Logipedia: a system-independent encyclopedia of formal proofs

Gilles Dowek

Formats

In the early ages: write a piece of software (for example: text processing system) chose a representation for the data Involuntarily defined a format

In modern times: define a format first ASCII, TCP / IP, HTTP, HTML, UNICODE... Software has to comply to the format

But not yet in the realm of formal proofs: "A Coq proof of the four color theorem"

Problems: interoperability, sustainability

Why is it more difficult with formal proofs?

Because we cannot go too far

Euclidean geometry \nleftrightarrow Hyperbolic geometry

 $\mathrm{ZF}\not\leftrightarrow\mathrm{ZFC}$

But...

A proof in $\rm ZF$ can be "translated" to $\rm ZFC$

A proof in $\rm ZFC$ that does not use the axiom of choice can be "translated" to $\rm ZF$

Proof transformation

There exists a basis of \mathbb{R}^2

- by the incomplete basis theorem (axiom of choice)
- \blacktriangleright $\langle 1,0
 angle$, $\langle 0,1
 angle$

automatically (for example: constructivization) or by hand

Reverse mathematics as the basis of interoperability

Reformulating the project of reverse mathematics

- ► Formal proofs, not pencil-paper-LATEXones
- Expressive theories (Set theory, Type theory...) and not fragments of arithmetic
- Analyze proofs before (possibly) transforming them

Logical Frameworks

The interoperability ZF / ZFC possible because ZF and ZFC expressed in the same logical framework: predicate logic

In predicate logic, a theory: several axioms

Permits to raise the question: which axioms are used in a proof π

The revolution of predicate logic

Since Euclid: geometry, arithmetic, set theory... each system its syntax, its notion of proof...

Hilbert and Ackermann (1928): a common predicate logic

A common framework for geometry, arithmetic, set theory... Sharing connectives, deduction rules...

A theory: symbols and axioms

But a short revolution

Predicate logic: simplification of Type theory (*Principia Mathematica*) But no reformulation of Type theory in predicate logic

Soon (1940) Church: a new formulation of Type theory (based on λ -calculus) impossible to express in predicate logic (λ binds)

1970, 1985... Martin-Löf's type theory, the Calculus of constructions... not in predicate logic

Three attitudes

- Consider logical framework as a dead concept
- Express Russell's type theory, Church's, Martin-Löf's, the Calculus of constructions... in predicate logic by will of by force (Henkin, Davis, D...)
- Extend predicate logic to a better logical framework

The limits of predicate logic

- No bound variables $(\lambda x x)$
- No syntax for proofs
- No notion of computation
- No good notion of cut
- Classical and not constructive

New logical frameworks

- ► No bound variables $(\lambda x x)$: λ -Prolog, Isabelle, $\lambda \Pi$ -calculus
- No syntax for proofs: $\lambda \Pi$ -calculus
- No notion of computation: Deduction modulo theory
- No good notion of cut: Deduction modulo theory
- Classical and not constructive: Ecumenical logic

The $\lambda\Pi$ -calculus modulo theory that generalizes them all DEDUKTI: an implementation of it

Defining a theory in **DEDUKTI**

No universal method

But several paradigmatic examples

- Any (finite) theory expressed in Predicate logic
- Axiom schemes
- Simple type theory (without and with polymorphism)
- Pure type systems (CoC...)
- Inductive types
- Universes

Ongoing: universe polymorphism, proof irrelevance, predicate subtyping

Simple type theory in **DEDUKTI**

type	:	Туре
η	:	type $ ightarrow$ Type
0	:	type
nat	:	type
arrow	:	type ightarrow type ightarrow type
ε	:	$(\eta \hspace{0.1cm} o) ightarrow extsf{Type}$
\Rightarrow	:	$(\eta \hspace{0.1cm} o) ightarrow (\eta \hspace{0.1cm} o) ightarrow (\eta \hspace{0.1cm} o)$
\forall	:	$\Box x: type (((\eta \ x) \rightarrow (\eta \ o)) \rightarrow (\eta \ o))$

$$\begin{array}{rcl} (\eta \ (\operatorname{arrow} x \ y)) & \longrightarrow & (\eta \ x) \to (\eta \ y) \\ (\varepsilon \ (\Rightarrow \ x \ y)) & \longrightarrow & (\varepsilon \ x) \to (\varepsilon \ y) \\ (\varepsilon \ (\forall \ x \ y)) & \longrightarrow & \Pi z : (\eta \ x) \ (\varepsilon \ (y \ z)) \end{array}$$

The Calculus of constructions in $\operatorname{Dedukti}$

type	:	Туре
η	:	type $ ightarrow$ Type
0	:	type
nat	:	type
arrow	:	$\Pi x : type (((\eta x) \rightarrow type) \rightarrow type)$
ε	:	$(\eta \hspace{0.1cm} o) ightarrow extsf{Type}$
\Rightarrow	:	$\Pi x : (\eta \ o) \ (((\varepsilon \ x) \to (\eta \ o)) \to (\eta \ o))$
\forall	:	$\Box x: type (((\eta x) \rightarrow (\eta o)) \rightarrow (\eta o))$
π	:	$\Pi x : (\eta \ o) \ (((\varepsilon \ x) \rightarrow type) \rightarrow type)$

$$\begin{array}{rcl} (\eta \ (\operatorname{arrow} x \ y)) & \longrightarrow & \Pi z : (\eta \ x) \ (\eta \ (y \ z)) \\ (\varepsilon \ (\Rightarrow \ x \ y)) & \longrightarrow & \Pi z : (\varepsilon \ x) \ (\varepsilon \ (y \ z)) \\ (\varepsilon \ (\forall \ x \ y)) & \longrightarrow & \Pi z : (\eta \ x) \ (\varepsilon \ (y \ z)) \\ (\eta \ (\pi \ x \ y)) & \longrightarrow & \Pi z : (\varepsilon \ x) \ (\eta \ (y \ z)) \end{array}$$

A comparison

- arrow dependent in the Calculus of constructions but not in Simple type theory
- Same for \Rightarrow
- An extra symbol π in the Calculus of constructions: express functions mapping proofs to terms

Reverse mathematics in **DEDUKTI**

- All proofs in Simple type theory can be translated to the Calculus of constructions
- The proofs in the Calculus of constructions that do not use these three features can be translated to Simple type theory

(not the others: genuine Calculus of constructions proofs)

For example: all the proofs of the arithmetic library of MATITA

"First" proof of Fermat's little theorem in constructive Simple type theory (further: predicative, PA, fragments of PA...)

Proof translation

But also

An example

Why does it work so well?

Because proof systems implement very expressive theories and use only a tiny part of it

Three early empirical evidences

- Proof systems: very different theories, but very similar libraries
- Mathematicians are not very interested in the axioms used in their proofs: any theory seems to fit
- Mathematician are not even interested in definitions (real numbers must be constructed, but who cares how)

Collecting all the proofs in a single data base

 $\operatorname{LOGIPEDIA:}$ an encyclopedia of proofs expressed

- in various theories
- ▶ in Dedukti

* Logipedia	× +	Logipedia - Mozilla Firefox		- +
↔ ♂ ☆	Oglpedia inna fritheorems/theorems.php?	nd=fermat&id=congruent_exp_pred_508kind=theorem		IIA 🖾 Q
	Score and the second se		Search	
		- Dedukti		
}	Theorem	fermat.congruent_exp_pred_SO		
	Statement	$\forall \ p \ a, prime \ p \Rightarrow \neg (p \mid a) \Rightarrow (a \land (p \cdot 1)) = 1 \ [p]$		
<u>IA</u>	Main Dependencies	v		
PVS	Theory			
G		~		

http://logipedia.science

Towards concept alignment in LOGIPEDIA

Connectives and quantifiers: inductive types / ${\it Q}_0$ Should be ignored by the library

Making formal the saying: Cauchy sequences or Dedekind cuts immaterial (isomorphic and only structural statements)

But classical and constructive disjunctions (ecumenical logic)

Already concrete results

While QED (1993) did not go very far

- Better understanding of the theories implemented in the various proof systems
- A new logical framework to express the these theories
- Analyzing the proofs (reverse mathematics) before we share them (partial translations)

Interoperability is not just a question of committees, negotiations, and standards: it is a research problem