above can be extended to the infinite degree:
for example, a TDLC-group is said to be of type F∞ if it is of type Fn for all n. Sauer
and Thumann [ST15] showed that Neretin’s groups are of type F∞.

Remark 4.3.2. In [14], the authors showed that it is also possible to introduce two more
sequences (types KPn)n≥0 and (types Kn)n≥0 of increasingly stronger compactness
properties.

Open Problem. Despite the abundance of finiteness properties that are available in
the TDLC context, the theory of finiteness conditions for TDLC-groups is still much
less developed than the one for discrete groups. Moreover, very little is known about
the relation (if there exists one) among the properties of different sequences CPn,FPn
and KPn (resp, Cn,Fn and Kn).

Open Problem. It would be relevant to find an example of a TDLC-group of type FP2

which is not compactly presented and it is “essentially” a TDLC-group (for example,
it is not quasi-isometric to a discrete group). Unfortunately, the strategy developed
in [6] does not seem to have a TDLC-analogue.

10A permutation Q[G]-module is a module Q[Ω] freely Q-generated by a G-set Ω.
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5 Willis’ theory of TDLC-groups

5.1 Scale function and tidy subgroups

Connected groups can be approximated by Lie groups and then Lie group techniques
may be used to analyse the structure of connected groups and their automorphims. A
canonical form for automorphisms of totally disconnected locally compact groups has
been developed in [36, 37].

Let α ∈ Aut(G) and U be a compact open subgroup of G. Then

[α(U) : U ∩ α(U)] <∞

because U ∩α(U) is open whereas U is compact. Define the scale of α to be the value

s(α) = inf{[α(U) : U ∩ α(U)] | U compact open subgroup of G}. (5.1)

A subgroup U is tidy for α if the infimum is attained at U . Tidy subgroups for α
always exists because actually s(α) is the minimum of a set of positive integers. Every
tidy subgroup U can be expressed as the product of a subgroup where α expands and
a subgroup where α shrinks:

if U± :=
⋂
k>0 α

±k(U), then U = U+U−.

It follows from the definitions that U+ and U− are closed subgroups, and that α(U+) ≥
U+ and, similarly, α(U−) ≤ U−. Moreover, it can be shown that s(α) represents the
factor by which α expands U+, i.e., one has

s(α) = [α(U+) : U+].

A striking result in the theory of the scale is the existence of an algorithm, known as
tidying procedure, for producing a tidy subgroup starting from an arbitrary compact
open subgroup.

Definition 5.1.1. The scale function of a TDLC-group G is defined to be the map

s : G→ Z+, x 7→ s(αx), ∀x ∈ G,

where αx denotes the inner automorphism y 7→ xyx−1.

The scale function s is known to satisfy the following properties:

(s1) s is continuous if Z+ carries the discrete topology;

(s2) s(x) = 1 = s(x−1) if and only if there is a compact open subgroup U such that
xUx−1 = U ;

(s3) s(xn) = s(x)n, for every x ∈ G and n ≥ 0;

(s4) ∆(x) = s(x)/s(x−1), where ∆: G→ Q+ denotes the modular function on G;

(s5) s(α(x)) = s(x) for every x ∈ G and α ∈ Aut(G).
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The scale function encodes structural information of the group G. For a summary
on the scale function (which in particular highlights the fact that tidy subgroups for
automorphisms of TDLC-groups are analogues of the Jordan canonical form of linear
transformations) the reader is referred to [38] and references there.

Remark 5.1.1. In last years, Willis’ theory has been investigated from different points of
views bringing new approaches to the scale function of a TDLC-group. For example, in
[22], the author offers an interpretation of the fundamental ingredients of Willis’ theory
(that are tidy subgroups and scale function) in the new setting of permutation group
theory. Another example is given by the work initiated in [5], where Willis’ topological
dynamics of automorphisms were reformulated in the long-known theory of topological
entropy.

5.2 Comments on simple TDLC-groups

Simple groups play an important role in group theory as the “indecomposable factors”.
Therefore, it is significant that several types of simple groups have been completely
classified; for instance, the simple finite groups and the simple connected Lie groups.
Long-known classes of simple TDLC-groups are the class of simple Lie groups over
local fields [8] and the class of automorphism groups of trees [31].

In the realm of simple TDLC-groups, it is necessary a distinction between topo-
logical simplicity (i.e., every closed normal subgroup is trivial) and abstract simplicity
(i.e., the underlying abstract group is simple). Examples show that a topologically
simple TDLC-group can fail to be abstractly simple, see [39], but no example is known
of topologically simple compactly generated TDLC-group that fail to be abstractly
simple. Among compactly generated TDLC-groups, Simon M. Smith [28] has shown
that there are 2ℵ0 non-isomorphic compactly generated abstractly simple TDLC-groups
(only countably many such groups were known before). Nowadays, a classification of
compactly generated topologically simple TDLC-groups is probably the best which can
be hoped for.

Scale function: The theory of the scale produces invariants that could be important
tools in the classification. For example,

- The set of values of the scale function: if G is compactly generated, the range
of the scale function has only finitely many prime divisors, and so this set could
distinguish between compactly generated simple TDLC-groups.

Question. Let G be a compactly generated topologically simple TDLC-group.
Is the scale s : G→ Z+ non-trivial?

- The flat-rank: a notion of rank for totally disconnected locally compact groups
which is defined thanks to a natural distance on the space of compact open
subgroups.

Local-to-Global principle: It relates the global properties of a compactly gener-
ated simple TDLC-group with the structural properties of its compact open subgroups.
This approach was initiated
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- in [39], where the author shows that, for compactly generated TDLC-groups,
the simplicity imposes restrictions on the local structure of the group: if G is
compactly generated and topologically simple, then no compact open subgroup
of G is solvable;

- in [4], where the authors investigate which profinite groups embed as a compact
open subgroup in a compactly generated topologically simple TDLC-group.

Decomposition theory: it includes methods for “breaking” a given TDLC-group
into smaller, and often simple, pieces; see [11]. This approach has been successful
for several classes of groups; for example, finite groups, profinite groups and algebraic
groups. Therefore, one would hope to obtain analogous results for TDLC-groups.

General decomposition results [26, 27] on compactly generated second countable
TDLC-groups have been obtained by using the theory of elementary groups: TDLC-
groups that are exclusively built out of discrete and compact pieces [34].

Geometrisation: The existence of Cayley-Abels graphs allow the study of com-
pactly generated TDLC-groups as geometric objects. Moreover, one can consider other
types of geometric objects, e.g., buildings, that essentially determine the group that
they are associated to. For example, semi-simple Lie groups over a local field act on
affine buildings, and also on related spherical buildings. For groups of rank 1, e.g.,
SL2(Qp), the affine building is a tree and the spherical building is its boundary. Also
Kac-Moody groups act on buildings and on the boundary of the building. In particular,
closed subgroups of automorphism groups of buildings are a rich source of examples of
TDLC-groups.

Since profinite groups are trivial as geometric objects, the geometric behaviour of
compactly generated TDLC-groups is related to the geometric behaviour of discrete
groups. There is an ongoing program of studying geometric properties of TDLC-groups
by analogy with discrete groups. The aim is to understand to what extent long-known
results on discrete groups find an analogue in the framework of TDLC-groups; see for
example [20, 13, 14, 15, 3, 17].
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