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Formalization, For and Against

Vannevar Bush in As We May Think, 1947: Logic can become
enormously difficult, and it would undoubtedly be well to produce
more assurance in its use. . . . We may some day click off
arguments on a machine with the same assurance that we now
enter sales on a cash register.
Alan Robinson: We are still, alas, a very long way from knowing
how informal proofs work. . . .
If there comes a time when Woody’s dream is fulfilled, one of the
ways we shall know it will be not only that our machines will
explain elegant informal proofs to us, but also that we will explain
elegant informal proofs to our machines, and be confident that
they can understand and appreciate what we are telling them.
de Millo, Lipton, and Perlis: If the mathematical process were
really one of strict, logical progression, we would still be counting
on our fingers.
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Proofs and Things: Overview

The goal of the Big Proof program is to define the future
direction of proof technology so that it is used by

Mathematicians to discover and verify new results
Scientists and engineers to apply mathematical modelling
rigorously, and
Educators to effectively teach proofs and problems solving
techniques

Mathematics is the study of abstractions such as collections,
maps, graphs, algebras, sequences, etc.

It has been “unreasonably effective” as a language and a
foundation for a growing number of other disciplines.

In addition to education and pure mathematics pursuits, the
growing need for scale and rigor in these other fields can be a
fruitful source of challenges for Big Proof technology.

The talk demonstrates a few simple PVS formalizations to
illustrate the role of automation in creating coherent
formalizations of mathematical content.
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Finding Abstractions

Given a bag containing some black balls and white balls, and a
stash of black/white balls. Repeatedly

1 Remove a random pair of balls from the bag

2 If they are the same color, insert a white ball into the bag

3 If they are of different colors, insert a black ball into the bag

What is the color of the last ball?
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Proofs and Pigeons

Can you allocate n cubbies to each of n + 1 pigeons so that
each pigeon gets its own cubby?.

Let m..n represent the subrange of integers from m to, but
not including, n.

The Pigeonole principle can be restated as asserting that
there is no injection from 0..n + 1 to 0..n.

The Infinite Pigeonhole principle states that any finite
partition of an infinite set must contain an infinite partition.

Theorems of this sort are used routinely in computing.

Natarajan Shankar Proofs and Things 6/32



Gilbreath’s Card Trick

Start with a deck consisting of a stack of quartets, where the
cards in each quartet appear in suit order ♠,♥,♣,♦:

〈5♠〉, 〈3♥〉, 〈Q♣〉, 〈8♦〉,
〈K♠〉, 〈2♥〉, 〈7♣〉, 〈4♦〉,
〈8♠〉, 〈J♥〉, 〈9♣〉, 〈A♦〉

Cut the deck, say as 〈5♠〉, 〈3♥〉, 〈Q♣〉, 〈8♦〉, 〈K♠〉 and
〈2♥〉, 〈7♣〉, 〈4♦〉, 〈8♠〉, 〈J♥〉, 〈9♣〉, 〈A♦〉.
Reverse one of the decks as 〈K♠〉, 〈8♦〉, 〈Q♣〉, 〈3♥〉, 〈5♠〉.
Now shuffling, for example, as

〈2♥〉, 〈7♣〉, 〈K♠〉, 〈8♦〉,
〈4♦〉, 〈8♠〉, 〈Q♣〉, 〈J♥〉,
〈3♥〉, 〈9♣〉, 〈5♠〉, 〈A♦〉

Each quartet contains a card from each suit. Why?2

2Tony Hoare and Natarajan Shankar, Unraveling a Card Trick, 2010
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Computing Majority

Applications from Blockchain to elections need to compute
majorities.

An election has five candidates: Alice, Bob, Cathy, Don, and
Ella.

The votes have come in as:
E, D, C, B, C, C, A, C, E, C, A, C, C.

You are told that some candidate has won the majority (over
half) of the votes.

You successively remove pairs of dissimilar votes, until there
are no more such pairs.

Then the remaining votes, if any, are all for the same
candidate, and that candidate is the winner.3

3R. S. Boyer and J. S. Moore, MJRTY–A Fast Majority Vote Algorithm,
1994.
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Brief PVS Background

PVS combines an expressive language close to mathematical
vernacular with automation (SMT, rewriting, simplification)
directed at efficient error detection/diagnosis in definitions,
theorems, and proofs.

PVS types are built from

Booleans, numbers, and type constants and parameters,
Using (dependent) tuple, record, and function types, algebraic
datatypes/co-datatypes, and predicate subtypes.

Expressions are built from

Variables and constants,
Using application, lambda abstraction, tuple/record
construction/projection, (structural subtype polymorphic)
updates, conditional expressions (IF and CASES, and
let-expressions.
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Higher-order Logic

Types:

bool and real are types
[T1→T2] and [T1, . . . ,Tn] are types if the Ti are.

Products (in n-ary form) are useful so that functions don’t
have to be Curried.

Terms:

Constants: TRUE, FALSE, 0, 1.
Variables
Application: f a
Abstraction: λ(x : T ) : t
Pairing: (t1, t2)
Projections: PROJi t

Polymorphic equality b = c and conditional IF[T ](a, b, c),
where a is of type bool and b and c are of type
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(Dependent) Subtyping

PVS extends higher-order logic with subtypes (e.g., primes,
order/continuity-preserving operators) and dependent types
(e.g., finite sequences)

Proof obligations are generated to check that an expression
has the expected type.
Type system looks and feels like a mathematical vernacular,

and catches lots of errors and missing arguments, e.g.,

(
n
k

)
is a positive integer.
Well-typed mathematics is coherent, and well-typed programs
don’t go wrong.

n: VAR nat

factorial(n): RECURSIVE posint =

(IF n = 0 THEN 1 ELSE n * factorial(n-1) ENDIF)

MEASURE n

n_choose_k(n, (k : upto(n))): posnat =

factorial(n) / (factorial(k) * factorial(n - k))

Natarajan Shankar Proofs and Things 11/32



Proofs and Fixpoints

Tarski_Knaster [T : TYPE, < : PRED[[T, T]], u : [set[T] -> T] ]

: THEORY

BEGIN

ASSUMING

x, y, z: VAR T

X, Y, Z : VAR set[T] %synonym for [T -> bool]

f, g : VAR [T -> T]

reflexivity: ASSUMPTION x < x

antisymmetry: ASSUMPTION x < y AND y < x IMPLIES x = y

transitivity : ASSUMPTION x < y AND y < z IMPLIES x < z

glb_is_lb: ASSUMPTION X(x) IMPLIES u(X) < x

glb_is_glb: ASSUMPTION

(FORALL x: X(x) IMPLIES y < x)

IMPLIES y < u(X)
ENDASSUMING
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Proofs and Fixpoints

.

.

.

mono?(f): bool = (FORALL x, y: x < y IMPLIES f(x) < f(y))

lfp(f) : T = u(x | f(x) < x)

fixpoint?(f)(x): bool =

(f(x) = x)

TK1: THEOREM

mono?(f) IMPLIES

lfp(f) = f(lfp(f))

END Tarski_Knaster

Monotone operators on complete lattices have fixed points.

Needs a nine-step proof: PVS proof steps follow those of a
cogent textbook proof at a rate of .3 to 3 interactions per
informal step.
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Proofs and Automata

CS students are first exposed to proofs in automata theory: a
deterministic finite automaton over an alphabet Σ, a state type, a
start state, a transition function δ, and a set of final states.

DFA [Sigma : TYPE,

state : TYPE,

start : state,

delta : [Sigma -> [state -> state]],

final? : set[state] ]

: THEORY

BEGIN

DELTA((string : list[Sigma]))((S : state)):

RECURSIVE state =

(CASES string OF

null : S,

cons(a, x): delta(a)(DELTA(x)(S))

ENDCASES)

MEASURE length(string)

DAccept?((string : list[Sigma])) : bool =

final?(DELTA(string)(start))

END DFA
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Nondeterministic Automata

Nondeterministic automata are defined in terms of a next-states
function.

NFA [Sigma : TYPE,

state : TYPE,

start : state,

ndelta : [Sigma -> [state -> set[state]]],

final? : set[state] ]

: THEORY

BEGIN

NDELTA((string : list[Sigma]))((s : state)) :

RECURSIVE set[state] =

(CASES string OF

null : singleton(s),

cons(a, x): lub(image(ndelta(a), NDELTA(x)(s)))

ENDCASES)

MEASURE length(string)

Accept?((string : list[Sigma])) : bool =

(EXISTS (r : (final?)) :

member(r, NDELTA(string)(start)))

END NFA
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DFA/NFA Equivalence

The subset construction demonstrates that any NFA can be
represented by a DFA, by interpreting the DFA types/operations
using the NFA ones.

equiv[Sigma : TYPE,

state : TYPE,

start : state,

ndelta : [Sigma -> [state -> set[state]]],

final? : set[state] ]: THEORY

BEGIN

IMPORTING NFA[Sigma, state, start, ndelta, final?]

dstate: TYPE = set[state]

delta((symbol : Sigma))((S : dstate)): dstate =

lub(image(ndelta(symbol), S))

dfinal?((S : dstate)) : bool =

(EXISTS (r : (final?)) : member(r, S))

dstart : dstate = singleton(start)

.

.

.
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DFA/NFA Equivalence

Proofs are driven by commands like grind and
induct-and-simplify which employ SAT/SMT solvers for
simplification and failure diagnostics rather than as hammers.

IMPORTING DFA[Sigma, dstate, dstart, delta, dfinal?]

main: LEMMA

(FORALL (x : list[Sigma]), (s : state):

NDELTA(x)(s) = DELTA(x)(singleton(s)))

equiv: THEOREM

(FORALL (string : list[Sigma]):

Accept?(string) IFF DAccept?(string))

END equiv

Natarajan Shankar Proofs and Things 17/32



Proofs and Programs

Having seen automata, we can also represent programming
calculi which are also ubiquitous in the theory of computing.

Proof-checking Metamathematics (PM, 1986) formalizes both
pure Lisp and lambda calculus (the Church–Rosser theorem).

Many programming language theory proofs, e.g., POPLMark,
and compiler correctness, e.g., Piton, micro-Gypsy, CompCert,
CakeML, are examples of formalized metatheory over program
calculi.
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Proofs and Programs: Hoare Logic

Hoare Logic metatheory was first formalized by Mike Gordon
in HOL, and also by Gerwin Klein and Tobias Nipkow in
Isabelle for their book Concrete Semantics.

A Hoare triple has the form {P}S{Q}, where S is a program
statement in terms of the program variables drawn from the
set Y and P and Q are assertions containing logical variables
from X and program variables.

A program statement is one of
1 A skip statement skip.
2 A simultaneous assignment y := e where y is a sequence of n

distinct program variables, e is a sequence of n Σ[Y ]-terms.
3 A conditional statement e ? S1 : S2, where C is a

Σ[Y ]-formula.
4 A loop while e do S .
5 A sequential composition S1; S2.
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Hoare Logic

Let P, Q, C be state predicates.
Skip {P}skip{P}
Assignment {P[e/y ]}y := e{P}

Conditional
{C ∧ P}S1{Q} {¬C ∧ P}S2{Q}

{P}C ? S1 : S2{Q}

Loop
{P ∧ C}S{P}

{P}while C do S{P ∧ ¬C}

Composition
{P}S1{R} {R}S2{Q}
{P}S1; S2{Q}

Consequence
P ⇒ P ′ {P ′}S{Q ′} Q ′ ⇒ Q

{P}S{Q}
Semantics: A trace σ of length n > 1 satisfies a triple {P}S{Q}
iff whenever P(σ0) and σ |= S , then Q(σn).
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Hoare Logic Semantics

Both assertions and statements contain operations from a
first-order signature Σ.

An assignment σ maps program variables in Y to values in
dom(M).

A program expression e has value M[[e]]σ.

The meaning of a statement M[[S ]] is given by a sequence σ
of states (of length at least 2).

Hoare logic is sound if every provable triple is valid.

The logic is complete if every if every valid triple has a proof.

Soundness, completeness, and verification condition for the
basic Hoare logic above is a simple student-level exercise in
PVS thanks to the use of dependent subtypes and automation.
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Proofs and “Proofs”

As with Hoare Logic, proofs themselves can be represented in
logic in order to do proofs about proofs.

The tautology theorem from PM (and Towards Mechanical
Metamathematics, JAR 1985) is an early example
demonstrating that every propositional tautology has a proof.

The incompleteness theorems are also about proofs:
1 Any sufficiently expressive formalism Z is either inconsistent

(proves A and ¬A) or incomplete (proves neither A nor ¬A, for
some A).

2 Con(Z ) encoded in Z is itself such an A.
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Proofs and “Proofs”

In 2016, a SAT solver was used to solve the Boolean
Pythagorean Triples problem: Is it possible to 2-color that the
positive integers such that there is no monochromatic
Pythagorean triple, i.e., 〈a, b, c〉 where a2 + b2 = c2?

Up to N = 7824, it is possible to ensure that all Pythagorean
triple are bichromatic, but not at N = 7825 — 200 terabyte
proof which has been formally checked.

The Schur number problem: What is the largest n such that
there is a 5-coloring of the first n natural numbers without a
monochromatic triple a + b = c? The answer is 160, and the
SAT proof is two petabytes.
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Proofs and Provers: Kernel of Truth (KoT)

Certificates

Proof generation

Hints

Proofs

Verified Verifiers

Offline

Trusted

Verifier

Verified

Untrusted

Frontline

Kernel

Verifier

Proof 

Verified

Checker

A simple kernel
checker for
FOL(ZFC) proof
certificates in PVS

Verify other
checkers relative to
kernel or other
verified checkers

Instrument
untrusted tools to
generate certificates
for verified checkers.

This works even if the verifier is untrusted since any circularity can
be broken.
The verification of the verifier can be certified by expanding the
proof to the kernel or to previously certified verifiers.
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Proofs and Planes: Air-Traffic Control

Extensive libraries, algorithms, meta-algorithms, policies, and
standards (RTCA DO-365) comprehensively verified in PVS
by NASA researchers and their collaborators.

Related verification efforts covers geofencing for urban air
space, floating point precision analysis, decision procedures for
nonlinear arithmetic constraints.
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Proofs and Inference Algorithms

SAT/SMT solvers and theorem provers apply local inference
steps to completion.

An Σ-inference structure 〈Ψ,`,Λ,M〉 consists of

Ψ, a set of logical states
`, the reduction relation between states
Λ, a map from states to Σ-formulas
M, which extracts models from canonical states

An inference system is an inference structure that is

Conservative: If ψ ` ψ′, then Λ(ψ) and Λ(ψ′) are
equisatisfiable.
Progressive: ` is well-founded.
Canonizing: If ψ 6` ψ′ for any ψ′, then either ψ is ⊥ (i.e.,
unsatisfiable) or ψ is in a canonical form so that M(ψ) is a
model for Λ(ψ).

It is strongly conservative if whenever ψ ` ψ′, then ψ and ψ′

are equisatisfiable and any model of ψ′ is also a model of ψ.
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What is an Inference Algorithm?

An inference algorithm is an inference system where the
reduction relation is presented as a collection of effective
inference rules that transform an inference state ψ to an
inference state ψ′ such that ψ ` ψ′. Example: Ordered
resolution is an algorithm for CNF satisfiability.

Input K is a set of ordered clauses where the literals appear in
decreasing order w.r.t. some order e.g., q ≺ ¬q ≺ p ≺ ¬p.

Tautologies, i.e., clauses containing both p and ¬p, are
deleted from initial input.

Res
K , p ∨ Γ1,¬p ∨ Γ2

K , p ∨ Γ1,¬p ∨ Γ2, Γ1 ∨ Γ2

Γ1 ∨ Γ2 6∈ K
Γ1 ∨ Γ2 is not tautological

Contrad
K , p,¬p

⊥
A set of clauses is canonical if it is closed under applications
of Res and the Contrad rule is inapplicable.
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Resolution: Example

(K0 =) ¬p ∨ ¬q ∨ r , ¬p ∨ q, p ∨ r , ¬r

(K1 =) ¬q ∨ r , K0
Res

(K2 =) q ∨ r , K1
Res

(K3 =) r , K2
Res

⊥
Contrad

Drop the clause ¬r , and we reach an irreducible state from
which a truth assignment {r 7→ >, q 7→ ⊥, p 7→ ⊥} can be
constructed.
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Resolution as an Inference Algorithm

The resolution inference system is strongly conservative:
Γ1 ∨ Γ2 is satisfiable if p ∨ Γ1 and ¬p ∨ Γ2 are.

It is progressive: Bounded number of new clauses in the input
variables.

It is canonizing: Build a model M by assigning to atoms p1 to
pn within a series of partial assignments M0, . . . ,Mn:

M0 is the empty truth assignment.
Mi+1 = Mi [pi+1 7→ v ], where v = > iff there is some clause
pi+1 ∨ Γ in the irreducible state K such that Mi |= ¬Γ.

If Mi |= ¬Γ, then for any clause ¬pi ∨∆, Mi |= ∆ since
Γ ∨∆ ∈ K .

Invariant: Mi |= Γ for all clauses Γ in K in the atoms
p1, . . . , pi .

Unordered resolution is also conservative, progressive, and
canonizing, but it does not have the same set of canonical
states.
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Proofs and Computation: Dijkstra

All computation is inference.

Given a weighted directed graph G = (V ,W ), with
non-negative (or ∞) edge weights, find the smallest-weight
path from a given source vertex s to each vertex, i.e., a map
Ps on V : Ps(s) = 0, and for v 6= s,

Ps(v) =
l
{Ps(u) + W (u, v) | u ∈ V }.

Let

post(X )(v) =

{
0, if v = sd
{X (u) + W (u, v) | u ∈ dom(X )}, otherwise.

We therefore want to compute Ps such that Ps = post(Ps).
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Generalizing Inference Algorithms: Dijkstra

The logical state has two partial maps D and Q:
1 Each v ∈ V is either in dom(D) or dom(Q), but not both,
2 D(v) = post(D)(v) for v ∈ dom(D),
3 Q(v) = post(D)(v) for v ∈ dom(Q), and
4 D(u) ≤ Q(v) for u ∈ dom(D) and v ∈ dom(Q).

Initially, D = [s 7→ 0], and Q = [v 7→W (s, v) | v 6= s].

Each inference step has the form

〈D,Q〉
〈D ′,Q ′〉

, where

u = argminvQ(v)

D ′ = D[u 7→ Q(u)]

Q ′ = [v 7→ Q(v) u (Q(u) + W (u, v)) | v ∈ dom(Q)− {u}]

Algorithm = Inference + Strategy + Indexing .
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Conclusions

Mathematics has an ever-widening footprint going beyond the
hard sciences to social sciences.

Rigorous modeling and analysis requires formalization and
mechanization for scale and accuracy.

These application offer fertile ground for big proof technology
that build on the formalization of core mathematical concepts
and proofs.

Automated reasoners can perform provably correct
manipulations (e.g., algebra systems, SAT/SMT solvers),
build models, generate formal proofs (theorem provers), check
proofs (interactive proof assistants), and mine proofs
(machine learning) for insights.

Big proof technologies can help people (at every level of
mathematical expertise) understand, create, and use
mathematics effectively.
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