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Lab for AI and Verification

I Launched in March 2019

I A “grass-route” Lab: initially launched to support MSc and
PhD research in verification of AI, for AI and Robotics
students

I Rapidly grew to 12 people: 5 academic staff, 4 PhD and 3
MSc students not counting a number of collaborators.



LAIV members:



Pervasive AI...

Autonomous cars

Robotics

Smart Homes

Chat Bots

...and many more ...
AI is in urgent need of verification: safety, security, robustness to

changing conditions and adversarial attacks, ...
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LAIV Research Topics

I Verification of AI Planning languages

I Verification of Neural Networks

I Machine Learning for Verification

I ... see www.laiv.uk for more



Outline

Verification of AI and LAIV.uk

Challenges in Verification of Neural Networks

Demo: Verify Perceptron
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Neural Nets in Massive use

Used for:

I computer vision

I speech recognition

I (big) data processing

I ...

In:

I autonomous cars

I robots

I airport security

I financial applications

I . . .

I Alexa

I Google bot on mobile
phones

I image recognising
apps



BIG PROOF aspects?

Neural net verification is a “Big Proof” business:

I Objects are big: thousands of nodes and millions parameters
to train in modern neural nets

I Automated verification can take days

I There is a lot of maths: linear algebra, probabilities, statistics
behind machine learning

I Interactive proofs rely on mature proof infrastructure
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Neural nets and verification

Should Neural net verification be different from any other kind
of verification?

I In principle, – No. But there are a few specific features:
I the object we verify (neural net) is not programmed but

obtained via learning from data.
We may be interested in either the learning algorithms or the
properties of the resulting net.

I its outputs have statistical/probabilistic nature
We may be interested in verifying probabilistic properties

I we have to be able to work with real numbers, not integers or
bits
Real numbers are a challenge for provers, especially based on
constructive logic
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The literature splits

There are two groups of properties we may want to verify:

I General (concerning properties of learning algorithms): e.g.
how well does the learning algorithm perform? do trained
neural networks generalise well?

A. Bagnall and G. Stewart. Certifying the True Error: Machine Learning in
Coq with Verified Generalisation Guarantees. AAAI 2019.

A. Bahrami, E. de Maria and A.Felty. Modelling and Verifying Dynamic
Properties of Biological Neural Networks in Coq. 2018.

I Specific to applications (concerning neural network
deployment): given this trained neural network, is it robust to
adversarial attacks?

X. Huang and M. Kwiatkowska and S. Wang and M. Wu. Safety
Verification of Deep Neural Networks. CAV (1) 2017: 3-29

G. Singh, T. Gehr, M. Puschel, M. T. Vechev: An abstract domain for
certifying neural networks. PACMPL 3(POPL): 41:1-41:30 (2019)
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The language gap

Adversarial attacks/defences

Languages: Python and SMT
Solvers (Z3). Pros:

I use Python’s rich
infrastructure for machine
learning

I automation

Proofs of general properties of
neural nets

I Generalisation bounds

I Properties of network
architectures

I Equality of networks

I ...

Languages: Higher-order
interactive provers (e.g. Coq).
Pros:

I Generality

I Rich proof infrastructure
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The language gap

Adversarial attacks/defences

Languages: Python and SMT
Solvers. Cons:

I proving general properties is
infeasible: weak link between
Z3 and Python’s objects;

I fragile types

Proofs of general properties of
neural nets

I Generalisation bounds

I Properties of network
architectures

I Equality of networks

I ...

Languages: Higher-order
interactive provers (e.g. Coq).
Cons:

I computing with defined
objects is awkward;

I less automation



...A further note on infrastructure

I Although dozens of research papers on neural net verification
exist,

I There is no developed infastructure for neural net verification
in either camp

Existing gap in undergraduate and postgraduate education

I demand in verification coming from students and industries

I ... cannot be currently met in mass education (no mature and
easy-to-use tools/languages to use)

I doing it on level of individual MSc projects with top students
still bears challenges
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Demo

Challenges of neural network verification:

I by simple example

I as a good student may find them

I with emphasis on state-of-the-art in programming language
infrastructure

... paying attention to “hammer determines the nails” effect
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Artificial Neurons

Neuron’s potential: pk(t) =
∑nk

j=1 wkj(t)vj(t) − Θk

Neuron’s value: vk(t) = ψ(pk(t))
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Neural Network is...

a directed graph where each node and edge has the above
parameters...



We train Neural nets by:

I adjusting the weights;

I adjusting the thresholds.

v ′
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Error-Correction (Supervised) Learning

We provide a desired response dk ;
Error-signal: e.g. absolute error ek(t) = dk(t) − vk(t);
Error-correction learning rule: ∆wkj(t) = ηek(t)vj(t).

v ′
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This mode of learning is called gradient descent.
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Perceptron

v1 //w1

""
v2 //w2

''
v3 //w3 // nout //

...

vm //wm

AA

This network simulates the linear function:
f (v1, v2, . . . , vm) = ψ(θ + v1w1 + v2w2 + . . .+ vmwm), where ψ is
whatever activation function the neuron nout has.



Historical uses of Neural nets: Perceptron

Neural nets doing logic [McCulloch and Pitts, 1943]:

A B A and B A or B A xor B

true true true true false
true false false true true
false true false true true
false false false false false



Perceptron for and

A //wA

&&
B //wB // and //?

Input features and target features:

A B A and B

true true true
true false false
false true false
false false false

Now train the network: will it be able to learn the correct (linear)
function θ + wA × A + wB × B to simulate and?
e.g. −0,9 + 0,5 × A + 0,5 × B
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Python

I Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics.

I Used for scripting

I Most popular language in machine learning

I A huge infrastructure of machine learning libraries,

I including e.g. TensorFlow (by Google) and PyTorch (by
Facebook)

Demo



Robustness Verification scenario

I Implement my Perceptron in Python
I Prove it is robust for class 1:

I Define its robustness region: e.g. when input array contains
real values in the region ε = [0,5; 1,5]

I define a step function (“the ladder”) to generate a finite
number of reals in this region (or Z3 will not terminate)

I Prove the ladder is “covering” (using pen and paper)
I Take the set of input matrices generated by Z3, run them

through the Perceptron
I No mis-classification? – I have proven my network robust for

output 1, region ε and the ladder.

Problems

I No direct access to Perceptron implementation from Z3

I Fragility of type conversion between Python and Z3

I Either “Testing flavour” or manual proofs are needed
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Coq

I Needs no introduction in this audience

I Functional, dependently-typed language

I Interactive theorem prover

I Mature library infrastructure (thanks to some very famous
people in this room!)



Coq verification scenario

I No black-box tricks: you define all objects exactly

Record Neuron := MakeNeuron {

Output: list nat;

Weights: list Q;

Psi: Q;

Theta: Q;

Current: Q;

Output_Bin: Bin_List Output;

LeakRange: Qle_bool 0 Psi = true /\ Qle_bool Psi 1 = true;

PosTheta: Qlt_bool 0 Theta = true;

WRange: WeightInRange Weights = true

}.

I You prove their properties (generality limited only by
imagination)

Lemma NextOutput_Bin_List: forall (N: Neuron) (Inputs: list nat),

Bin_List (Output N) -> Bin_List (NextOutput N Inputs::Output N).



Coq verification scenario

I We can even define the Perceptron computed by my Python
code (with rationals not reals:)

Lemma Perceptron : Neuron.

Proof.

apply (MakeNeuron [0 %nat] [2#10; 2#10] 1 (2#10) 0); simpl;

auto.

Qed.

Cf: my Python computation was:

Weights after training: [-0.18375655 0.19388244 0.19471828]



Coq verification scenario
I But try computing or evaluating:

Definition Pp : nat :=

NextOutput Perceptron [1 %nat; 1 %nat].

Compute (Pp).

I You get:

= if

match

match

match

(let (Qnum, _) :=

let (Output, Weights, Psi, Theta, _, _, _, _, _) :=

Perceptron in

Theta in

Qnum)

with

| 0 %Z => 0 %Z

| Z.pos x =>

Z.pos

((fix Ffix (x0 x1 : positive) {struct x0} :

positive :=

match x0 with

| (x2~1) %positive =>

(fix Ffix0 (x3 x4 : positive) {struct x3} :

positive :=

match x3 with

| (x5~1) %positive =>

match x4 with

| (x6~1) %positive =>

((Ffix1 x5 x6)~0) %positive

| (x6~0) %positive =>

((Ffix0 x5 x6)~1) %positive

| 1 %positive =>

(((fix Ffix2

(x6 : positive) : positive :=

match x6 with

| x7~1 => (Ffix2 x7)~0

| x7~0 => x7~1

| 1 => 2

end) x5)~0) %positive

end

...



Coq verification scenario

I same problem arises when proving properties of individual
networks...

Lemma robust: forall x y : nat, x = 1 %nat -> y = 1 %nat -> (NextOutput

Perceptron [x ; y]) = 1 %nat.

I Possibly reflecting to Booleans may help in some cases (SSR)?

I If you are a machine-learning student/professional, you will
ofcourse miss Python libraries for processing your big data
sets, using different learning algorithms, . . .

I you will miss real numbers that were hassle-free in Python
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F*

I a general-purpose functional programming language with
effects

I aimed at program verification

I puts together the automation of an SMT-backed deductive
verification tool

I with the expressive power of a proof assistant based on
dependent types.

I After verification, F* programs can be extracted to efficient
OCaml, F#, C, WASM, or ASM code.



F* to the rescue?

I You can get your reals back!

noeq type neuron =

| MakeNeuron :

output: list nat

-> weights: list real

-> psi: real

-> theta: real

-> current: real

-> output_Bin: bin_list output

-> leakRange: (0.0R <=. psi) /\ (psi <=. of_int 1)

-> posTheta: 0.0R <=. theta

-> wRange: weightinrange weights

-> neuron



F* to the rescue?

I You can get your connection to SMT solver back!

val perceptron :

neuron

let perceptron = MakeNeuron [0] [0.194R ; 0.195R] 1.0R 0.184R

0.0R

let add_id_l = assert (forall m n. ( (m >=. 0.5R) /\ (n >=. 0.5R

)) ==> (nextoutput perceptron [m ; n]) == 1)

I The above goes via Z3 check, and is more general than we
had via Python/Z3 ladder generation,

I moreover, not opaque for the Perceptron definition in F*!

I General properties are still proven smoothly
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F* to the rescue?

I But Computing is still hard!

I Mixing SMT solver output of type Unit, and other properties
(Prop) is hard.

I So, this lemma does not yield an automated proof via Z3:

val pp2: #a: Type -> Lemma ( (nextoutput perceptron [1.0R ;

1.0R]) == 1)

let pp2 = ()

(Error) Expected expression of type "Prims.Lemma unit

(nextoutput perceptron [1.0R; 1.0R] == 1) []"; got

expression "()" of type "unit"

I Still some way to go to become a widely used neural net
verification tool...



Conclusions

I Demand for neural net verification is growing

I The general methodology/ tools are there (like bits in a
puzzle)

I but they are not really gathered into a language ready to
become an industrial or educational tool

I A language like F* is a good idea, though better integration is
needed:
I with mainstream machine-learning languages like Python
I better interoperability between dependent types and SMT

solvers (if at all possible?)

LAIV is looking for solutions...

Thanks for your attention!
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