Finite resources, choices & infectious disease models

William Waites

Laboratory for Foundations of Computer Science School of Informatics, University of Edinburgh

ICMS V-KEMS – Mathematical modelling and COVID-19 October 6th, 2020

- ► How can we represent changing behaviour in epi models?
- ► How can we represent finite resources in epi models?
- ► I mean *explicitly* represent...

- ► How can we represent changing behaviour in epi models?
- ► How can we represent finite resources in epi models?
- ► I mean *explicitly* represent...

- ► How can we represent changing behaviour in epi models?
- ► How can we represent finite resources in epi models?
- ► I mean *explicitly* represent...

- ► Modelling entities: more than just people
- ► Focus on *interactions*

Rule-based modelling

- Used in molecular biology
- ► Generalisation of reaction-based models
- ► Transparent: explicit sytax for writing models
- ► Expressive: captures a large class of interesting models
- ► Scalable: keeps a lid on combinatorial explosion
- ► Composable: models can be easily combined

COMPARTMENTAL MODELS

REACTION MODELS

$$S + I \xrightarrow{k_1} E + I \tag{1}$$

$$\stackrel{k_2}{\longrightarrow} I$$
 (2)

$$I \xrightarrow{k_3} R \tag{3}$$

AN EPIDEMIC OF MASKS

$$P_{M+} + R \longrightarrow P_{M-} + R$$
 (5)

AGENTS

By analogy with *reagents*, RBM has *agents*:

```
// An person has a state describing the disease as
// well as receptors for vaccines and messages
%agent: P(covid{s e i r} vax msg)
// A vaccine can bond to a person
%agent: Vax(p)
// A message can be positive or negative
%agent: Msg(s{pos neg})
```



```
// An person has a state describing the disease as
// well as receptors for vaccines and messages
%agent: P(covid{s e i r} vax msg)
```

```
P() // any person
```



```
// An person has a state describing the disease as
// well as receptors for vaccines and messages
%agent: P(covid{s e i r} vax msg)

P(covid{i}) // an infectious person
```



```
// An person has a state describing the disease as
// well as receptors for vaccines and messages
%agent: P(covid{s e i r} vax msg)

P(vax[.]) // an unvaccinated person
P(vax[_]) // a vaccinated person
```



```
// An person has a state describing the disease as
// well as receptors for vaccines and messages
%agent: P(covid{s e i r} vax msg)

// an unvaccinated, susceptible person
P(covid{s}, vax[.])
```



```
// An person has a state describing the disease as
// well as receptors for vaccines and messages
%agent: P(covid{s e i r} vax msg)
// A message can be positive or negative
%agent: Msg(s{pos neg})
// an with a positive opinion about vaccines
P(msg[1]), Msg(s[1]{p})
```


Rules: infection dynamics

Baseline: just SEIR

Rules: Production and Degradation of Vaccine

Rules: immunisation

```
// People with positve sentiment about vaccines 

// get immunised -- bound to a vaccine 

'immunisation'  Vax(p[.]), P(vax[.], msg[1]), Msg(s[1]{pos}) \rightarrow Vax(p[2]), P(vax[2], msg[1]), Msg(s[1]{pos}) @ vax
```


Rules: influence and forgetting

Rules: Promotional Campaign

```
// Some global promotion of vaccines -- perhaps
// an advertising campaign
'promotion' . -> Msg(s{pos}) @ promo
```


Promotional Campaign

Rules: antivaxxers

Antivaxxers

Rules: the voice of experience

THE VOICE OF EXPERIENCE

Trajectories and averages

SURVEILLANCE TESTING WITH TRIGGERS (FIND LMIC WORK)

William Waites, Matteo Cavaliere, David Manheim, Jasmina Panovska-Griffiths, and Vincent Danos. *Scaling up epidemiological models with rule-based modelling*. June 2020. arXiv: 2006.12077 [q-bio.PE]

This model:

https://git.sr.ht/~wwaites/icms-modresp (82 lines)

Kappa Language: https://kappalanguage.org

Thank you

Funding: Chief Scientist Office COV/EDI/20/12

