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Take-Home Message (I will probably run out of time)

I We are all interested in “Big Math”, not only “Big Proof”

I We propose a tetrapodal model for “doing/supporting” mathematics
I Mathematical Research Data is a next big thing (FAIR principles)
I Math Data wants to be deep FAIR (accessible semantics crucial)
I First steps towards deep FAIR infrastructures/hosting (MathDataHub)
I Future: (would be happy to collaborate with you all)
I get funding for deep FAIR math data, (EOSC proposal FAIRMath rejected)
I : stabilize MathDataHub, collect data sets and services,
I extend these ideas to other sciences (the STEM disciplines)
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1 Big Math and the One Brain Barrier
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Background: Towards Big Math; Details in [Car+19]

I Observation 1.1. In the last half decade mathematics tackles problems that
lead to increasingly large developments: proofs, computations, data sets, and
document collections.

I Consequence: Intense discussions about the nature of mathematics
1. Is a proof that can only be verified with the help of a computer still a mathematical

proof? (Appel&Haken ’76)
2. Is a mathematical proofscape that exceeds what can be understood in detail by a

single expert a legitimate justification of a mathematical result? (CFSG)
3. Can a collection of mathematics papers — however big — adequately represent a

large body of mathematical knowledge? (DML)
I Definition 1.2. Let us call such large developments Big Math– and the

(uncontroversial) rest Pen Math.
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E.g.: The Classification of Finite Simple Groups (CFSG)

I The CFSG is one of the seminal results of 20th century mathematics.
I Its status is similar to that of the fundamental theorem of arithmetic.
I Its proof was constructed by a large community over ≥ 50 years (last special

cases completed in 2004)
I The CFSG proof spans ≥ 100 articles (≥ 10, 000 pp)

I Goal since 1985: Condense to “Second-Generation Proof” (∼ 5000 pp)

I Observation 1.3. The traditional way of “doing Math” =̂
I well-trained, highly creative individuals deriving insights with “pen and paper”,
I report on them in community meetings, and publishing them in academic journals or

monographs.

is reaching its natural limits posed by the amount of mathematical knowledge
that can be held in a single human brain ; the one-brain barrier (OBB)

I OBB can be generalized to small-group-brain barrier (but mind “The Mythical
Man Month”)
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Classifying Math wrt. the One-Brain-Barrier

I A classification of mathematical developments.
I Pen math: the developments and results that can be obtained by pen, paper, and

university library by an individual or small group without too much strain on the
process.

I Big math: all that is beyond small math (i.e. straining the classical math process),
but still inside the OBB

I Trans-OBB math: all that is beyond bigmath but still amenable to the “method of
proof”.

I Inaccessible math: all results are are unprovable because of Gödel’s incompleteness.
I The agenga of “Big Proofs/Big Math” must be to enabling big/trans-OBB math

(leave inaccessiblemath alone)

Kohlhase: FAIRMath 5 30. 5. 18, Big Proof WS



Big Proof =̂ Big Libraries + Little Proofs

I Proofs from first principles are prohibitively BIG.

Big Proof

Good Practice: Explore theories, prove intermediate results, bild mathematical
components/tools. (Digital Mathematical Libraries)

II libraries are a method to achieve big knowledge via little proof!
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Knowledge Representation is only Part of “Doing Math”

I One of the key insights is that the mathematics ecosystem involves a body of
knowledge described as an ontology and four aspects of it:
I inference: exploring theories, formulating conjectures, and constructing proofs
I computation: simplifying mathematical objects, re-contextualizing conjectures. . .
I models: collecting examples, applying mathematical knowledge to real-world

problems and situations.
I narration: devising both informal and formal languages for expressing mathematical

ideas, visualizing mathematical data, presenting mathematical developments,
organizing and interconnecting mathematical knowledge
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“Doing Math”: as a Tetrapod

I We call the endeavour of creating a computer-supported mathematical
ecosystem “Project tetrapod” as it needs to stand on four legs.

Ontology

Computation

InferenceNarration

Models

Collaborators: KWARC@FAU, McMaster University
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The Tetrapod in the Big Proofs Workshop

II There are many single/dual-aspect systems, . . .
I some are mentioned here at the big proofs workshop
I ontology: e.g. Paulson – see Ma, what I can inherit
I inference: everyone of course
I computation: e.g. Avigad – verification of computation,
I narration: e.g. Hales/Köpke – CNL for human-readable FAbstracts
I tabulation: Douglas – DBs in Physics

Motivation 1 the tabulation (mathematical datasets/databases) aspect is the
least represented here.
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2 Motivation 2: Mathematical Research Data
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Research Data: A general Next Big Thing

II Definition 2.1. Research data is recorded factual material commonly retained
by and accepted in the scientific community as necessary to validate research
findings.

I Background: Virtually all scientific funding agencies now require some kind of
research data strategy (tendency: getting stricter)

I Definition 2.2 (Gold Standard Criteria). Research data has to be FAIR, i.e.
I findable: easy to identify and find for both humans and computers, e.g. with

metadata that facilitate searching for specific datasets,
I accessible: stored for long term so that they can easily be accessed and/or

downloaded with well-defined access conditions, whether at the level of metadata, or
at the level of the actual data,

I interoperable: ready to be combined with other datasets by humans or computers,
without ambiguities in the meanings of terms and values,

I reusable: ready to be used for future research and to be further processed using
computational methods.

Questions: What does this mean for mathematics, in particular
I I What is mathematical research data?
I How can be make mathematical data fair?
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German National Research Data Initiative

I NFDI: In November 2018 the federal/state governments agreed to establishment
of a national initiative for research data.

I Funding: 900 Me over 10 years, afterwards institutional funding? (research and
competence/service, no hardware)

I Format: ca. 30 Consortia who will form independent organizations.

I Math4NFDI: A consortium for Mathematical Research Data, (Lead: WIAS
Berlin)

I Current State of Play: Networking, consortium consolitdation, first NFDI call
imminent.
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The European Open Science Cloud

I EU Vision: The EOSC will provide 1.7m EU researchers an environment with
free, open services for data storage, management, analysis and re-use across
disciplines.

I Planned Architecture: Federated meta-archive building on existing
infrastrutures: CERN, EMBL, ELIXIR, etc.

I Chicken/Egg Problem: how to get the EOSC off the ground?
I There is only one mathematical data set on the EOSC (Jukka Kohonen’s lattices)

I Current State of Play: some EOSC calls for implementation, data sets, services

I Proposal FAIRMath: from Jan 2019 was unsuccessful, disciplinary proposals
apparently not appreciated.

I But: the FAIRMath proposal led to a clarification – for us – of Math Research
Data
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3 Mathematical Knowledge/Data Bases; State of the Art
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Mathematical Knowledge Sources (MKS)

I generic information systems (Wikipedia)

I informal mathematical document collections (Cornell preprint arXiv)
I literature information systems (zbMATH, MathSciNet)
I mathematical object databases (GAP libraries, OEIS, LMFDB)
I formal theorem prover libraries (Mizar, Coq, PVS, HOL)
I We will concentrate on mathematical object databases here.
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FAIRness in Mathematics

I Mathematical research is becoming more data-driven (datasets for conjecture
induction/testing)

I But: there is no accepted paradigm for producing/working with data sets
I Observation 3.1. There is a strong open-source/open-data ethos in most of

the mathematical community (see e.g. the IMU resolutions and IMKT)

I Consequence: Mathematics is (somewhat) FAIR on the surface (we try to do the
right thing)

I But: deep problems remain, e.g. (deep =̂ hard, deep =̂ below surface)
I accessible: math objects have more and more varied internal structure than e.g.

satelite images
I reusable: no copy/paste from GAP to Sage to Lean (different encodings)
I interoperable: e.g. dihedral group of order 8 is called D4 in Sage, but D8 in GAP.
I findable: there are attempts at structural math search engines,. . .

I Conjecture 3.2. For mathematics, we need deeply FAIR data practices
 math metadata are mathematical objects themselves.
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Types of Mathematical Data

I We see three (or seven) kinds of mathematical data

MATHEMATICAL
DATA

SYMBOLIC

CONCRETE

LINKED

computation

proof model

array

record

metadata

knowledge graph

I Symbolic Data can capture the full semantics of math objects by abstraction
principles such as underspecification, quantification, and variable binding.
; context-sensitive: moving expressions across environments difficult
; F,I,R difficult (mitigate by standardization, e.g. MathML/OMDoc)
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Types of Mathematical Data

I We see three (or seven) kinds of mathematical data

MATHEMATICAL
DATA

SYMBOLIC

CONCRETE

LINKED

computation

proof model

array

record

metadata

knowledge graph

I Concrete data employs representation theorems that allow encoding math.
objects as simple data structures built from numbers, strings, lists, and records.
; Users have to know the repr. theorems to access data (often complex)
; FAIR difficult in practice (mitigate via documentation/Codecs)
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Types of Mathematical Data

I We see three (or seven) kinds of mathematical data

MATHEMATICAL
DATA

SYMBOLIC

CONCRETE

LINKED

computation

proof model

array

record

metadata

knowledge graph

I Linked data introduces identifiers for objects and then treats them as
blackboxes, only representing the identifier and not the original object.
; semantics of represented mathematical objects is partial,
; F/A limited, I/R subject to misinterpretation (use only as directed)
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Types of Mathematical Data

I We see three (or seven) kinds of mathematical data

MATHEMATICAL
DATA

SYMBOLIC

CONCRETE

LINKED

computation

proof model

array

record

metadata

knowledge graph

I

Kind of data Symbolic Concrete Linked
Allows recovering the represented object + + –
Applicable to all objects + – +
Easy to process – + +
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Programatic search in LMFDB

I Actual query:
http://www.lmfdb.org/api/transitivegroups/groups/?cyc=1

I Desired query:

{x declared in ‘lmfdb:db/transitivegroups?group | cyclic x ∗=∗ true }
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Semantics-aware Open Data and Deep FAIRness

I Idea: We need to keep the semantics near the data (legends in tables)

I Current Practice: add informal labels, e.g. “weight in kg.”

I : This works only where the semantics is very simple ; not in Math!
I Example 3.3 (Often not even then). In 2016 [ZieEreElO:GeneErrors16],

researchers found widespread errors in papers in genomics journals with
supplementary MS Excel gene lists. About 20% of them contain erroneous gene
name because the software misinterpreted string-encoded genes as months.

I Remark 3.4. In engineering, encoding mistakes can quickly become
safety-critical, i.e., if a dataset of numbers is shared without their physical units,
precision, and measurement type.

I Example 3.5 (The Mars Orbiter). NASA specified thruster in SI units,
Contractor built thruster using PSI

I Definition 3.6. We speak of accessible semantics if data has metadata
annotations that allow recovering the exact semantics of the data.

I Observation 3.7. With accessible semantics, datasets can be validated
automatically against their semantic type to avoid such errors
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Semantics-aware Open Data and Deep FAIRness

I Example 3.8. We can reconstruct the (semantic) type polynomial with integer
coefficients from its encoding list of integers only if its type and encoding
function (coefficients in order of decreasing degree) are known.
But: coefficient orders, sparse/dense, or multivariate polynomials.

I Remark 3.9. Without accessible semantics mathematical services can only
operate on the dataset as a whole, we call them shallow FAIR services.

I Definition 3.10. We call a mathematical service deep FAIR, iff it operates on
mathematical objects in a semantics-aware manner

I Observation 3.11. Meaningful mathematical services need to be deep FAIR.
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Shallow/Deep Mathematical Services

I Observation 3.12. In our experience (in Math and elsewhere)
I General data services are easy to build, iff they are shallow (general IT)
I deep services are usually system-specific (where we have semantics)

I Example 3.13. shallow and deep FAIR services
Service Shallow Deep
Identification DOI for a dataset DOIs for each entry
Provenance who created the dataset? how was each entry computed?
Validation is this valid XML? does this XML represent a set of polyno-

mials?
Access download a dataset download a specific fragment
Finding find a dataset find entries with certain properties
Reuse impractical without accessible semantics
Interoperability impossible without accessible semantics
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Shallow/Deep Mathematical Services

I Observation 3.12. In our experience (in Math and elsewhere)
I General data services are easy to build, iff they are shallow (general IT)
I deep services are usually system-specific (where we have semantics)

I Remark 3.14 (Deep FAIR readiness of mathematical data).
Data Findable Accessible Interoperable Reusable
Symbolic Hard Easy Hard Hard
Concrete Impossible without access to the encoding function
Linked Easy, but only applicable to the small fragment with exposed semantics
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4 Deep/Shallow FAIR in practice
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Searching in in the LMFDB

I Question: Find all cyclic transitive groups

I Problem: But what if I want to compute with them?
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Searching in OEIS

I Question: Find all sequences starting with 0, 1, 1, 2, 3, 5, 8
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Our Goal here

I Provide a Uniformal Interface to Mathematical Knowledge Bases
I a mathematical, programatic API

I Idea: Use OMDoc/MMT to represent semantics
I we can make use of theory graphs
I we already have the Math-In-The-Middle approach

I use the MMT system
I MMT terms represent semantic objects
I has a built-in query language QMT
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5 Virtual Theories
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LMFDB Data (Database Level)

I Example 5.1 (A transitive group represented in in LMFDB).

{
"ab": 1,
"arith_equiv": 0,
"auts": 1,
"cyc": 1,
"label": "1T1",
"n": 1,
...

}

Legend: for understanding them (LMFDB improved documentation)
I the cyc field represents being cyclic (0 is false, 1 is true)
I the n field represents degree (IEEE Float 1 corresponds to 1 ∈ N)
I . . .

Two Problems: that have to be solved for MitM integration
I I data base schema is not at the mathematical level (let alone interoperable)
I values are encoded for MongoDB convenience (what do they mean?)
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Codecs: Encoding and Decoding Database Values

I Definition 5.2 (Codec). A codec consists of two functions that translate
between semantic types and realized types.

I

Codecs
codec : type→ type
StandardPos : codec Z+ JSON number if small enough, else JSON

string of decimal expansion
StandardNat :codec N
StandardInt :codec Z
IntAsArray :codec Z JSON List of Numbers
IntAsString :codec Z JSON String of decimal expansion
StandardBool :codec B JSON Booleans
BoolAsInt :codec B JSON Numbers 0 or 1
StandardString :codec S JSON Strings

I StandardInt decodes 1 into the float 1, but 254 into the string "18014398509481984"
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Elliptic Curve Code Operators

{
"degree": 1,
"x−coordinates_of_integral_points": "[5,16]",
"isogeny_matrix": [[1,5,25],[5,1,5],[25,5,1]],
"label": "11a1",
"_id": "ObjectId(’4f71d4304d47869291435e6e’)",
...

}

I Matrix in the isogeny_matrix field

I

 1 5 25
5 1 5
25 5 1


I represented as [[1,5,25],[5,1,5],[25,5,1]]

Kohlhase: FAIRMath 25 30. 5. 18, Big Proof WS



Codec Operator Examples

I Definition 5.3 (Codec Operator). A codec operator is a function which takes
a codec, a set of parameters, and returns a codec.

I Codecs (continued)
StandardList : codec T → codec List(T ) JSON list, recursively coding

each element of the list
StandardVector : codec T → codec Vector(n,T ) JSON list of fixed length n
StandardMatrix : codec T → codec Matrix(n,m,T ) JSON list of n lists of length m

I StandardMatrix(StandardInt, 3, 3) generates the codec we used for the isogeny
matrix
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Our approach: Virtual Theories

Numbers
Z+ : type
Z : type
Z+ ⊂ Z

Matrices
matrix : type→ Z+ → Z+ → type

Codecs
codec : type→ type
standardInt : codec Z
standardMatrix : {T , n,m} codec T → codec matrix(n,m,T )

Elliptic Curve
ec : type
from_record : record→ ec
curveDegree : ec→ Z
isogenyMatrix : ec→ matrix(3, 3,Z)

Elliptic Curve Schema Theory
degree ?implements curveDegree

?codec StandardInt
isogeny_matrix ?implements isogenyMatrix

?codec StandardMatrix(3, 3, StandardInt)

lmfdb Elliptic Curves

Elliptic Curve Database Theory
11a1 : ec = . . .
11a2 : ec = . . .
. . .

lazily loads from implements

describes
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An Example of a Query

I Example 5.4. Finding all cyclic transitive groups in LMFDB (recall from above)

x in (related to ( literal ‘lmfdb:db/transitivegroups?group ) by (object declares))
| holds x (x cyclic x ∗=∗ true)

I This example does not rely on the internal structure of LMFDB
I can be translated into an LMFDB query using the just-defined codecs theory
I http://www.lmfdb.org/api/transitivegroups/groups/?cyc=1
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6 MathDataHub: Hosting Math Datasets FAIRly
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MathDataHub: Hosting Math Datasets FAIRly

I Problem: for all math data sets (see http://mathwb.mathweb.org for a list)
MDH1 General data services are easy to build, iff shallow (general IT)
MDH2 deep services are usually system-specific (where we have semantics)
In particular, systems/datasets are motivated by MDH2 and flounder for MDH1

I Idea: Supply a deep FAIR infrastructure (MDH1) so that authors can
concentrate on MDH2 ; MathDataHub. (share accessible semantics)

I Technically: Extend the virtual theories above to a Math Data Definition
Language MDDL and generate MathDataHub infrastructure from that. (details
in [BerKohRab:tumdi19])
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A simple Running Example

I Example 6.1 (Running Example).
I Joe has collected a set of integer matrices together with their trace, eigenvalues, and

the Boolean property whether they are orthogonal for his Ph.D. thesis.
I he develops a MDDL description and submits it to MathDataHub.
I Jane, a collaborator of Joe’s, is interested in characteristic polynomials of integer

sequences.
I she develops a MDDL extension of Joe’s.

Joe’s dataset Jane’s column

M TrM) Orthogonal σM det(λI −M)(
2 0
0 1

)
2 yes 2, 1 λ2 − 3λ+ 2(

2 1
1 2

)
4 no 3, 1 λ2 − 4λ+ 3(−1 0

0 1

)
0 yes 1, −1 λ2 − 1
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A Glimpse of MDDL

I The DbData theory (simplified)
theory DbData : ur:?PLF =
db_tp : type ||||
db_val : db_tp → type ||# V 1 prec −5 ||||
db_null : {a} V a ||||
db_int, db_bool, db_string, db_uuid : db_tp ||||
db_array : db_tp → db_tp ||||
eq : {a} V a → V a → V db_bool ||# 1 = 2 ||||...
||||||||

I An excerpt from the MathData theory: collections
I Joe’s Schema Theory (simplified)
I Joe runs MBGen on tyhis schema theory
I Jane’s Extensions are compiled into a table referencing Joe’s
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A Glimpse of MDDL

I The DbData theory (simplified)
I An excerpt from the MathData theory: collections

vector : type → Z → type ||
# vector 1 2 prec 10 ||||

empty : {a} vector a 0 ||||
single : {a} a → vector a 1 ||||
matrix : type → Z → Z → type ||
= [a,m,n] vector (vector a m) n ||||

option : type → type ||||
some : {a} a → option a ||||
none : {a} option a ||||
getOrElse : {a} option a → a → a ||||

I Joe’s Schema Theory (simplified)
I Joe runs MBGen on tyhis schema theory
I Jane’s Extensions are compiled into a table referencing Joe’s
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A Glimpse of MDDL

I The DbData theory (simplified)
I An excerpt from the MathData theory: collections
I Joe’s Schema Theory (simplified)

theory MatrixS : ?MDDL =
mat: matrix Z 2 2 ||meta ?Codecs?codec MatrixAsArray IntIdent ||

tag ?MDDL?opaque ||||
trace : Z ||meta ?Codecs?codec IntIdent ||||
orthogonal: bool || meta ?Codecs?codec BoolIdent ||||
eigenvalues : list Z ||meta ?Codecs?codec ListAsArray IntIdent ||

tag ?MDDL?opaque ||||
||||||||

I Joe runs MBGen on tyhis schema theory
I Jane’s Extensions are compiled into a table referencing Joe’s
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A Glimpse of MDDL

I The DbData theory (simplified)
I An excerpt from the MathData theory: collections
I Joe’s Schema Theory (simplified)
I Joe runs MBGen on tyhis schema theory

Column | Type
---------------+----------
ID | uuid
MAT | integer []
TRACE | integer
ORTHOGONAL | boolean
EIGENVALUES | integer []
Indexes: "MatrixS_pkey"
PRIMARY KEY , btree ("ID")

ID | mat | trace | orthogonal | eigenvalues
------------------+------------+-------+------------+-------------
e278b5e8 -4404 -... | {2,0,0,1} | 2 | t | {2,1}
05a30ff0 -4405 -... | {2,1,1,2} | 4 | f | {3,1}
1be3f022 -4405 -... | {-1,0,0,1} | 0 | t | {1,-1}

I Jane’s Extensions are compiled into a table referencing Joe’s
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A Glimpse of MDDL

I The DbData theory (simplified)
I An excerpt from the MathData theory: collections
I Joe’s Schema Theory (simplified)
I Joe runs MBGen on tyhis schema theory
I Jane’s Extensions are compiled into a table referencing Joe’s

theory MatrixWithCharacteristicS : ?SchemaLang =
include ?MatrixS ||||
matrixID: int || meta ?SchemaLang?foreignKey ?MatrixS ||||
characteristic : Polynomial IntegerRing ||
meta ?Codecs?codec PolynomialAsSparseArray IntIdent ||||

||||||||

Joe Jane

FK
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MathDataHub: Generating User Interfaces

I The MDDL specifications have annotations that allow to generate modulear UI
code – here React.JS that interprets MMT-generated JSON.

I Example 6.2 (Finishing the Running Example).
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Conclusions & Future Work (if I managed to get here)

I We are all interested in “Big Math”, not only “Big Proof”

I We propose a tetrapodal model for “doing/supporting” mathematics
I Mathematical Research Data is a next big thing (FAIR principles)
I Math Data wants to be deep FAIR (accessible semantics crucial)
I First steps towards deep FAIR infrastructures/hosting (MathDataHub)
I Future: (would be happy to collaborate with you all)
I get funding for deep FAIR math data, (EOSC proposal FAIRMath rejected)
I : stabilize MathDataHub, collect data sets and services,
I extend these ideas to other sciences (the STEM disciplines)
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