Online proof and elementary mathematics from an educational perspective

Chris Sangwin

School of Mathematics University of Edinburgh

May 2019

< (□) < 三 > (□)

4 Th

May 2019

1/43

To what extent can students' mathematical proofs be automatically assessed?

To what extent can students' mathematical proofs be automatically assessed?

Focus: the proof and reasoning which occurs in current mathematics examinations.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

To what extent can students' mathematical proofs be automatically assessed?

Focus: the proof and reasoning which occurs in current mathematics examinations.

Corpus: 2018 paper from the SQA Advanced Higher Mathematics examinations.

 $(\cdots \equiv \text{Further Mathematics} \equiv \text{IB HL})$

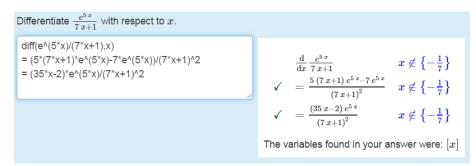
< ロ > < 同 > < 回 > < 回 >

This is a long way from the Kepler Conjecture....

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

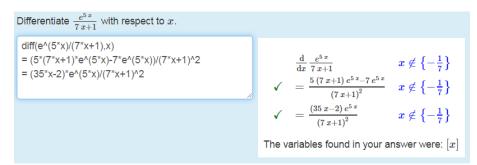
Caveat....

This is a long way from the Kepler Conjecture.... ... but a lot more people learn this mathematics ...

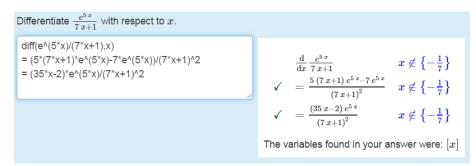

Caveat....

This is a long way from the Kepler Conjecture.... ... but a lot more people learn this mathematics and almost everyone starts this way.

4 A N


$$\begin{array}{c} \text{Differentiate } \frac{e^{5\,x}}{7\,x+1} \text{ with respect to } x.\\\\\\ \begin{array}{c} \text{diff}(e^{(5^{*}x)/(7^{*}x+1),x)} \\ = (5^{*}(7^{*}x+1)^{*}e^{(5^{*}x)-7^{*}e^{(5^{*}x)})/(7^{*}x+1)^{A}2} \\ = (35^{*}x-2)^{*}e^{(5^{*}x)/(7^{*}x+1)^{A}2} \\ \end{array} \\ \begin{array}{c} \frac{d}{dx} \frac{e^{5\,x}}{7\,x+1} & x \notin \{-\frac{1}{7}\} \\ \\ \checkmark & = \frac{5(7\,x+1)e^{5\,x}-7e^{5\,x}}{(7\,x+1)^{2}} & x \notin \{-\frac{1}{7}\} \\ \\ \checkmark & = \frac{(35\,x-2)e^{5\,x}}{(7\,x+1)^{2}} & x \notin \{-\frac{1}{7}\} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{The variables found in your answer were: } [x] \end{array}$$

< E


Notes:

Students' answers have mathematical content

Notes:

- Students' answers have mathematical content
- Current rudimentary interface for line by line working.

Notes:

- Students' answers have mathematical content
- Current rudimentary interface for line by line working.
- (Started with CAS, not ATP!)

School exams

(Nadine Köcher & Chris Sangwin, 2014) International Baccalaureate examinations in STACK?

	# marks	
(i) Awarded by STACK (2014) exactly	112	18%
(ii) Final answers and implied method marks	227	37%
(iii) Reasoning by equivalence	218	36%
Total of max of (ii) and (iii) per question	376	61%

School exams

(Nadine Köcher & Chris Sangwin, 2014) International Baccalaureate examinations in STACK?

	# marł	٢S
(i) Awarded by STACK (2014) exactly	112	18%
(ii) Final answers and implied method marks	s 227	37%
(iii) Reasoning by equivalence	218	36%
Total of max of (ii) and (iii) per question	376	61%
Repeat analysis with SQA Higher 2015.		
	# marks	
(i) Awarded by STACK (v4.2) exactly	47	36%
(ii) Of which reasoning by equivalence	35	27%

Work line by line: adjacent lines are "equivalent".

-

Work line by line: adjacent lines are "equivalent".

$$\begin{split} \log_3(x+17)-2 &= \log_3(2x) \quad (x>0, x>-17) \\ \Leftrightarrow \log_3(x+17) - \log_3(2x) &= 2 \\ \Leftrightarrow \log_3\left(\frac{x+17}{2x}\right) &= 2 \\ \Leftrightarrow \frac{x+17}{2x} &= 3^2 = 9 \\ \Leftrightarrow x+17 &= 18x \\ \Leftrightarrow x &= 1. \end{split}$$

-

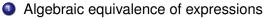
Work line by line: adjacent lines are "equivalent".

$$\begin{split} \log_3(x+17)-2 &= \log_3(2x) \quad (x>0, x>-17) \\ \Leftrightarrow \log_3(x+17) - \log_3(2x) &= 2 \\ \Leftrightarrow \log_3\left(\frac{x+17}{2x}\right) &= 2 \\ \Leftrightarrow \frac{x+17}{2x} &= 3^2 = 9 \\ \Leftrightarrow x+17 &= 18x \\ \Leftrightarrow x &= 1. \end{split}$$

The above is a single mathematical entity: the argument.

Work line by line: adjacent lines are "equivalent".

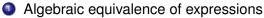
$$\begin{split} \log_3(x+17)-2 &= \log_3(2x) \quad (x>0, x>-17) \\ \Leftrightarrow \log_3(x+17) - \log_3(2x) &= 2 \\ \Leftrightarrow \log_3\left(\frac{x+17}{2x}\right) &= 2 \\ \Leftrightarrow \frac{x+17}{2x} &= 3^2 = 9 \\ \Leftrightarrow x+17 &= 18x \\ \Leftrightarrow x &= 1. \end{split}$$


The above is a *single mathematical entity: the argument.* The above is a single (long) *English sentence.*

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

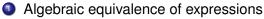
Algebraic equivalence of expressions

$$p \equiv q \Leftrightarrow p(x) = q(x), \quad \forall x \in X.$$


② Equivalence of equations Same solutions: V(p) = {x ∈ X | p(x) = 0}.

$$p \equiv q \Leftrightarrow p(x) = q(x), \quad \forall x \in X.$$

- ② Equivalence of equations Same solutions: V(p) = {x ∈ X | p(x) = 0}.
- Equating coefficients.

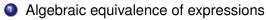

- E - N

$$p \equiv q \Leftrightarrow p(x) = q(x), \quad \forall x \in X.$$

- ② Equivalence of equations Same solutions: V(p) = {x ∈ X | p(x) = 0}.
- Equating coefficients.
- Support for Boolean connectives

$$(x-2)(x-3) = 0$$

x = 2 or x = 3


$$p \equiv q \Leftrightarrow p(x) = q(x), \quad \forall x \in X.$$

- ② Equivalence of equations Same solutions: V(p) = {x ∈ X|p(x) = 0}.
- Equating coefficients.
- Support for Boolean connectives

$$(x-2)(x-3) = 0$$

x = 2 or x = 3

Simple systems of inequalities, and simultaneous inequalities.

< 同 > < 回 > .

$$p \equiv q \Leftrightarrow p(x) = q(x), \quad \forall x \in X.$$

- 2 Equivalence of equations Same solutions: $V(p) = \{x \in X | p(x) = 0\}.$
- Equating coefficients.
- Support for Boolean connectives

$$(x-2)(x-3) = 0$$

x = 2 or x = 3

- Simple systems of inequalities, and simultaneous inequalities.
- O Automatic detection of calculus operations.
- Solution of the previous line with "let x = ..."

Equation to expression switch

Is this an equation "to solve", or a chain of equivalent expressions?

$$\frac{1}{x^2 + 1} = \frac{1}{(x + i) (x - i)}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Equation to expression switch

Is this an equation "to solve", or a chain of equivalent expressions?

$$\frac{1}{x^2 + 1} = \frac{1}{(x + i) (x - i)}$$
$$= \frac{1}{2i} \left(\frac{1}{x - i} - \frac{1}{x + i} \right)$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Q15a: Auto-detection of calculus

Use integration by parts to find $\int x \sin(3x) dx$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reasoning by equivalence is important for the following reasons.

Natural progression from number and algebra.

- Natural progression from number and algebra.
- Start of proof & rigour (deductive geometry?)

- Natural progression from number and algebra.
- Start of proof & rigour (deductive geometry?)
- Multi-step extended calculation.

- Natural progression from number and algebra.
- Start of proof & rigour (deductive geometry?)
- Multi-step extended calculation.
- Ontains logical reasoning.

- Natural progression from number and algebra.
- Start of proof & rigour (deductive geometry?)
- Multi-step extended calculation.
- Contains logical reasoning.
- Included in many methods, e.g. solving ODEs.

Reasoning by equivalence is important for the following reasons.

- Natural progression from number and algebra.
- Start of proof & rigour (deductive geometry?)
- Multi-step extended calculation.
- Contains logical reasoning.
- Included in many methods, e.g. solving ODEs.
- 6 Key part of many pure mathematics proofs
 - Induction step
 - ϵ - δ proofs.

4 E 5

< 同 > < 回 > .

Importance of RE in school mathematics

The most important single form of reasoning in school mathematics is reasoning by equivalence.

(1/3 of marks in the IB exams are awarded for RE.)

STACK interface V0.1

Let students work line by line without explicit warrants.

• because that is what they do on paper

STACK interface V0.1

Let students work line by line without explicit warrants.

- because that is what they do on paper
- and we let them.

To what extent can we implement a typical school mathematics examination paper using STACK?

- E

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

To what extent can we implement a typical school mathematics examination paper using STACK?

2018 SQA Advanced Higher Mathematics examinations.

To what extent can we implement a typical school mathematics examination paper using STACK?

2018 SQA Advanced Higher Mathematics examinations.

- Taken annually by about 3500 students, or 6% of the cohort.
- Single three hour paper, worth 100 marks.
- Calculators are permitted.
- Students are required to answer all questions.

Materials: https://www.sqa.org.uk.

< 回 > < 回 > < 回 >

To what extent can the questions be implemented *exactly* using the STACK?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- To what extent can the questions be implemented *exactly* using the STACK?
- To what extent is reasoning by equivalence included?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- To what extent can the questions be implemented *exactly* using the STACK?
- To what extent is reasoning by equivalence included?
- What other forms of reasoning/processes are used and can this be automated?

4 E 5

- To what extent can the questions be implemented *exactly* using the STACK?
- To what extent is reasoning by equivalence included?
- What other forms of reasoning/processes are used and can this be automated?
- What cannot be automated, now and possibly in any system in the foreseeable future?

4 E 5

No attempt to design an alternative question which measures the same competence.

< ロ > < 同 > < 回 > < 回 >

Results

	# marks	
(i) Awarded by STACK (v4.3)	61	61%
(ii) Of which reasoning by equivalence	31	31%
(iii) Calculus moves	6	
Which contribute to	(15)	15%

イロト イロト イヨト イヨト

Proof questions

9. Prove directly that:

(a) the sum of any three consecutive integers is divisible by 3;

(b) any odd integer can be expressed as the sum of two consecutive integers.

- ∢ ∃ ▶

Proof questions

9. Prove directly that:

(a) the sum of any three consecutive integers is divisible by 3;

(b) any odd integer can be expressed as the sum of two consecutive integers.

11(d) Explain why matrix P is not associated with rotation about the origin.

Proof questions

9. Prove directly that:

(a) the sum of any three consecutive integers is divisible by 3;

(b) any odd integer can be expressed as the sum of two consecutive integers.

11(d) Explain why matrix P is not associated with rotation about the origin.

Q13a Show [reasoning from a diagram] that ...

Other things we "could do"

Q9b Sketch the locus in the complex plane

< E

Other things we "could do"

Q9b Sketch the locus in the complex planeQ5 Special interface: Euclidean algorithmQ16a Special interface: Gaussian elimination

Q14c: Simple let

(c) Let S represent the sum of the first n terms of this arithmetic sequence. Find the values of n for which S=144 .

$$\begin{split} &S = (d^*(n-1)^*n)/2 + a^*n \\ &Let \ d=&16 \\ &Let \ a=&80 \\ &Let \ S=&144 \\ &144 = &80^*n-8^*(n-1)^*n \\ &16^*n^2-2.176^*n+288 = 0 \\ &n = &2 \ or \ n = &9 \end{split}$$

 $S = \frac{d \cdot (n-1) \cdot n}{2} + a \cdot n$ Let d = -16Let a = 80Let S = 144 $\Leftrightarrow 144 = 80 \cdot n - 8 \cdot (n-1) \cdot n$ $\Leftrightarrow 16 \cdot n^2 - 176 \cdot n + 288 = 0$ $\Leftrightarrow n = 2 \text{ or } n = 9$ The variables found in your answer were: [S, a, d, n]

イロト 不得 トイヨト イヨト 二日

Q2: Refer to previous lines....

Use partial fractions to find $\int \frac{3x-7}{x^2-2x} dx$. Write $\frac{3x-7}{x^2-2x-15}$ in partial fraction form $(3^{*}x-7)/(x^{2}-2^{*}x-15) = (3^{*}x-7)/((x-5)^{*}(x+3))$ $\frac{3 x-7}{x^2-2 x-15} = \frac{3 x-7}{(x-5) (x+3)}$ $(3^{*}x-7)/((x-5)^{*}(x+3)) = B/(x+3)+A/(x-5)$ $x \notin \{-3, 5\}$ 3*x-7 = (x-5)*B+(x+3)*A $\frac{3x-7}{(x-5)(x+3)} = \frac{B}{x+3} + \frac{A}{x-5}$? $3*x-7 = x^{*}(B+A)-5^{*}B+3^{*}A$ -7 = 3*A-5*B and 3 = B+A \Leftrightarrow 3x - 7 = (x - 5) B + (x + 3) A-7 = 3*A-5*B and 15 = 5*B+5*A $\Leftrightarrow \qquad 3x - 7 = x(B + A) - 5B + 3A$ -7 = 3*A-5*B and 8 = 8*A $\equiv (\cdots ?x) \quad \begin{cases} -7 = 3 A - 5 B \\ 3 = B + A \end{cases}$ A = 1 and B = 2 $(3^{*}x-7)/((x-5)^{*}(x+3)) = 2/(x+3)+1/(x-5)$ $\left\{ \begin{array}{l} -7 = 3\,A - 5\,B \ 15 = 5\,B + 5\,A \end{array}
ight.$ \Leftrightarrow $\begin{cases} -7 = 3A - 5B \\ 8 = 8A \end{cases}$ \Leftrightarrow $\begin{cases} A = 1 \\ B = 2 \end{cases}$ \Leftrightarrow ? $\frac{3x-7}{(x-5)(x+3)} = \frac{2}{x+3} + \frac{1}{x-5}$ $x \notin \{-3, 5\}$ The variables found in your answer were: [x, A, B]

Q2: Refer to previous lines....

Use partial fractions to find $\int \frac{3 \cdot x - 7}{x^2 - 2 \cdot x - 15} dx$. Write $\frac{3 \cdot x - 7}{x^2 - 2 \cdot x - 15}$ in partial fraction form $(3*x)/(x^2-2*x-15)-7/(x^2-2*x-15) = (3*x-7)/((x-5)*(x+3))$ $\frac{3 \cdot x}{x^2 - 2 \cdot x - 15} - \frac{7}{x^2 - 2 \cdot x - 15} = \frac{3 \cdot x - 7}{(x - 5) \cdot (x + 3)} \qquad x \notin \{-3, 5\}$ (3*x-7)/((x-5)*(x+3)) = B/(x+3)+A/(x-5)3*x-7 = A*(x+3)+B*(x-5)? $\frac{3 \cdot x - 7}{(x - 5) \cdot (x + 3)} = \frac{B}{x + 3} + \frac{A}{x - 5}$ Let x=5 A=1 $\Leftrightarrow \quad 3 \cdot x - 7 = A \cdot (x + 3) + B \cdot (x - 5)$ Let x=-3 Let x = 5B=2 $\Leftrightarrow A = 1$ (3*x-7)/((x-5)*(x+3)) = 2/(x+3)+1/(x-5)Let r = -3? B = 2? $\frac{3 \cdot x - 7}{(x - 5) \cdot (x + 3)} = \frac{2}{x + 3} + \frac{1}{x - 5}$ $x \notin \{-3,5\}$ The variables found in your answer were: [A, B, x]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のなべ

Q2: Refer to previous lines....

Use partial fractions to find $\int rac{3\cdot x-7}{x^2-2\cdot x-15}dx.$	
Write $\frac{3\cdot x-7}{x^2-2\cdot x-15}$ in partial fraction form	
$\begin{array}{l} (3^{*}x)/(x^{2}\cdot2^{*}x\cdot15)-7/(x^{2}\cdot2^{*}x\cdot15) = (3^{*}x\cdot7)/((x\cdot5)^{*}(x+3)) \\ (3^{*}x\cdot7)/((x\cdot5)^{*}(x+3)) = B/(x+3)+A/(x-5) \\ 3^{*}x\cdot7 = A^{*}(x+3)+B^{*}(x-5) \\ \text{Let } x=5 \\ A=1 \\ \text{Let } x=-3 \\ B=2 \\ (3^{*}x\cdot7)/((x\cdot5)^{*}(x+3)) = 2/(x+3)+1/(x\cdot5) \end{array}$	$\begin{array}{l} \frac{3 \cdot x}{x^2 - 2 \cdot x - 15} - \frac{7}{x^2 - 2 \cdot x - 15} = \frac{3 \cdot x - 7}{(x - 5) \cdot (x + 3)} & x \notin \{-3, 5\} \\ \hline \\ ? \frac{3 \cdot x - 7}{(x - 5) \cdot (x + 3)} = \frac{B}{x + 3} + \frac{A}{x - 5} \\ \Leftrightarrow 3 \cdot x - 7 = A \cdot (x + 3) + B \cdot (x - 5) \\ \text{Let } x = 5 \\ \Leftrightarrow A = 1 \\ \text{Let } x = -3 \\ \hline \\ ? B = 2 \\ ? \frac{3 \cdot x - 7}{(x - 5) \cdot (x + 3)} = \frac{2}{x + 3} + \frac{1}{x - 5} & x \notin \{-3, 5\} \end{array}$
	The variables found in your answer were: $\left[A,B,x ight]$

Slight reformulation to separate partial fractions from integration \rightarrow nested sub-arguments.

- E

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Polya 1962: *Mathematical Discovery: on understanding, learning and teaching problem solving.*

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Polya 1962: *Mathematical Discovery: on understanding, learning and teaching problem solving.*

Patterns of thought for solving problems

the pattern of two loci

< 回 > < 三 > < 三 >

Polya 1962: *Mathematical Discovery: on understanding, learning and teaching problem solving.*

Patterns of thought for solving problems

- the pattern of two loci
- superposition

< ロ > < 同 > < 回 > < 回 >

Polya 1962: *Mathematical Discovery: on understanding, learning and teaching problem solving.*

Patterns of thought for solving problems

- the pattern of two loci
- superposition
- recursion

< 回 > < 三 > < 三 >

Polya 1962: *Mathematical Discovery: on understanding, learning and teaching problem solving.*

Patterns of thought for solving problems

- the pattern of two loci
- superposition
- recursion
- Cartesian pattern

4 E 5

Polya 1962: *Mathematical Discovery: on understanding, learning and teaching problem solving.*

Patterns of thought for solving problems

- the pattern of two loci
- superposition
- recursion
- Cartesian pattern

Legitimate patterns of thought \rightarrow an acceptable proof.

Descartes' Rules for the Direction of the mind.

Reduce any kind of problem to a mathematical problem.

Descartes' Rules for the Direction of the mind.

- Reduce any kind of problem to a mathematical problem.
- Provide a straight of the s

- E

Descartes' Rules for the Direction of the mind.

- Reduce any kind of problem to a mathematical problem.
- Provide a straight of the s
- Seduce any algebra problem to a single equation & solve.

Descartes' Rules for the Direction of the mind.

- Reduce any kind of problem to a mathematical problem.
- Provide a state of the state
- Reduce any algebra problem to a single equation & solve.

Polya: "The more you know, the more gaps you can see in this project"

Recursion

Polya's maxim:

if you cannot solve a problem, then solve a simpler one!

Find an explicit formula for S_n . E.g. $S_n = 1 + 3 + 9 + 27 + \dots + 3^{n-1}$.

A .

- E - N

Recursion

Polya's maxim:

if you cannot solve a problem, then solve a simpler one!

Find an explicit formula for S_n . E.g. $S_n = 1 + 3 + 9 + 27 + \dots + 3^{n-1}$. Find an explicit formula for $S_n - S_{n-1}$.

Recursion

Polya's maxim:

if you cannot solve a problem, then solve a simpler one!

Find an explicit formula for S_n . E.g. $S_n = 1 + 3 + 9 + 27 + \dots + 3^{n-1}$. Find an explicit formula for $S_n - S_{n-1}$.

Generalize from patterns \rightarrow formal proof by induction.

De Morgan 1838

Example 1 .- The sum of any number of successive odd numbers, beginning from unity, is a square number, namely, the square of half the even number which follows the last odd number. Let this proposition be true in any one single instance; that is, n being some whole number, let 1, 3, 5, up to 2n + 1 put together give (n + 1). Then the next odd number being 2n + 3, the sum of all the odd numbers up to 2n + 3 will be $(n + 1)^2 + 2n + 3$, or $n^2 + 4n + 4$, or $(n + 2)^2$. But n + 2 is the half of the even number next following 2n + 3: consequently, if the proposition be true of any one set of odd numbers, it is true of one more. But it is true of the first odd number 1, for this is the square of half the even number next following. Consequently, being true of 1, it is true of 1 + 3; being true of 1 + 3, it is true of 1 + 3 + 5; being true of 1 + 3 + 5, it is true of 1 + 3 + 5 + 7, and so on, ad infinitum.

De Morgan (1836)

< 日 > < 同 > < 回 > < 回 > < □ > <

Q12: Assessment of induction in STACK?

Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} 3^{r-1} = \frac{3^{n} - 1}{2}.$$

"Let p(n) be the statement" $sum(3^{n}(r-1),r,1,n) = (3^{n}n-1)/2$ Let n=1 $sum(3^{n}(r-1),r,1,1) = (3^{n}1-1)/2$ true "Consider" $sum(3^{n}(r-1),r,1,n+1)$ $= sum(3^{n}(r-1),r,1,n)+3^{n}n$ $= (3^{n}n-1)/2 + 3^{n}n$ $= (3^{n}n-1)/2 + 3^{n}n$ $= (3^{n}n-1)/2 + 3^{n}n$ $= (3^{n}(n+1)-1)/2$ "and so" $sum(3^{n}(r-1),r,1,n+1) = (3^{n}(n+1)-1)/2$ "which proves p(n) => p(n+1)."

Let p(n) be the statement $\sum_{r=1}^{n} 3^{r-1} = \frac{3^n - 1}{2}$ Let n = 1 $\Leftrightarrow \sum_{r=1}^{1} 3^{r-1} = \frac{3^{1}-1}{2}$ \Leftrightarrow true Consider $\sum_{r=1}^{n+1} 3^{r-1}$ $\checkmark = \sum_{r=1}^{n} 3^{r-1} + 3^{n}$ $\checkmark = \frac{3^n - 1}{2} + 3^n$ $\checkmark = \frac{3 \cdot 3^n - 1}{2}$ $\checkmark = \frac{3^{n+1}-1}{2}$ and so $\sum_{r=1}^{n+1} 3^{r-1} = \frac{3^{n+1}-1}{2}$ which proves p(n) => p(n+1).

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

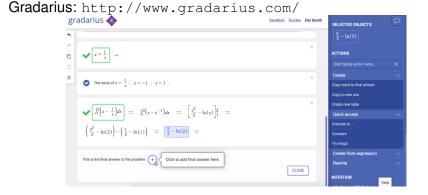
But what do students learn?

A love of intriguing patterns and tools for justifying them?

4 Th

But what do students learn?

- A love of intriguing patterns and tools for justifying them?
- An incantation?


(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Free-text to pallet based input

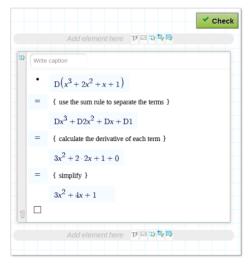
Separation of assessment of

- Legitimate forms of argument
- correctness of algebraic steps within the argument?

Many other learning systems

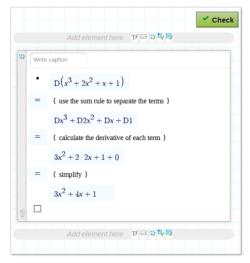
Chris Sangwin (University of Edinburgh)

Many other learning systems



Gradarius: http://www.gradarius.com/

Also replicates current practice.


Structured derivations

Fourferries: https://fourferries.com/

Structured derivations

Fourferries: https://fourferries.com/

Structured derivation borrows from CS: more formality needed.

Chris Sangwin (University of Edinburgh)

Reasoning \rightarrow calculation has a long history

A "universal scientific language" would enable us to

judge immediately whether propositions presented to us are proved ... with the guidance of symbols alone, by a sure truly analytical method.

Boole Laws of thought 1854

"to go under, over, and beyond" Aristotle's logic.

< 🗇 🕨 < 🖃 >

To most people mathematics = Stewart's *Calculus*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

To most people mathematics = Stewart's *Calculus*. UK School textbooks....

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

To most people mathematics = Stewart's *Calculus*. UK School textbooks....

The student is recommended to have as little as possible to do with imaginary quantities, that is, with quantities which have no meaning either as to number or magnitude. He need not wonder that the difficulties are likely to be introduced by the use of them, when he considers that $\sqrt{-1}$ signified an operation to be performed which is absolutely impossible. Any discussion upon the interpretation which may be give to such symbols, and the uses to which they may be applied, would be quite out of place in an Elementary Treatise like the present.

イロト イ団ト イヨト イヨト

To most people mathematics = Stewart's *Calculus*. UK School textbooks....

The student is recommended to have as little as possible to do with imaginary quantities, that is, with quantities which have no meaning either as to number or magnitude. He need not wonder that the difficulties are likely to be introduced by the use of them, when he considers that $\sqrt{-1}$ signified an operation to be performed which is absolutely impossible. Any discussion upon the interpretation which may be give to such symbols, and the uses to which they may be applied, would be quite out of place in an Elementary Treatise like the present.

Ed. Lund 1841 p. 75.

(1) Multiplication does not retain equivalence.

$$CA = CB \Leftrightarrow A = B \lor C = 0. \tag{1}$$

$$CA = CB \land C \neq 0 \Leftrightarrow A = B \land C \neq 0.$$
(2)

$$A = B \Leftrightarrow (CA = CB \land C \neq 0) \lor A = B = 0.$$
 (3)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(1) Multiplication does not retain equivalence.

$$CA = CB \Leftrightarrow A = B \lor C = 0. \tag{1}$$

$$CA = CB \land C \neq 0 \Leftrightarrow A = B \land C \neq 0.$$
⁽²⁾

$$A = B \Leftrightarrow (CA = CB \land C \neq 0) \lor A = B = 0.$$
 (3)

(2) Powers and roots are evil.

(1) Multiplication does not retain equivalence.

$$CA = CB \Leftrightarrow A = B \lor C = 0. \tag{1}$$

$$CA = CB \land C \neq 0 \Leftrightarrow A = B \land C \neq 0.$$
⁽²⁾

$$A = B \Leftrightarrow (CA = CB \land C \neq 0) \lor A = B = 0.$$
 (3)

(2) Powers and roots are evil.

$$A^2 = B^2 \Leftrightarrow A^2 - B^2 = 0$$

 $\Leftrightarrow (A - B)(A + B) = 0$
 $\Leftrightarrow A = B \lor A = -B.$

(1) Multiplication does not retain equivalence.

$$CA = CB \Leftrightarrow A = B \lor C = 0. \tag{1}$$

$$CA = CB \land C \neq 0 \Leftrightarrow A = B \land C \neq 0.$$
⁽²⁾

$$A = B \Leftrightarrow (CA = CB \land C \neq 0) \lor A = B = 0.$$
 (3)

(2) Powers and roots are evil.

$$A^{2} = B^{2} \Leftrightarrow A^{2} - B^{2} = 0$$
$$\Leftrightarrow (A - B)(A + B) = 0$$
$$\Leftrightarrow A = B \lor A = -B.$$

(Auditing) Fallacies in Mathematics, E. A. Maxwell (1959).

Student's comment

Sometimes STACK seems to have issues with answers that are essentially correct - (once I multiplied 2 square roots together i.e.sqrt((x-3)*(x-5)) and it said my answer was incorrect but then when I did sqrt(x-3)*sqrt(x-5) that was correct. It wasted time because I thought my calculation must have been wrong and was puzzled for a long time. Sometimes STACK seems to have issues with answers that are essentially correct - (once I multiplied 2 square roots together i.e.sqrt((x-3)*(x-5)) and it said my answer was incorrect but then when I did sqrt(x-3)*sqrt(x-5) that was correct. It wasted time because I thought my calculation must have been wrong and was puzzled for a long time.

Is
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$
?

Resistance

Some people are very resistant to

1 Additional symbolism, e.g. "or"/ \lor .

$$x = 2 \text{ or } x = 3$$

$$x = 2 \lor x = 3$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Resistance

Some people are very resistant to

1 Additional symbolism, e.g. "or"/ \lor .

$$x = 2 \text{ or } x = 3$$
$$x = 2 \lor x = 3$$

< ロ > < 同 > < 回 > < 回 >

Resistance

Some people are very resistant to

Additional symbolism, e.g. "or"/v.

$$x = 2 \text{ or } x = 3$$

$$x = 2 \lor x = 3$$

2 Change!

Why not have a more formal layout for proofs?

- E

Babbage and the Analytical Engine

< ∃⇒

Technology which looks back

Babbage set out to print log tables!

LOGARITHMIC SINES,

13 Deg.

	<u>.</u>							_		
•	Sine	Diff.	Cosec.	Tang.	Diff.	Cotang.	Secant	D.	Cosine	•
0	9-8520880	5469	10.6479120	9-3633641	5 100	10.6366359	10.0112761		9-9887239	60
1	9.3526349	5461	10 6473651	9.3639401	5760	10 6360599	10.0113053	292	9.9886947	59
2	9.3531810	5454	10 6468190	9.3645155	5754	10.6354845	10.0113345	292	9.9886655	58
8	9.8537264		10.6462736	9.3650901	5746	10.6349099	10.0113637	292	9.9886363	57
4	9-3542710	5446	10.6457290	9.3656641	5740	10 6343359	10.0113930	293	9 9886070	56
5	9.3548150	5440 5432	10.6451850	9.3662374	5788 5726	10.6337626	10.0114224	294 294	9-9885776	55
6	9.3553582		10.6446418	9.3668100		10.6331900	10.0114518		9-9885482	54
7	9.3559007	5425	10.6440993	9.3673819	5719	10.6326181	10.0114812	294	9 9885188	53
8	9.3564426	5419	10.6485574	9.3679532	5713	10.6320468	10 0115106	294	9.9884894	52
9	9.3569836	5410	10.6430164	9.3685238	5706	10 6314762	10.0115401	295	9.9884599	51
10	9.3575240	5404	10.6424760	9.3690937	5699	10.6309063	10 0115697	296	9 9884303	50
		5397			5692	2004034234044344520050	10 0119091	295		00
11	9-3580637	5390	10-6419363	9 3696629	5686	10.6803371	10 0115992	296	9.9884008	49
12	9.3586027	5382	10.6413973	9.3702315	5679	10.6297685	10.0116288	297	9.9883712	48
18	9.3591409	5376	10 6408591	9.3707994	5673	10.6292006	10.0116585	297	9.9883415	47
14	9.3596785	5369	10.6403215	9.3713667	5666	10.6286333	10.0116882	297	9 9883118	46
15	9.3602154	5361	10.6397846	9.3719333	5659	10.6280667	10.0117179		9.9882821	45
16	9.3607515	0901	10.6392485	9.3724992	0009	10.6275008	10-0117477	298		100
17	9.3612870	5355	10.6387130	9.3730645	5653	10.6269355		298	9.9882523	44
18	9-3618217	5347	10.6381783	9 3736291	5646		10.0117775	298	9.9882225	43
19	9 3623559	5341	10.6376442	9.3741930	5639	10.6263709	10.0118078	299	9 9881927	42
20	9 3628892	5334	10.6371108	9.3741930	5638	10.6258070	10.0118372	299	9.9881628	41
	0 0020032	5327	10 00/1109	0 014/003	5627	10.6252437	10.0118671	300	9 9881329	40
~										

A (10) > A (10) > A (10)

Technology which looks back

Babbage set out to print log tables!

LOGARITHMIC SINES,

13 Deg.

	(· · · · · · · · · · · · · · · · · · ·							_		
•	Sine	Diff.	Cosec.	Tang.	Diff.	Cotang.	Secant	D.	Cosine	
012345	9-8520880 9-8526349 9-8531810 9-8537264 9-8542710 9-8542710 9-8548150	5469 5461 5454 5446 5440 5432	10-6479120 10-6473651 10-6468190 10-6462736 10-6457290 10-6451850	9:3633641 9:3639401 9:3645155 9:3650901 9:3656641 9:3662374	5760 5754 5746 5740 5783 5726	$\begin{array}{c} 10.6366359\\ 10.6360599\\ 10.6354845\\ 10.6354845\\ 10.6349099\\ 10.6343359\\ 10.6337626\end{array}$	10.0112761 10.0113053 10.0113345 10.0113637 10.0113637 10.0113930 10.0114224	292 292 292 293 293 294 294	9-9887239 9-9886947 9-9886655 9-9886363 9-9886070 9-9885776	60 59 58 57 56 56
6 7 8 9 10	9:3563582 9:3559007 9:3564426 9:3569836 9:3575240	5425 5419 5410 5404 5397	$\begin{array}{c} 10 \cdot 6446418 \\ 10 \cdot 6440993 \\ 10 \cdot 6486574 \\ 10 \cdot 6430164 \\ 10 \cdot 6424760 \end{array}$	9:3668100 9:3673819 9:3679532 9:3685238 9:3690937	5719 5713 5706 5699 5692	$\begin{array}{c} 10 \cdot 6331900 \\ 10 \cdot 6326181 \\ 10 \cdot 6320468 \\ 10 \cdot 6314762 \\ 10 \cdot 6309063 \end{array}$	10.0114518 10.0114812 10.0115106 10.0115401 10.0115697	294 294 295 296 295	9-9885482 9-9885188 9-9884894 9-9884599 9-9884303	54 53 52 51 50
11 12 13 14 15	9*3580637 9*3586027 9*3591409 9*3596785 9*3602154	5390 5382 5376 5369 5361	$\begin{array}{c} 10 \cdot 6419363 \\ 10 \cdot 6413973 \\ 10 \cdot 6408591 \\ 10 \cdot 6403215 \\ 10 \cdot 6397846 \end{array}$	9:3696629 9:3702315 9:3707994 9:3713667 9:3719333	5686 5679 5673 5666 5659	$\begin{array}{c} 10.6803371\\ 10.6297685\\ 10.6292006\\ 10.6286333\\ 10.6280687 \end{array}$	10.0115992 10.0116288 10.0116585 10.0116882 10.0117179	296 297 207 297 298	9*9884008 9*9883712 9*9883415 9*9883118 9*9882821	49 48 47 46 45
16 17 18 19 20	9:3607515 9:3612870 9:3618217 9:3623558 9:3628892	5355 5347 5341 5334 5327	10.6392485 10.6387130 10.6381783 10.6376442 10.6371108	9·3724992 9·3730645 9·3736291 9·3741930 9·3747563	5653 5646 5639 5633 5627	$\begin{array}{c} 10.6275008\\ 10.6269355\\ 10.6263709\\ 10.6258070\\ 10.6252437 \end{array}$	10-0117477 10-0117775 10-0118078 10-0118372 10-0118671	298 298 299 299 300	9-9882523 9-9882225 9-9881927 9-9881628 9-9881329	44 43 42 41 40

Knuth set out to replicate movable type!

STACK currently implements current practice (by design).

STACK currently implements current practice (by design).

In this sense it looks back.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof: Assessment of whole argument

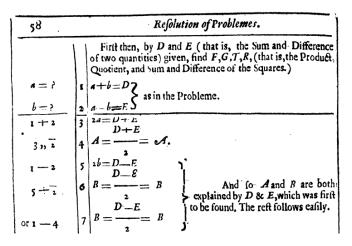
Will require a sea-change in how we write mathematics.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof: Assessment of whole argument

Will require a sea-change in how we write mathematics.

"Those who cannot remember the past are condemned to repeat it." (George Santayana)

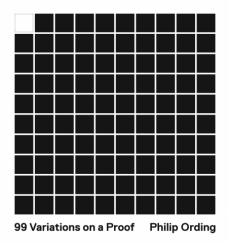

Better interface

58	Refolution of Problemes.
	First then, by D and E (that is, the Sum and Difference of two quantities) given, find F,G,T,R , (that is, the Product, Quotient, and Sum and Difference of the Squares.)
a = ?	a + b = D as in the Probleme.
6=?	a - b = E S
1+2	$\begin{vmatrix} 3 \end{vmatrix} = 2a = D + E \\ D + E \end{vmatrix}$
3 22	$4 A = = \mathcal{A}.$
1-2	$5 \begin{array}{c} 2b = D - E \\ D - E \end{array}$
5-2	6 $B = = B$ 2 And for A and B are both: D - E to be found. The reft follows eafily.
or 1 - 4	$\begin{bmatrix} 7 \end{bmatrix} B = \frac{1}{2} = B $

Pell (1668)

イロト イヨト イヨト イヨト

Better interface



Pell (1668)

(Ongoing work with M. Alafarj (2019)...)

Ording....

"... a deep and thoughtful examination of the nature of mathematical arguments, of mathematical style, and of proof itself."

• We can automate assessment of a significant portion of school exams.

< ロ > < 同 > < 回 > < 回 >

- We can automate assessment of a significant portion of school exams.
- If we "write to the format" we can do a lot more.

4 Th

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- We can automate assessment of a significant portion of school exams.
- If we "write to the format" we can do a lot more.
- To assess full proofs we need to re-engineer some aspects of teaching.

4 Th

< (□) < 三 > (□)

- We can automate assessment of a significant portion of school exams.
- If we "write to the format" we can do a lot more.
- To assess full proofs we need to re-engineer some aspects of teaching.
- Change is difficult: start early & be gentle.