Modeling Human Proof Checking in the
Naproche-SAD System

BY PETER KOEPKE

University of Bonn, Germany

Big Proof Workshop, ICMS Edinburgh, 28 May 2019

Theorem Proving

— Proving that premisses ® entail a conclusion) :
O,

— The entailment relation ® 1) is generated by a simple calculus (Completeness Theorem).
— ®F 1) can in principle be proved by exhibiting a derivation in the calculus.

— ®F 1) is undecidable.

— Algorithmically approximations of ® -1/ lead to very high complexities.

— Automatic Theorem Provers (ATPs) can only prove simple instances.

— ®) is in general difficult to unsolvable for humans.

Interactive Theorem Proving (ITP)
— Human user and machine collaborate to prove ®).
— Human provides a formal proof text which supports finding a derivation of ® 1.

— Current ITPs favour procedural proof texts consisting of proof commands.

Formal Proof of the Kepler Conjecture in HOL Light and Isabelle (T. Hales et

let the_kepler_conjecture_def = new_definition’
‘the_kepler_conjecture <=>
('V. packing V
==> (7c. !r. &l <=r
==> &(CARD(V INTER ball(vec O,r))) <=

pi * r pow 3 / sqrt(&18) + ¢ * r pow 2))°;;

let kepler_conjecture_with_assumptions = prove_by_refinement (
‘1a: ((((A)list)list)list). tame_classification a /\
good_linear_programming_results a /\
the_nonlinear_inequalities
==> the_kepler_conjecture

[
b

(x {{{ proof x*)
[
REPEAT WEAKER_STRIP_TAC;

ASSUME_TAC Reductionb5.restricted_hypermaps_are_planegraphs_thm;

. al., 2014)

LEMMA 1.3. If there exists a negligible fcc-compatible function A : A — R
for a saturated packing A, then there exists a constant C' such that for allr > 1

and all x € R?,

d(x,r,A) <7m/VI18+ C/r.
The constant C' depends on A only through the constant C1.

Proof. The numerator vol B(xz,r, A) of d(x,r, A) is at most the product of
the volume of a ball 47/3 with the number |A(x,r + 1)| of balls intersecting
B(x,r). Hence

(1.1) vol B(z,r,A) < |A(z,r + 1)|47/3.

Ordinary Proof Texts

— Combination of grammatically correct natural language and symbolic material.
— Texts are read and processed sentence by sentence.

— The language is often close to formal logical languages.

— Usually, every variable is typed.

— Statements have to be type-correct.

LEMMA 1.3. If there exists a negligible fcc-compatible function A : A — R
for a saturated packing A, then there exists a constant C' such that for allr > 1

and all x € R?,

o(x,r,A) <7m/VI18+ C/r.
The constant C' depends on A only through the constant C'.

Proof. The numerator vol B(x,r, A) of 6(x,r, A) is at most the product of
the volume of a ball 47/3 with the number |A(x,r + 1)| of balls intersecting
B(x,r). Hence

(1.1) vol B(z,r,A) < |A(z,r + 1)|47/3.

LEMMA 1.3. [fthere exists a negligible fcc-compatible function A : A — R
for a saturated packing A. 'hen there exists a constant C' such that for allr > 1

and all x € R?,

o(x,r,A) <7m/VI18+ C/r.
The constant C' depends on A only through the constant C'.

Proof. The numerator vol B(x,r, A) of 6(x,r, A) is at most the product of
the volume of a ball 47/3 with the number |A(x,r + 1)| of balls intersecting
B(x,r). Hence

(1.1) vol B(z,r,A) < |A(z,r + 1)|47/3.

LEMMA 1.3. [fdhere exists a negligible fcc-compatible function A : A — R
(Jor @ saturated packing A, therfthere exists @ constant CCsueh that foralbr > 1

andlalb z € R3,

8(z,r,A) < m/V18 4+ C/r.
The constant C' depends on A only through the constant C'.

Proof. The numerator vol B(x,r, A) of (x,r, A) is at most the product of
the volume of a ball 47/3 with the number |A(z,r + 1)| of balls intersecting
B(x,r). Hence

(1.1) vol B(x,r,A) < |A(x,r + 1)|47/3.

LEMMA 1.3. [f@here exists @ negligible fcc-compatible function A : A — R
‘for a saturated packing A, 'heri there exists @ constant C' such that for allr > 1

andlalbz € R?,

8(z,r,A) < m/V18 4+ C/r.
The constant C' depends on A only through the constant C'.

Proof. The numerator vol B(x,r, A) of (x,r, A) is at most the product of
the volume of a ball 47/3 with the number |A(z,r + 1)| of balls intersecting
B(x,r). Hence

(1.1) vol B(x,r,A) < |A(x,r + 1)|47/3.

LEMMA 1.3. [[ithere exists @ negligible fcc-compatible function A : A — R
for @ saturated packing A, 'hen there exists @ constant C' such that for allr > 1

andlalbz € R>,

8(z,r,A) < m/V18 4+ C/r.
The constant C' depends on A only through the constant C1.

Proof. The numerator vol B(x,r, A) of (x,r, A) is at most the product of
the volume of a ball 47/3 with the number |A(z,r + 1)| of balls intersecting
B(x,r). Hence

(1.1) vol B(x,r,A) < |A(x,r + 1)|47/3.

LEMMA 1.3. [[ithere exists @ negligible fcc-compatible function A : A — R
for @ saturated packing A, 'hen there exists @ constant C' such that for allr > 1

andlalbz € R3,
§(z,r,A) < m/V18 + C/r. <--- Type correct?
The constant C' depends on A only through the constant C'.

Proof. The numerator vol B(x,r, A) of (x,r, A) is at most the product of
the volume of a ball 47/3 with the number |A(z,r + 1)| of balls intersecting
B(x,r). Hence

(1.1) vol B(x,r,A) < |A(x,r + 1)|47/3.

Checking Ordinary Proof Texts
Texts are processed sentence by sentence:
— Reading
— Understanding
— Reasoning
— Identifying smaller proof tasks
— Discharging tasks by “high level” reasoning

— Discharging tasks by “low level” derivation search, possibly with multiple attempts

Checking Ordinary Proof Texts
Texts are processed sentence by sentence:
— Reading [tokenizer, parser]
— Understanding [parser, typechecking]
— Reasoning [main process]
— ldentifying smaller proof tasks [tactics, heuristics]
— Discharging tasks by “high level” reasoning [lookup with small tableau prover]

— Discharging tasks by “low level” derivation search, possibly with multiple attempts [ATPs,
term rewriting]

Checking Ordinary Proof Texts
Texts are processed sentence by sentence:
— Reading [tokenizer, parser]
— Understanding [parser, typechecking]
— Reasoning [main process]
— ldentifying smaller proof tasks [tactics, heuristics]
— Discharging tasks by “high level” reasoning [lookup with small tableau prover]

— Discharging tasks by “low level” derivation search, possibly with multiple attempts [ATPs,
term rewriting]

Several feedback loops; results of previous reasoning can influence all components of further
checking.

Evidence Algorithm

1of2

2 vidence
| lgorithm

&
‘ 1 By the end of 1960s Academician V. Glushkov advanced a programme on

N "“investigating automated theorem proving, which was later called the
Evidence Algorithm, EA (first mentioned in "Kibernetika", 2, 1970). V. Glushkov
proposed to make investigation simultaneously into formalized languages for
presenting mathematical texts in the form most appropriate for a user, formalization
and evolutional development of computer-made proof step, EA information
environment having an influence on a current evidence of computer-made proof step,

and interactive man-assistant search of proof.

SAD system Since then, a lot of investigations were made in all the above

, spheres. Russian and English versions of the formalized
Explanations . : .

mathematical languages were developed. Their syntactical

Download analyzers were designed. At present time, a translator of the

English-based Formal Theory Language (ForThel) into the first-

Our Team o
order language is implemented.

A sequential formalism was developed for construction of an
efficient technique of proof search in an initial theory (without
preliminary skolemization). A special approach was offered for
applying definitions and auxiliary propositions that takes into
account the neighbourhood of the proposition to be proved. Basing
on this formalism, a first-order prover was implemented.

As a result, the System for Automated Deduction (SAD) appeared.

Theses of the EA programme promise to be helpful in attacking such problems as
distributed automated theorem proving, verification of mathematical texts, remote

training in mathematical disciplines, and construction of databases for mathematical
theories.

http://nevidal.org/

5/25/19, 10:34 PM

Evidence Algorithm (SAD system)

SAD system

Explanations

Inference Search

Theorem Proving

Download
Text Verification

http://nevidal.org/cgi-bin/sad.cgi?ty=txt&In=en&link=primes.ftl

Vav.i.dence

lgorithm
Our Team

TPTP Problems

[number/-s]
Signature NatSort. A natural number is a notion.
Let i,j,k,1,m,n denote natural numbers.

Signature SortsC. 0 is a natural number.
Let x is nonzero stand for x = 0.
Signature SortsC. 1 is a nonzero natural number.

Let x is trivial stand for x = 0 \/ x = 1.
Let x is nontrivial stand for x !'= 0 and x != 1.

m + n is a natural number.
m * n is a natural number.

Signature SortsB.
Signature SortsB.

m+n=n+m.
(m+n)+1T=m+ (n+ 1).

Axiom AddComm.
Axiom AddAsso.

Parse Verify with Moses Verify with

Time limit (1-600 sec) 3

[Help 1 [Examples]

SPASS 3.7 v Clear

3 Verbosity level (0-6)

to Russian

1of1

Last modified: 3 Aug 2008

5/25/19, 10:36 PM

History of Naproche-SAD

1970 Victor Glushkov: Evidence Algorithm

1980 Victor Glushkov: System for Automated Deduction (SAD)

2008 Andrei Paskevich SAD (PhD project, Kiev, Paris)

2013 Marcos Cramer Naproche (PhD project, Natural Proof Checking, Bonn)
2018 Steffen Frerix SAD (Master project, Bonn)

Further development of SAD within the Naproche programme:

improving and extending the SAD code; larger formalizations; IATEX-typesetting
2018/19 with Makarius Wenzel: Embedding Naproche-SAD into the Isabelle PIDE

Demo

System for Automated Deduction

___ ForThel.
SAD ; FOL ForThel rext
__ | TPTP parser
verification manageré RO '
. [evidence collector e S¢nence —
E—
: ? ‘ Efortified —
| | ontological check “sentence S — o5
proof task ‘ I tter
, : =] :
reaSﬁner filter J‘?meftask — ~ r+{SPASS
Sim Iif <—Unf0|d T
$p Y y | i prover Moses | [*|Vampire
split |-/ provel| : | SN
o isequent ... LelEProver

— manager: decompose input text into separate proof tasks
— reasoner: big steps of reasoning, heuristic proof methods

— prover: inference search in a sound and complete calculus

System for Automated Deduction

. i ForTheL‘ FortTe};fL
.. | TPTP parser
Verification manager e '
 [evidence collector |eS¢ntence [— ——
] | —
* ‘ fortified —
.| | ontological check “sentence —— .
proof task ‘ E— Otter
. : =1
reas?ner filter proof task — e SPASS
sim lif ‘—UﬂfO'd ... :
"p . F_ | Prover Moses | r*{Vampire
split || provell : : 8
S iisequent |i ‘el EProver

— manager: decompose input text into separate proof tasks

— reasoner: big steps of reasoning, heuristic proof methods

— prover: inference search in a sound and complete calculus

ForTheL (Formula Theory Language)
Signature. A real number is a notion.
Let =, v, z stand for real numbers.
Definition. IR is the set of real numbers.
Signature. x - y is a real number.
Axiom. r-y=1y- .

Signature. A positive integer is a real number.

Theorem 7. (120a) If x €R and y € R and x > 0 then there is a positive integer n such that

n-r>vy.

ForTheL (Formula Theory Language)
ForThel is a weakly typed language: variables belong to notions (~ types).
Functions and relations are typed: x - y is a real number; multiplication is of type R x R — IR.

First-order logic is used internally. The parser translates types into type-guards:

a / the real number x = realNumber(x)
x -1y is a real number = realNumber(x) A realNumber(y) — realNumber(x - y)

A positive integer is a real number = poslInt(z) — realNumber(x)

ForTheL (Formula Theory Language)
Function and relations can be introduced by symbolic patterns.

Signature. \Prod{m}{n}{f} is a real number. Let the product of f from m to
n stand for \Prod{m}{n}{f}.

\Prod{m}{n}{f} complies with the IATEX syntax for macros. With an appropriate macro
definition it will, e.g., be typeset as

n

fi

1=m

It is easy to filter ILATEX-files to ForTheL-files. We are currently embedding ForTheL into IATEX.

System for Automated Deduction

. iy i ForgﬁfL
.. | TPTP parser
Verification manager e '
- [evidence collector |eS¢ntence [= —— |
. g — |
? ‘ fortified | :
ontological check “sentence “— o
proof task L ||| Otter
. : =] :
reas?ner filter proof task — . | SPASS
simolifv = unfold ...
"p . F_ | Prover Moses | ®{Vampire
split || provell : : 8
S iisequent |i ‘el EProver

— manager: decompose input text into separate proof tasks

— reasoner: big steps of reasoning, heuristic proof methods

— prover: inference search in a sound and complete calculus

Notions: Ontological Checking

Naproche-SAD accepts statements only if they are type correct (ontologically correct)

Theorem 8. (120a) If x € R and y € R and x > 0 then there is a positive integer n. such that

n-r>y.

The subterm n - = has to be type correct at the place where it is stated. The variables are typed
as realNumber(x) and posInt(n). Using the universal implication posInt(x) — realNumber(x)
we can “prove” that realNumber(n). Hence n - x is legitimate.

Type correctness has to be proved before proving the existence of n.

Notions: Treatment of Undefinedness
Division can be introduced as:

Signature. Assume y == 0. Then % is a real number.

The term < is ontologically correct within a text if one can prove b0 from the statements and
b gically p

assumptions made before the position of the term.

This check corresponds to the “dynamic” correctness checking common in mathematics. It is
not captured by static typechecking as in programming languages.

Notions can be defined by arbitrary first-order formulas

Definition. A prime number is a positive integer such that [first-order condition].
Notions can model ascending number systems:

Signature. A rational number is a real number.

Signature. A positive integer is a rational number.

This introduces natural subtypes

NCQCRCC

Notions ~ weak types (similar to the types in Mizar). Notions do not satisfy one of the standard
type theories.

System for Automated Deduction

SAD L L FO’;TeﬁfL
.. , TPTP parser
Verification manager e '
 [evidence collector |S¢ntence | — ——
] | —
* ‘ fortified —
.| | ontological check “sentence —— .
proof task‘ — Otter
reasoner | fijjter he T (=
] proof tas & SPASS
Sim |If ‘—UﬂfOId ...
"p . F_| Prover Moses | ®{Vampire
split || prove] 8
S sequent |ii e EProver

— manager: decompose input text into separate proof tasks

— reasoner: big steps of reasoning, heuristic proof methods

— prover: inference search in a sound and complete calculus

First-Order Proving

Break down ForThel statements into smaller first-order proof obligations.

Split ¢ A1) into proof of ¢ from the given assumptions I and a subsequent proof of i) from I, .
(o A1) is handled differently from) A : ¢ A 1) may be accepted, but 1) not).
Goal-orientated proving: if the goal is ¢ — 1) then “Assume " reduces the goal to .

Proof methods like induction or case distinctions can be stated in ForThelL and automatically
generate proof obligations:

Induction: to prove Vz ¢ it suffices to prove Vy (y <z — ¢(y)) — w(x).

Cases: prove the goal under the case assumptions and prove that the assumptions exhaust all
possibilities.

Term rewriting for proving equalities; this may generate further obligations like b 0.

E Prover
Proof obligations that cannot be resolved trivially by the Reasoner are sent to E Prover.
The proof obligations generated by the Reasoner should be within reach of E Prover.

If E Prover fails, an obligation can be sent again with more premisses (unfolding of definitions).

Formalizing Rudin in Naproche-SAD

Theorem 1. (a) If € R, y€ R, and x >0,
then there is a positive integer n such that

nT>1.

Proof. Let A be the set of all nz, where n
runs through the positive integers. If (a) were
false, then y would be an upper bound of A.
But then A has a least upper bound in IR.
Put a« =sup A. Since x >0, o — =z < «, and
o — x is not an upper bound of A. Hence
o —x < mx for some positive integer m. But
then o< (m +1)x € A, which is impossible,
since « is an upper bound of A.]

Theorem 2. (120a) If r € R and y € R and

x >0 then there is a positive integer n such
that

n-x>1y.

Proof. Define X = {n - z| nis a positive
integer}. Assume the contrary. Then y is an
upper bound of X. Take a least upper bound
aof X. a—x<aand a—x is not an upper
bound of X. Take an element z of X such
that not z < a — x. Take a positive integer
m such that z=m-2z. Then a — 2z <m -

x (by 15b).
a=(a—z)+x<(m-z)+xr=(m+1)- x.

(m—+1)-xis an element of X. Contradiction.
Indeed «v is an upper bound of X.]

Formalizing Rudin in Naproche-SAD

Theorem 3. If x € R, y € R, and x <y, then there
exists a p € QQ such that x < p <.

Proof. Since x <y, we have y —x >0, and (a) fur-
nishes a positive integer n such that

m(y —x)> 1.

Apply (a) again, to obtain positive integers m; and
mo such that m1 >nx, ma> —nx. Then

—mo<nx<mi.

Hence there is an integer m (with —mo < m < m;)
such that

m—1<nzxz<m.
If we combine these inequalities, we obtain
nr<m<l4+nzr<ny.
Since n > 0, it follows that

m
< —<Uy.
n

This proves (b), with p=m/n. 0

Theorem 4. (120b) Ifx € R andy € R and xz <y then
there exists a rational number p such that x <p <.

Proof. Assume = < y. We have y — x > 0. Take a
positive integer n such that n-(y —) > 1 (by 120a).
Take an integer m such that m — 1 <n-x <m. Then

n-x<m=(m-—1)+1
<(m-z)+1<(n-z)+n-(y—2z))
=n-(r+(y—x))=n-y.

m<(n-z)+1<n-y. %<% Indeed m < n -y
and 1/n>0. Then

n-r _m _n-y
r=—" < —<—2=y.
n n n

Letp:%. Then pe @ and x < p < .]

Naproche-SAD Formalizations

Further parts of Rudin's Analysis.

The Appendix of Kelley's General Topology about Kelley-Morse Set Theory.
Zermelo-Fraenkel Set Theory up to ordinals and cardinals

Small proofs from areas like elementary number theory, complex analysis,

ORDERED PAIRS: RELATIONS 259

ORDERED PAIRS: RELATIONS

This section is devoted to the properties of ordered pairs and
relations. The crucial property for ordered pairs is theorem 55:
if ¥ and y are sets, then (x,y) = (#,0) iff x = u and y = v.

48 DEerFINITION (%) = {{x}{xy}}.
The class (x,y) is an ordered pair.

49 THEOREM (x,y) is a set if and only if x is a set and y is a set;
if (x,y) is not a set, then (x,y) = U.

50 Turorem If x and y are sets, then J(x,y) = {xy}, N (%)
= {x})_ Un(x,}’) =x NNFy) =% UU@y) =x Uy and
nU(x).y) =X ny'

If either x or y is not a set, then N (%y) = 0, NN (x,y) =,
UU("‘,}’) = U, and nU(x,_‘}’) = Q.

51 DeriniTiON 1% coord 2 = ([)z.
52 DerinttioN 2™ coord z = (NU2) U ((UU2) ~ UN2).

These definitions will be used, with one exception, only in the
case where z is an ordered pair. The first coordinate of z is 1%
coord z and the second coordinate of 2z is 2 coord z.

53 THEOREM 2™ coord U = .

54 THEOREM If x and y are sets 1** coord (x,y) = x and 2™
coord (%,y) = y. If either of x and y is not a set, then 1** coord
(%,y) = U and 2* coord (x,y) = .

PROOF If x and y are sets, then the equality for 1* coord is im-
mediate from 50 and 51. The equality for 2 coord reduces to
showing that y = (¥ N y) U ((x U y) ~«), by 50 and 52. It
is straightforward to see that (x U y) ~x = y ~ & and by the
distributivelaw (y Nx) U (y N ~x)isy N (* U ~x) =y N
= y. If either x or y is not a set, then, using 50 it is easy to
compute 1* coord (x,y) and 2™ coord (x,y). |

55 THEOREM If x and y are sets and (x,y) = (), then x = u
andy = v.

ELEMENTARY SET THEORY

An SAD3 Formalisation of the Appendix of
” General Topology” by John L. Kelley

October 26, 2018

0.1 The Classification Axiom Scheme

Let a,b,c,d,e,r, s,t,x,y, z stand for classes.
Let a € z stand for a is an element of x.

Axiom (I). For each x for each y x =y iff for each z z € x iff z € y.
[set/-s]

Definition (1). A set is a class x such that for some y x € y.

0.2 Elementary Algebra of Classes

Definition (2). zUy = {setu|u €z oru € y}.
Definition (3). x Ny = {setu|u € x and u € y}.

Let the union of x and y stand for x Uy. Let the intersection of x and y stand for
rNy.

Theorem (4a). z€c x Uy iff z € x or z € y.

Theorem (4b). z€ex Ny iff z€ x and z € y.

Theorem (5a). zUz = x.

Theorem (6a). xUy =y Ux.

Theorem (6b). zNy =y Nx.

(4a)
(4b)

(5a)
Theorem (5b). z Nz ==.
(6a)

(6b)

(7a)

Theorem (7a). (zUy)Uz=zU(yU z).

Theorem (7b). (zNy)Nz=zN(yNz).
Theorem (8a). N (yUz) = (zNy)U(xNz).
Theorem (8b). zU(yNz)=(zUy)N(zUz).
Let a ¢ b stand for a is not an element of b.
Definition (10). ~ z = {set u | u ¢ x}. Let the complement of z stand for ~ x.
Theorem (11). ~ (~) = x.
Theorem (12a). ~ (zUy) = (~x) N (~y).
Theorem (12b). ~ (z Ny) = (~z) U (~y).
Definition (13). z ~y =z N (~y).
Theorem (14). zN(y ~2) = (xNy) ~ z.

Definition (15). 0 = {set u | u # u}. Let the void class stand for 0. Let zero stand
for 0.

Theorem (16). z ¢ 0.
Theorem (17a). 0Uz = z.
Theorem (17b). 0Nz = 0.

Definition (18). U = {set u | uw = u}. Let the universe stand for U.

Theorem (19). z € U iff = is a set.
Theorem (20a). x UU =U.
Theorem (20b). zNU = x.
Theorem (21a). ~0=U.
Theorem (21b). ~U = 0.

Definition (22). (N« = {setu | for eachy ify € x then u € y}. Let the intersection
of x stand for (.

Definition (23). |Jz = {setu | for some y(y € © and u € y)}. Let the union of x
stand for |Jx.

Theorem (24a). (10 =U.
Theorem (24b). |JO = 0.

Definition (25). A subclass of y is a class x such that each element of x is an element
ofy. Let x C y stand for x is a subclass of y. Let x is contained in y stand for x C y.

Proposition. 0 C 0 and 0 ¢ 0.
Theorem (26a). 0 C z.
Theorem (26b). = C U.

Theorem (27). x =y ifft Cy and y C x.

Theorem

rCyifftUy=y.

30

).
28). If x Cy andy C z then = C z.

)

Theorem (30).

rCyiffzrNy==x.

3la). Ifx Cy then Jx C Jy.

If v Cy then Ny CNx.

Theorem)
).

32a). If x € y then x C Jy.
).

Theorem (31a

(
(
(
(

Theorem (29
(
(
(
Theorem (
(

Theorem (32b

If x €y then Ny C .

0.3 Existence of Sets

Axiom (IIT). If x is a set then there is a set y such that for each z if z C x then
zE€y.

Theorem (33). If x is a set and z C x then z is a set.
Theorem (34a). 0 =[U.

Theorem (34b). U = JU.

Theorem (35). If x # 0 then (\x is a set.
Definition (36). 2* = {sety | y C z}.

Theorem (37). U = 24.

Theorem (38a). If x is a set then 2% is a set.

Proof. Let = be a set. Take a set y such that for each z if z C = then z € y (by III).
Then 2% C y. O

Theorem (38b). If x is a set then y C x iff y € 2*.
Definition. R = {set z | = ¢ x}.

Lemma. R is not a set.

Theorem (39). U is not a set.

Definition (40). {z} = {set z | if x € U then z = x}. Let the singleton of = stand
for {x}.

Theorem (41). If x is a set then for each y y € {z} iff y = z.
Theorem (42). If x is a set then {x} is a set.
Proof. Let = be a set. Then {z} C 2*. 27 is a class. O
Theorem (43). {x} =U iff x is not a set.
Theorem (44a). If x is a set then ({z} = z.
Theorem (44b). If x is a set then |J{z} = x.
Theorem (44c). If x is not a set then ({z} = 0.
Theorem (44d). If x is not a set then | J{z} =U.
Axiom (IV). If x is a set and y is a set then x Uy is a set.
)

Definition (45
{z,y}.

. Az,y} = {z} U{y}. Let the unordered pair of x and y stand for

Theorem (46a). If x is a set and y is a set then {x,y} is a set.

Theorem (46b). If z is a set and y is a set then z € {z,y} iff z =x or z =y.
Theorem (46¢). {z,y} =U iff x is not a set or y is not a set.

Theorem (47a). If x,y are sets then (\{z,y} =xNy.

Theorem (47b). If x,y are sets then | J{z,y} =z Uy.

Proof. Let z,y be sets. |J{z,y} CzUy. 2 Uy C U{x,y}. O
Theorem (47c). If x is not a set or y is not a set then (\{z,y} = 0.

Theorem (47d). If x is not a set ory is not a set then | J{z,y} =U.

0.4 Ordered Pairs: Relations

Definition (48). (z,y) = {{z},{z,y}}. Let the ordered pair of and y stand for
(2,9).
Theorem (49a). (x,y) is a set iff is a set and y is a set.

Theorem (49b). If (x,y) is not a set then (z,y) =U.

Theorem (50). If x and y are sets then |J(z,y) = {x,y} and N(z,y) = {z} and
UN(z,y) =z and NN(z,y) = 2 and UU(z,y) = 2 Uy and NU(z,y) = 2 Ny.

Theorem. If x is not a set or y is not a set then |J(\(z,y) =0 and (=, y) =U
and UU(z,y) =U and NU(z,y) = 0.

Definition (51). 152 = (2. Let the first coordinate of z stand for 15z.

Definition (52). 2"z = (NU2) U (UUz2) ~UN%). Let the second coordinate of
z stand for 2™z,

Theorem (53). 2"U =U.
Theorem (54a). If x and y are sets then 15 (x,y) = x.

Theorem (54b). If x and y are sets then 2™ (x,y) = y.

Proof. Let x and y be sets. 2"(z,y) = (NU(z,»)) U (UU(z,9)) ~ UN(,y)) =
(rNy)u((zUy) ~z)=y. O

Theorem (54c). If x is not a set ory is not a set then 1°¢(z,y) = U and 2" (x,y) =

Theorem (55). If x and y are sets and (z,y) = (r,s) then x =1 and y = s.

Demo

Discussion

— Is natural language formal mathematics viable? Is it possible to reach the efficiency and
coverage of other ITPs? How would one organize libraries of natural language formal math-
ematics?

— Can natural language formal mathematics help the acceptance and use of formal mathe-
matics in the mathematical community?

— Can one develop ForThel-like languages and interfaces for standard ITPs?
— Research the language and linguistics of mathematics.

— Develop logics that combine first-order set theory and type theory.

Thank you!

