
Modeling Human Proof Checking in the
Naproche-SAD System

by Peter Koepke

University of Bonn, Germany

Big Proof Workshop, ICMS Edinburgh, 28 May 2019

Theorem Proving

¡ Proving that premisses � entail a conclusion :

�` :

¡ The entailment relation �` is generated by a simple calculus (Completeness Theorem).

¡ �` can in principle be proved by exhibiting a derivation in the calculus.

¡ �` is undecidable.

¡ Algorithmically approximations of �` lead to very high complexities.

¡ Automatic Theorem Provers (ATPs) can only prove simple instances.

¡ �` is in general di�cult to unsolvable for humans.

Interactive Theorem Proving (ITP)

¡ Human user and machine collaborate to prove �` .

¡ Human provides a formal proof text which supports �nding a derivation of �` .

¡ Current ITPs favour procedural proof texts consisting of proof commands.

Formal Proof of the Kepler Conjecture in HOL Light and Isabelle (T. Hales et. al., 2014)

let the_kepler_conjecture_def = new_definition'

`the_kepler_conjecture <=>

(!V. packing V

==> (?c. !r. &1 <= r

==> &(CARD(V INTER ball(vec 0,r))) <=

pi * r pow 3 / sqrt(&18) + c * r pow 2))`;;

. . .

let kepler_conjecture_with_assumptions = prove_by_refinement(

`!a:((((A)list)list)list). tame_classification a /\

good_linear_programming_results a /\

the_nonlinear_inequalities

==> the_kepler_conjecture

`,

(* {{{ proof *)

[

REPEAT WEAKER_STRIP_TAC;

ASSUME_TAC Reduction5.restricted_hypermaps_are_planegraphs_thm;

. . .

Ordinary Proof Texts

¡ Combination of grammatically correct natural language and symbolic material.

¡ Texts are read and processed sentence by sentence.

¡ The language is often close to formal logical languages.

¡ Usually, every variable is typed.

¡ Statements have to be type-correct.

<--- Type correct?

Checking Ordinary Proof Texts

Texts are processed sentence by sentence:

¡ Reading

¡ Understanding

¡ Reasoning

¡ Identifying smaller proof tasks

¡ Discharging tasks by �high level� reasoning

¡ Discharging tasks by �low level� derivation search, possibly with multiple attempts

Checking Ordinary Proof Texts

Texts are processed sentence by sentence:

¡ Reading [tokenizer, parser]

¡ Understanding [parser, typechecking]

¡ Reasoning [main process]

¡ Identifying smaller proof tasks [tactics, heuristics]

¡ Discharging tasks by �high level� reasoning [lookup with small tableau prover]

¡ Discharging tasks by �low level� derivation search, possibly with multiple attempts [ATPs,
term rewriting]

Checking Ordinary Proof Texts

Texts are processed sentence by sentence:

¡ Reading [tokenizer, parser]

¡ Understanding [parser, typechecking]

¡ Reasoning [main process]

¡ Identifying smaller proof tasks [tactics, heuristics]

¡ Discharging tasks by �high level� reasoning [lookup with small tableau prover]

¡ Discharging tasks by �low level� derivation search, possibly with multiple attempts [ATPs,
term rewriting]

Several feedback loops; results of previous reasoning can in�uence all components of further
checking.

SAD system

Explanations

Download

Our Team

By the end of 1960s Academician V. Glushkov advanced a programme on
investigating automated theorem proving, which was later called the

Evidence Algorithm, EA (first mentioned in "Kibernetika", 2, 1970). V. Glushkov
proposed to make investigation simultaneously into formalized languages for
presenting mathematical texts in the form most appropriate for a user, formalization
and evolutional development of computer-made proof step, EA information
environment having an influence on a current evidence of computer-made proof step,

and interactive man-assistant search of proof.

Since then, a lot of investigations were made in all the above
spheres. Russian and English versions of the formalized
mathematical languages were developed. Their syntactical
analyzers were designed. At present time, a translator of the
English-based Formal Theory Language (ForTheL) into the first-
order language is implemented.

A sequential formalism was developed for construction of an
efficient technique of proof search in an initial theory (without
preliminary skolemization). A special approach was offered for
applying definitions and auxiliary propositions that takes into
account the neighbourhood of the proposition to be proved. Basing
on this formalism, a first-order prover was implemented.

As a result, the System for Automated Deduction (SAD) appeared.

Theses of the EA programme promise to be helpful in attacking such problems as
distributed automated theorem proving, verification of mathematical texts, remote
training in mathematical disciplines, and construction of databases for mathematical
theories.

Evidence Algorithm http://nevidal.org/

1 of 2 5/25/19, 10:34 PM

THE SYSTEM FOR AUTOMATED DEDUCTION

SAD system Explanations Download Our Team

Inference Search Theorem Proving Text Verification TPTP Problems

[Help] [Examples]
[number/-s]

Signature NatSort. A natural number is a notion.

Let i,j,k,l,m,n denote natural numbers.

Signature SortsC. 0 is a natural number.

Let x is nonzero stand for x != 0.

Signature SortsC. 1 is a nonzero natural number.

Let x is trivial stand for x = 0 \/ x = 1.
Let x is nontrivial stand for x != 0 and x != 1.

Signature SortsB. m + n is a natural number.
Signature SortsB. m * n is a natural number.

Axiom AddComm. m + n = n + m.
Axiom AddAsso. (m + n) + l = m + (n + l).

Parse Verify with Moses Verify with SPASS 3.7 Clear

Time limit (1–600 sec) 3 3 Verbosity level (0–6)

to Russian Last modified: 3 Aug 2008

Evidence Algorithm (SAD system) http://nevidal.org/cgi-bin/sad.cgi?ty=txt&ln=en&link=primes.ftl

1 of 1 5/25/19, 10:36 PM

History of Naproche-SAD

1970 Victor Glushkov: Evidence Algorithm

1980 Victor Glushkov: System for Automated Deduction (SAD)

2008 Andrei Paskevich SAD (PhD project, Kiev, Paris)

2013 Marcos Cramer Naproche (PhD project, Natural Proof Checking, Bonn)

2018 Ste�en Frerix SAD (Master project, Bonn)

Further development of SAD within the Naproche programme:

improving and extending the SAD code; larger formalizations; LATEX-typesetting

2018/19 with Makarius Wenzel: Embedding Naproche-SAD into the Isabelle PIDE

Demo

������ ��� ��������� ���������

fortified
sentence

text
ForTheL

Moses Vampire

E Prover

SPASS

Otter

parser

proof task

evidence collector

ontological check

simplify

prove

unfold

filter

sentence

verification manager

proof task
reasoner

SAD
ForTheLFOL

TPTP

prover

sequent
split

� �������� ��������� ����� ���� ���� �������� ����� �����

� ��������� ��� ����� �� ���������� ��������� ����� �������

� ������� ��������� ������ �� � ����� ��� �������� ��������

������ ��� ��������� ���������

fortified
sentence

text
ForTheL

Moses Vampire

E Prover

SPASS

Otter

parser

proof task

evidence collector

ontological check

simplify

prove

unfold

filter

sentence

verification manager

proof task
reasoner

SAD
ForTheLFOL

TPTP

prover

sequent
split

� �������� ��������� ����� ���� ���� �������� ����� �����

� ��������� ��� ����� �� ���������� ��������� ����� �������

� ������� ��������� ������ �� � ����� ��� �������� ��������

ForTheL (Formula Theory Language)

Signature. A real number is a notion.

Let x; y; z stand for real numbers.

De�nition. R is the set of real numbers.

Signature. x � y is a real number.

Axiom. x � y= y �x.

Signature. A positive integer is a real number.

Theorem 7. (120a) If x2R and y 2R and x> 0 then there is a positive integer n such that

n �x> y:

ForTheL (Formula Theory Language)

ForTheL is a weakly typed language: variables belong to notions (� types).

Functions and relations are typed: x � y is a real number; multiplication is of type R�R!R.

First-order logic is used internally. The parser translates types into type-guards:

a / the real number x =) realNumber(x)

x � y is a real number =) realNumber(x)^ realNumber(y)! realNumber(x � y)

A positive integer is a real number =) posInt(x)! realNumber(x)

ForTheL (Formula Theory Language)

Function and relations can be introduced by symbolic patterns.

Signature. \Prod{m}{n}{f} is a real number. Let the product of f from m to

n stand for \Prod{m}{n}{f}.

\Prod{m}{n}{f} complies with the LATEX syntax for macros. With an appropriate macro

de�nition it will, e.g., be typeset as

Y

i=m

n

fi

It is easy to �lter LATEX-�les to ForTheL-�les. We are currently embedding ForTheL into LATEX.

������ ��� ��������� ���������

fortified
sentence

text
ForTheL

Moses Vampire

E Prover

SPASS

Otter

parser

proof task

evidence collector

ontological check

simplify

prove

unfold

filter

sentence

verification manager

proof task
reasoner

SAD
ForTheLFOL

TPTP

prover

sequent
split

� �������� ��������� ����� ���� ���� �������� ����� �����

� ��������� ��� ����� �� ���������� ��������� ����� �������

� ������� ��������� ������ �� � ����� ��� �������� ��������

Notions: Ontological Checking

Naproche-SAD accepts statements only if they are type correct (ontologically correct)

Theorem 8. (120a) If x2R and y 2R and x> 0 then there is a positive integer n such that

n �x> y:

The subterm n �x has to be type correct at the place where it is stated. The variables are typed

as realNumber(x) and posInt(n). Using the universal implication posInt(x)! realNumber(x)
we can �prove� that realNumber(n). Hence n �x is legitimate.

Type correctness has to be proved before proving the existence of n.

Notions: Treatment of Unde�nedness

Division can be introduced as:

Signature. Assume y=/ 0. Then
x

y
is a real number.

The term
a

b
is ontologically correct within a text if one can prove b=/ 0 from the statements and

assumptions made before the position of the term.

This check corresponds to the �dynamic� correctness checking common in mathematics. It is

not captured by static typechecking as in programming languages.

Notions can be de�ned by arbitrary �rst-order formulas

De�nition. A prime number is a positive integer such that [�rst-order condition].

Notions can model ascending number systems:

Signature. A rational number is a real number.

Signature. A positive integer is a rational number.

This introduces natural subtypes

N�Q�R�C

Notions � weak types (similar to the types in Mizar). Notions do not satisfy one of the standard

type theories.

������ ��� ��������� ���������

fortified
sentence

text
ForTheL

Moses Vampire

E Prover

SPASS

Otter

parser

proof task

evidence collector

ontological check

simplify

prove

unfold

filter

sentence

verification manager

proof task
reasoner

SAD
ForTheLFOL

TPTP

prover

sequent
split

� �������� ��������� ����� ���� ���� �������� ����� �����

� ��������� ��� ����� �� ���������� ��������� ����� �������

� ������� ��������� ������ �� � ����� ��� �������� ��������

First-Order Proving

Break down ForTheL statements into smaller �rst-order proof obligations.

Split '^ into proof of ' from the given assumptions ¡ and a subsequent proof of from ¡; '.

('^ is handled di�erently from ^ ': '^ may be accepted, but not).

Goal-orientated proving: if the goal is '! then �Assume '� reduces the goal to .

Proof methods like induction or case distinctions can be stated in ForTheL and automatically
generate proof obligations:

Induction: to prove 8x' it su�ces to prove 8y (y�x! '(y))! '(x).

Cases: prove the goal under the case assumptions and prove that the assumptions exhaust all
possibilities.

Term rewriting for proving equalities; this may generate further obligations like b=/ 0.

E Prover

Proof obligations that cannot be resolved trivially by the Reasoner are sent to E Prover.

The proof obligations generated by the Reasoner should be within reach of E Prover.

If E Prover fails, an obligation can be sent again with more premisses (unfolding of de�nitions).

Formalizing Rudin in Naproche-SAD

Theorem 1. (a) If x2R, y 2R, and x> 0,
then there is a positive integer n such that

nx> y:

Proof. Let A be the set of all n x, where n
runs through the positive integers. If (a) were
false, then y would be an upper bound of A.
But then A has a least upper bound in R.
Put �= supA. Since x> 0, �¡ x<�, and
� ¡ x is not an upper bound of A. Hence
�¡x<mx for some positive integer m. But
then �< (m+1)x2A, which is impossible,
since � is an upper bound of A. �

Theorem 2. (120a) If x2R and y2R and
x> 0 then there is a positive integer n such
that

n �x> y:

Proof. Define X = fn � xj nis a positive
integerg. Assume the contrary. Then y is an
upper bound of X. Take a least upper bound
� of X. �¡x<� and �¡x is not an upper
bound of X. Take an element z of X such
that not z � � ¡ x. Take a positive integer
m such that z =m � x. Then � ¡ x <m �
x (by 15b).

�=(�¡x)+x< (m �x)+x=(m+1) �x.
(m+1) �x is an element of X. Contradiction.
Indeed � is an upper bound of X . �

Formalizing Rudin in Naproche-SAD

Theorem 3. If x 2R, y 2R, and x < y, then there
exists a p2Q such that x< p< y.

Proof. Since x< y, we have y ¡ x> 0, and (a) fur-
nishes a positive integer n such that

m (y¡ x)> 1:

Apply (a) again, to obtain positive integers m1 and
m2 such that m1>nx, m2>¡nx. Then

¡m2<nx<m1:

Hence there is an integer m (with ¡m2�m �m1)
such that

m¡ 1�nx<m:

If we combine these inequalities, we obtain

nx<m� 1+nx<ny:

Since n> 0, it follows that

x<
m

n
< y:

This proves (b), with p=m/n. �

Theorem 4. (120b) If x2R and y2R and x<y then
there exists a rational number p such that x< p< y.

Proof. Assume x < y. We have y ¡ x > 0. Take a
positive integer n such that n � (y¡x)> 1 (by 120a).
Take an integer m such thatm¡1�n �x<m. Then

n � x<m=(m¡ 1)+1

�(n � x)+ 1< (n �x)+ (n � (y¡ x))

=n � (x+(y¡ x))=n � y:

m� (n � x) + 1<n � y. m

n
<

n � y
n

. Indeed m<n � y
and 1/n> 0. Then

x=
n � x
n

<
m

n
<
n � y
n

= y:

Let p= m

n
. Then p2Q and x< p< y. �

Naproche-SAD Formalizations

Further parts of Rudin's Analysis.

The Appendix of Kelley's General Topology about Kelley-Morse Set Theory.

Zermelo-Fraenkel Set Theory up to ordinals and cardinals

Small proofs from areas like elementary number theory, complex analysis,

ELEMENTARY SET THEORY
An SAD3 Formalisation of the Appendix of

”General Topology” by John L. Kelley

October 26, 2018

0.1 The Classification Axiom Scheme

Let a, b, c, d, e, r, s, t, x, y, z stand for classes.
Let a ∈ x stand for a is an element of x.

Axiom (I). For each x for each y x = y iff for each z z ∈ x iff z ∈ y.

[set/-s]

Definition (1). A set is a class x such that for some y x ∈ y.

0.2 Elementary Algebra of Classes

Definition (2). x ∪ y = {set u | u ∈ x or u ∈ y}.

Definition (3). x ∩ y = {set u | u ∈ x and u ∈ y}.

Let the union of x and y stand for x ∪ y. Let the intersection of x and y stand for
x ∩ y.

Theorem (4a). z ∈ x ∪ y iff z ∈ x or z ∈ y.

Theorem (4b). z ∈ x ∩ y iff z ∈ x and z ∈ y.

Theorem (5a). x ∪ x = x.

Theorem (5b). x ∩ x = x.

Theorem (6a). x ∪ y = y ∪ x.

Theorem (6b). x ∩ y = y ∩ x.

Theorem (7a). (x ∪ y) ∪ z = x ∪ (y ∪ z).

1

Theorem (7b). (x ∩ y) ∩ z = x ∩ (y ∩ z).

Theorem (8a). x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z).

Theorem (8b). x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z).

Let a /∈ b stand for a is not an element of b.

Definition (10). ∼ x = {set u | u /∈ x}. Let the complement of x stand for ∼ x.

Theorem (11). ∼ (∼ x) = x.

Theorem (12a). ∼ (x ∪ y) = (∼ x) ∩ (∼ y).

Theorem (12b). ∼ (x ∩ y) = (∼ x) ∪ (∼ y).

Definition (13). x ∼ y = x ∩ (∼ y).

Theorem (14). x ∩ (y ∼ z) = (x ∩ y) ∼ z.

Definition (15). 0 = {set u | u 6= u}. Let the void class stand for 0. Let zero stand
for 0.

Theorem (16). x /∈ 0.

Theorem (17a). 0 ∪ x = x.

Theorem (17b). 0 ∩ x = 0.

Definition (18). U = {set u | u = u}. Let the universe stand for U .

Theorem (19). x ∈ U iff x is a set.

Theorem (20a). x ∪ U = U .

Theorem (20b). x ∩ U = x.

Theorem (21a). ∼ 0 = U .

Theorem (21b). ∼ U = 0.

Definition (22).
⋂
x = {setu | for each y if y ∈ x then u ∈ y}. Let the intersection

of x stand for
⋂
x.

Definition (23).
⋃
x = {setu | for some y(y ∈ x and u ∈ y)}. Let the union of x

stand for
⋃
x.

Theorem (24a).
⋂

0 = U .

Theorem (24b).
⋃

0 = 0.

Definition (25). A subclass of y is a class x such that each element of x is an element
of y. Let x ⊂ y stand for x is a subclass of y. Let x is contained in y stand for x ⊂ y.

2

Proposition. 0 ⊂ 0 and 0 /∈ 0.

Theorem (26a). 0 ⊂ x.

Theorem (26b). x ⊂ U .

Theorem (27). x = y iff x ⊂ y and y ⊂ x.

Theorem (28). If x ⊂ y and y ⊂ z then x ⊂ z.

Theorem (29). x ⊂ y iff x ∪ y = y.

Theorem (30). x ⊂ y iff x ∩ y = x.

Theorem (31a). If x ⊂ y then
⋃

x ⊂
⋃
y.

Theorem (31a). If x ⊂ y then
⋂

y ⊂
⋂
x.

Theorem (32a). If x ∈ y then x ⊂
⋃
y.

Theorem (32b). If x ∈ y then
⋂
y ⊂ x.

0.3 Existence of Sets

Axiom (III). If x is a set then there is a set y such that for each z if z ⊂ x then
z ∈ y.

Theorem (33). If x is a set and z ⊂ x then z is a set.

Theorem (34a). 0 =
⋂
U .

Theorem (34b). U =
⋃
U .

Theorem (35). If x 6= 0 then
⋂

x is a set.

Definition (36). 2x = {set y | y ⊂ x}.

Theorem (37). U = 2U .

Theorem (38a). If x is a set then 2x is a set.

Proof. Let x be a set. Take a set y such that for each z if z ⊂ x then z ∈ y (by III).
Then 2x ⊂ y.

Theorem (38b). If x is a set then y ⊂ x iff y ∈ 2x.

Definition. R = {set x | x /∈ x}.

Lemma. R is not a set.

Theorem (39). U is not a set.

3

Definition (40). {x} = {set z | if x ∈ U then z = x}. Let the singleton of x stand
for {x}.

Theorem (41). If x is a set then for each y y ∈ {x} iff y = x.

Theorem (42). If x is a set then {x} is a set.

Proof. Let x be a set. Then {x} ⊂ 2x. 2x is a class.

Theorem (43). {x} = U iff x is not a set.

Theorem (44a). If x is a set then
⋂
{x} = x.

Theorem (44b). If x is a set then
⋃
{x} = x.

Theorem (44c). If x is not a set then
⋂
{x} = 0.

Theorem (44d). If x is not a set then
⋃
{x} = U .

Axiom (IV). If x is a set and y is a set then x ∪ y is a set.

Definition (45). {x, y} = {x} ∪ {y}. Let the unordered pair of x and y stand for
{x, y}.

Theorem (46a). If x is a set and y is a set then {x, y} is a set.

Theorem (46b). If x is a set and y is a set then z ∈ {x, y} iff z = x or z = y.

Theorem (46c). {x, y} = U iff x is not a set or y is not a set.

Theorem (47a). If x, y are sets then
⋂
{x, y} = x ∩ y.

Theorem (47b). If x, y are sets then
⋃
{x, y} = x ∪ y.

Proof. Let x, y be sets.
⋃
{x, y} ⊂ x ∪ y. x ∪ y ⊂

⋃
{x, y}.

Theorem (47c). If x is not a set or y is not a set then
⋂
{x, y} = 0.

Theorem (47d). If x is not a set or y is not a set then
⋃
{x, y} = U .

0.4 Ordered Pairs: Relations

Definition (48). (x, y) = {{x}, {x, y}}. Let the ordered pair of x and y stand for
(x, y).

Theorem (49a). (x, y) is a set iff x is a set and y is a set.

Theorem (49b). If (x, y) is not a set then (x, y) = U .

Theorem (50). If x and y are sets then
⋃

(x, y) = {x, y} and
⋂

(x, y) = {x} and⋃⋂
(x, y) = x and

⋂⋂
(x, y) = x and

⋃⋃
(x, y) = x ∪ y and

⋂⋃
(x, y) = x ∩ y.

4

Theorem. If x is not a set or y is not a set then
⋃⋂

(x, y) = 0 and
⋂⋂

(x, y) = U
and

⋃⋃
(x, y) = U and

⋂⋃
(x, y) = 0.

Definition (51). 1stz =
⋂⋂

z. Let the first coordinate of z stand for 1stz.

Definition (52). 2ndz = (
⋂⋃

z) ∪ ((
⋃⋃

z) ∼
⋃⋂

z). Let the second coordinate of
z stand for 2ndz.

Theorem (53). 2ndU = U .

Theorem (54a). If x and y are sets then 1st(x, y) = x.

Theorem (54b). If x and y are sets then 2nd(x, y) = y.

Proof. Let x and y be sets. 2nd(x, y) = (
⋂⋃

(x, y)) ∪ ((
⋃⋃

(x, y)) ∼
⋃⋂

(x, y)) =
(x ∩ y) ∪ ((x ∪ y) ∼ x) = y.

Theorem (54c). If x is not a set or y is not a set then 1st(x, y) = U and 2nd(x, y) = U .

Theorem (55). If x and y are sets and (x, y) = (r, s) then x = r and y = s.

5

Demo

Discussion

¡ Is natural language formal mathematics viable? Is it possible to reach the e�ciency and
coverage of other ITPs? How would one organize libraries of natural language formal math-
ematics?

¡ Can natural language formal mathematics help the acceptance and use of formal mathe-
matics in the mathematical community?

¡ Can one develop ForTheL-like languages and interfaces for standard ITPs?

¡ Research the language and linguistics of mathematics.

¡ Develop logics that combine �rst-order set theory and type theory.

Thank you!

