
Logipedia: a system-independent encyclopedia of
formal proofs

Gilles Dowek



Formats

In the early ages: write a piece of software (for example: text
processing system) chose a representation for the data
Involuntarily defined a format

In modern times: define a format first
ascii, tcp / ip, http, html, unicode...
Software has to comply to the format

But not yet in the realm of formal proofs: “A Coq proof of the
four color theorem”

Problems: interoperability, sustainability



Why is it more difficult with formal proofs?

Because we cannot go too far

Euclidean geometry 6↔ Hyperbolic geometry

zf 6↔ zfc



But...

A proof in zf can be “translated” to zfc

A proof in zfc that does not use the axiom of choice can be
“translated” to zf



Proof transformation

There exists a basis of R2

I by the incomplete basis theorem (axiom of choice)

I 〈1, 0〉, 〈0, 1〉

automatically (for example: constructivization) or by hand

Reverse mathematics as the basis of interoperability



Reformulating the project of reverse mathematics

I Formal proofs, not pencil-paper-LATEXones

I Expressive theories (Set theory, Type theory...) and not
fragments of arithmetic

I Analyze proofs before (possibly) transforming them



Logical Frameworks

The interoperability zf / zfc possible because zf and zfc
expressed in the same logical framework: predicate logic

In predicate logic, a theory: several axioms

Permits to raise the question: which axioms are used in a proof π



The revolution of predicate logic

Since Euclid: geometry, arithmetic, set theory... each system its
syntax, its notion of proof...

Hilbert and Ackermann (1928): a common predicate logic

A common framework for geometry, arithmetic, set theory...
Sharing connectives, deduction rules...

A theory: symbols and axioms



But a short revolution

Predicate logic: simplification of Type theory (Principia
Mathematica)
But no reformulation of Type theory in predicate logic

Soon (1940) Church: a new formulation of Type theory (based on
λ-calculus) impossible to express in predicate logic (λ binds)

1970, 1985... Martin-Löf’s type theory, the Calculus of
constructions... not in predicate logic



Three attitudes

I Consider logical framework as a dead concept

I Express Russell’s type theory, Church’s, Martin-Löf’s, the
Calculus of constructions... in predicate logic by will of by
force (Henkin, Davis, D...)

I Extend predicate logic to a better logical framework



The limits of predicate logic

I No bound variables (λx x): λ-Prolog, Isabelle, λΠ-calculus

I No syntax for proofs: λΠ-calculus

I No notion of computation: Deduction modulo theory

I No good notion of cut: Deduction modulo theory

I Classical and not constructive: Ecumenical logic

The λΠ-calculus modulo theory that generalizes them all
Dedukti: an implementation of it



New logical frameworks

I No bound variables (λx x): λ-Prolog, Isabelle, λΠ-calculus

I No syntax for proofs: λΠ-calculus

I No notion of computation: Deduction modulo theory

I No good notion of cut: Deduction modulo theory

I Classical and not constructive: Ecumenical logic

The λΠ-calculus modulo theory that generalizes them all
Dedukti: an implementation of it



Defining a theory in Dedukti

No universal method
But several paradigmatic examples

I Any (finite) theory expressed in Predicate logic

I Axiom schemes

I Simple type theory (without and with polymorphism)

I Pure type systems (CoC...)

I Inductive types

I Universes

Ongoing: universe polymorphism, proof irrelevance, predicate
subtyping



Simple type theory in Dedukti

type : Type
η : type → Type
o : type

nat : type
arrow : type → type → type

ε : (η o)→ Type
⇒ : (η o)→ (η o)→ (η o)
∀ : Πx : type (((η x)→ (η o))→ (η o))
π : Πx : (η o) (((ε x)→ type)→ type)

(η (arrow x y)) −→ (η x)→ (η y)
(ε (⇒ x y)) −→ (ε x)→ (ε y)

(ε (∀ x y)) −→ Πz : (η x) (ε (y z))
(η (π x y)) −→ Πz : (ε x) (η (y z))



The Calculus of constructions in Dedukti

type : Type
η : type → Type
o : type

nat : type
arrow : Πx : type (((η x)→ type)→ type)

ε : (η o)→ Type
⇒ : Πx : (η o) (((ε x)→ (η o))→ (η o))
∀ : Πx : type (((η x)→ (η o))→ (η o))
π : Πx : (η o) (((ε x)→ type)→ type)

(η (arrow x y)) −→ Πz : (η x) (η (y z))
(ε (⇒ x y)) −→ Πz : (ε x) (ε (y z))

(ε (∀ x y)) −→ Πz : (η x) (ε (y z))
(η (π x y)) −→ Πz : (ε x) (η (y z))



A comparison

I arrow dependent in the Calculus of constructions but not in
Simple type theory

I Same for ⇒
I An extra symbol π in the Calculus of constructions: express

functions mapping proofs to terms



Reverse mathematics in Dedukti

I All proofs in Simple type theory can be translated to the
Calculus of constructions

I The proofs in the Calculus of constructions that do not use
these three features can be translated to Simple type theory

(not the others: genuine Calculus of constructions proofs)

For example: all the proofs of the arithmetic library of Matita

“First” proof of Fermat’s little theorem in constructive Simple type
theory (further: predicative, PA, fragments of PA...)



Proof translation

D[U]

U

T

D[T]

D[V]

V



But also

D[U]

U

T

D[T]

V



An example

Coq

Lean

Matita

PVS

HOL Light

Isabelle/HOL

D[STT]D[Matita]

Matita



Why does it work so well?

Because proof systems implement very expressive theories and use
only a tiny part of it

Three early empirical evidences

I Proof systems: very different theories, but very similar libraries

I Mathematicians are not very interested in the axioms used in
their proofs: any theory seems to fit

I Mathematician are not even interested in definitions (real
numbers must be constructed, but who cares how)



Collecting all the proofs in a single data base

Logipedia: an encyclopedia of proofs expressed

I in various theories

I in Dedukti



http://logipedia.science



Towards concept alignment in Logipedia

Connectives and quantifiers: inductive types / Q0

Should be ignored by the library

Making formal the saying: Cauchy sequences or Dedekind cuts
immaterial (isomorphic and only structural statements)

But classical and constructive disjunctions (ecumenical logic)



Already concrete results

While Qed (1993) did not go very far

I Better understanding of the theories implemented in the
various proof systems

I A new logical framework to express the these theories

I Analyzing the proofs (reverse mathematics) before we share
them (partial translations)



Interoperability is not just a question of committees, negotiations,
and standards: it is a research problem


