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Outline

◆ Basic model 

– Adaptive algorithm
– Generalized base stock (GBS) algorithm

◆ More general model under Adaptive algorithm



Motivation
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◆ Objective: Keep delays of both calls and agents low

◆ Applications:

– Call/contact centers
– Classical single-item inventory system with order crossovers
– Telemedicine
– Uber, etc.
– ...



◆ Adaptive feedback scheme [S., Reiman, Korolev, Mezhibovsky, Ristock, 2010]: 

• X is incremented by [- g D Y] each time Y changes by D Y (=+1 or -1),
g>0 is parameter

• Independently, X is incremented by  [–sign(Y)]  at the instantaneous rate |e Y|, 
where e >0 is parameter

◆ Adaptive = Does not require knowledge of call rate or any system parameters

◆ We analyze it when 𝑟	 → ∞, and prove, in particular, that steady-state delays vanish

◆ “Small subtlety”: Assume for now that invited agents can be uninvited if necessary

Model. Adaptive algorithm
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Adaptive algorithm basic dynamics
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INFORMALLY: 𝑑 𝑑𝑡⁄ 𝑋 = −𝛾 𝑑 𝑑𝑡⁄ 𝑌 − 𝜖𝑌
𝑑 𝑑𝑡⁄ 𝑌 = 𝛽𝑋 − 𝜆r



◆ The average X to match the arrival rate is X* = lr/b

◆ Fluid scaled process

Boundary: 

◆ Diffusion scaled process
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Process. Fluid and diffusion scaling



◆ Fluid limit

Stable for any positive b, g, e. 
When e < g2b/4, there are two distinct eigenvectors; we assume that 

◆ Diffusion limit

Gaussian stationary distribution, zero mean, covariance matrix:

Fluid and diffusion limit dynamics 
when away from boundary



Main results for the Adaptive algorithm
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Related work 

◆ Inventory models (esp., with order crossovers): Karlin-Scarf’58, Zipkin’00, Disney 
et al.’16, ...

◆ Double-ended queues and matching systems: Kashyap’66, Caldentey et al.’09, 
Adan-Weiss’12, Adan et al.’15, Büke-Chen’15, Bušic et al.’10, Mairesse-Moyal’14, 
Gurvich-Ward’14, Bušic-Meyn’14, ...

◆ Diffusion-scale limit interchange in many-servers regime: Halfin-Whitt’81, 
Jelenkovic-Mandelbaum-Momcilovic’04, Mandelbaum-Momcilovic’05, Gamarnik-
Momcilovic’08, Reed’09, Gamarnik-Goldberg’11, Gamarnik-S.’12,  Dai-Dieker-
Gao’14, Gurvich-Whitt’09, S.-Yudovina’13, S.-Yudovina’12, S.’13, ..., see Jim 
Dai’s talk yesterday



◆ Away from boundary

◆ On the boundary (x = -l/b)

Actual fluid limit dynamics



Actual fluid limit dynamics

Any trajectory can hit 
boundary at most once

This does not directly imply stability of the process!



Actual fluid limit dynamics



◆ Use Lyapunov drift condition for an imbedded chain, sampled at stopping times

◆ c>0 and d>0 are fixed constants

◆ sr=(xr,yr). For a given sr(0), the stopping time 

◆ From here, for the sampled chain 

◆ Then, using lower bounds on expected sampling intervals (t ‘s),

◆ This and Proposition 3 implies Theorem 1

Stability. Fluid scale tightness of stationary distributions
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Theorem 2 proof idea

◆ Theorem 1 is a starting point. Uses approach in S.-Yudovina’12, S.’13

Strengthening stationary distribution tightness in two steps:  

o(r) scale => O(r1/2+a) scale => Diffusion, O(r1/2), scale
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Generalized Base Stock (GBS) algorithm

◆ In an inventory system cancelling an order in progress is typically not feasible

◆ Need to analyze algorithm without this feature, to provide apple-to-apple 
comparison to existing algorithms, and get limits of the improvement over existing 
algorithms

◆ We consider a different algorithm. It is less adaptive (needs to know the model 
parameters), but as adaptive as the classical Constant Base Stock algorithm



◆ GBS algorithm [also in that 2010 patent]:

• X* = lr/b;  f=f(r), where  f(r)/ 𝑟	� → ∞ and  f(r)/r → 0
• T = min{max{X* - gY, 0}, f}, 
• When T changes, X := max{X,T}. 

◆ Essentially, upon a call arrival T := T + g, upon agent arrival T:=T-g

◆ This scheme is does require knowledge of call rate and expected response time

◆ Same asymptotic regime, with r → ∞.	Want not only weak limits, but also limits of 
expectations

Generalized Base Stock (GBS) algorithm
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being served
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Basic dynamics. Relation to Constant Base Stock

◆ Essentially, GBS tries to keep 

X + gY = X*

◆ Classical Constant Base Stock (CBS): 

X + Y = X*

◆ So, CBS is a special case of GBS, with g = 1

◆ CBS is known to be optimal for constant response times (lead times)

◆ Under random response times, what is the advantage of GBS over CBS? 
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Main results for GBS

Theorem 6. Consider a fixed integer � � 1. Suppose the response time dis-

tribution is exponential (with mean 1/�). Then, under GBS policy, the pro-

cess (Xr
(t), Y r

(t)), t � 0, (which is an irreducible continuous-time countable

Markov chain) is positive recurrent (stochastically stable) for any su�ciently

large r. The following convergence holds:

Y r
(1)p
r

) N (0,�(��)�1
).

Moreover, the expectation of |Y r
(1)/

p
r| converges to that of |N (0,�(��)�1

)|:

E
����
Y r

(1)p
r

���� ! 2

s
�

2⇡��
.
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Main results for GBS

Corollary 7. Suppose we are in the conditions of Theorem 6, except � may

depend on r. Then, the dependence � = �(r) can be chosen in a way such that

E |Y r
(1)|p
r

! 0.

◆ Linear holding cost under CBS: 

◆ Under GBS (with optimal g = g(r)): 

E|Y r(1)| = O(
p
r)

E|Y r(1)| = o(
p
r)
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Proof of Theorem 6: Basic properties of (X,Y)

EXr(1) = (�/�)r

◆ Conservation law

◆ Uniformly bounded gap

– When X-T is large, essentially, 
» upon a call arrival X-T decreases g, 
» upon agent arrival X-T decreases by g - 1

– Prob{An arrival is a call} ≥ 1/2 - e

E[Xr(1)� T r(1)]  C, 8r
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Proof of Theorem 6: Artificial process

◆ Artificial process is same as under GBS, except invited agents can be removed at 
any time. The number of invited agents is always exactly “on target”, i.e. it is the 
deterministic function of  the queue length:

◆ Conservation law

◆ 𝑌4 is simply a birth-death process. Stationary distribution is analyzed directly 

EX̃r(1) = (�/�)r

˜X =

˜T = min{max{X⇤ � � ˜Y , 0}, f}

Lemma 8. For the artificial process:

˜Y r
(1)p
r

) N (0,�(��)�1
).

Moreover:

E
�����
˜Y r

(1)p
r

����� ! 2

s
�

2⇡��
.
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Proof of Theorem 6: Actual Vs Artificial comparison

◆ Actual process can also be viewed as a birth-death process, but with random birth 
rates, which are greater than those for the artificial process. This implies:

◆ To prove the theorem, suffices to show

◆ To illustrate the proof, let us pretend that

◆ Then

◆ The actual bound is

Ỹ r(1) st Y
r(1)

T r = X⇤ � �Y r, X̃r = T̃ r = X⇤ � �Ỹ r

EY r(1)� EỸ r(1) = o(
p
r)

EY r(1)� EỸ r(1) =
1

�
EX̃r(1)� 1

�
ET r(1) =

1

�
E [Xr(1)� T r(1)]

1p
r

h
EY r(1)� EỸ r(1)

i
! 0
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GBS Vs CBS

◆ Linear “holding cost” under CBS: 

◆ Under GBS (with optimal g = g(r)): 

– simulations suggest:
– moreover, looks like Cost(GBS)/Cost(OPT) = O(1)

◆ GBS retains substantial advantage over CBS for non-exponential response time 
distributions

– Moreover, for some distributions (Pareto), the advantage is even larger

E|Y r(1)| = O(
p
r)

E|Y r(1)| = o(
p
r)

E|Y r(1)| = O(r0.38)
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Simulation: EXP response time
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Simulation: EXP response time
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Simulation: Response time = d + EXP
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Simulation: Response time = d + EXP
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Simulation: Pareto response time
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Current/future work on the basic model

◆ Adaptive algorithm 

– Analyze without the simplifying assumption

◆ GBS

– Explain the cost growth rate
– Prove Cost(GBS)/Cost(OPT) = O(1)
– Fundamental cost limits for non-exponential response time distributions
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More general model. Adaptive algorithm

INFORMALLY: 𝑑 𝑑𝑡⁄ 𝑋 = −𝛾 𝑑 𝑑𝑡⁄ 𝑌 − 𝜖𝑌
𝑑 𝑑𝑡⁄ 𝑌 = 𝛽𝑋 − 𝜆𝑟 + 𝛼𝜇𝑍 + 𝛿𝑌6 − 𝜃𝑌7

◆ Same Adaptive scheme (including the assumption that agents may be uninvited):

• X is incremented by [- g D Y] each time Y changes by D Y (=+1 or -1),
g>0 is parameter

• Independently, X is incremented by  [–sign(Y)]  at the instantaneous rate |e Y|, 
where e >0 is parameter

I.i.d. random 
response 
times 
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Process. Fluid scale analysis

◆ Consider the system process (𝑋F, 𝑌F, 𝑍F) with parameter 𝑟 → ∞, while 
𝛼, 𝛽, 𝜇, 𝛿, 𝜃, 𝜖, 𝛾 do not depend on r

◆ Conservation laws:

◆ Centering:
- 𝑍F	:    𝜆𝑟 𝜇⁄ 	
- 𝑌F	:    0
- 𝑋F :  𝜆𝑟(1 − 𝛼) 𝛽⁄

◆ Convenient to consider the process (𝑋F, 𝑌F, 𝑉F) where 𝑉F = (𝑌F)7+𝑍F

◆ Fluid-scaled processes with centering

𝛽E𝑋F + 𝛼𝜇E𝑍F = 𝜆𝑟,        	E𝑍F = 𝜆𝑟/𝜇

𝑥𝑟, 𝑦𝑟, 𝑣𝑟 = 𝑟6O(𝑋F − 𝜆𝑟 1 − 𝛼 /𝛽, 𝑌F, 𝑉F − 𝜆𝑟/𝛽)
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Fluid limit

◆ Fluid-scaled processes with centering

◆ Fluid limit

satisfies conditions

𝑥𝑟, 𝑦𝑟, 𝑣𝑟 = 𝑟6O(𝑋F − 𝜆𝑟 1 − 𝛼 /𝛽, 𝑌F, 𝑉F − 𝜆𝑟/𝛽)

(𝑥 Q , 𝑦 Q , 𝑣 Q ) = lim
F→U

𝑥𝑟(Q), 𝑦𝑟(Q), 𝑣𝑟(Q)

𝑥V =
−𝛾𝑦V − 𝜖𝑦, 𝑖𝑓	𝑥 > −

𝜆 1 − 𝛼
𝛽 									

−𝛾𝑦V − 𝜖𝑦 ⋁0, 𝑖𝑓	𝑥 = −
𝜆(1 − 𝛼)

𝛽
𝑦V = 𝛽𝑥 + 𝛼𝜇 𝑣 − 𝑦7 + 𝛿𝑦6 − 𝜃𝑦7								
𝑣V = 𝛽𝑥 − 1 − 𝛼 𝜇 𝑣 − 𝑦7 − 𝜃𝑦7										

(10)
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Fluid limit

◆ Fluid-scaled processes with centering

◆ Fluid limit

satisfies conditions

𝑥𝑟, 𝑦𝑟, 𝑣𝑟 = 𝑟6O(𝑋F − 𝜆𝑟 1 − 𝛼 /𝛽, 𝑌F, 𝑉F − 𝜆𝑟/𝛽)

(𝑥 Q , 𝑦 Q , 𝑣 Q ) = lim
F→U

𝑥𝑟(Q), 𝑦𝑟(Q), 𝑣𝑟(Q)

𝑥V =
−𝛾𝑦V − 𝜖𝑦, 𝑖𝑓	𝑥 > −

𝜆 1 − 𝛼
𝛽 									

−𝛾𝑦V − 𝜖𝑦 ⋁0, 𝑖𝑓	𝑥 = −
𝜆(1 − 𝛼)

𝛽
𝑦V = 𝛽𝑥 + 𝛼𝜇 𝑣 − 𝑦7 + 𝛿𝑦6 − 𝜃𝑦7								
𝑣V = 𝛽𝑥 − 1 − 𝛼 𝜇 𝑣 − 𝑦7 − 𝜃𝑦7										

(10)

Is system (10) stable?

Stability: 𝑥, 𝑦, 𝑣 𝑡 → 0,0,0 as 𝑡 → ∞
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Behavior of fluid limit trajectories

◆ It’s complicated:

- A “reflecting” boundary

- Two domains where the trajectories follow different ODEs (but the RHS of the 

ODE is continuous everywhere)
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Global vs. local stability

◆ Consider a dynamic system in ℝ\ described by

◆ Fluid limit is globally stable if every fluid limit trajectory converges to the 

equilibrium point (0,0,0).

◆ Fluid limit is locally stable if every solution of the dynamic system (11) converges 

to the equilibrium point (0,0,0).

]
𝑥V = −𝛾𝑦V − 𝜖𝑦																																								
𝑦V = 𝛽𝑥 + 𝛼𝜇 𝑣 − 𝑦7 + 𝛿𝑦6 − 𝜃𝑦7

𝑣V = 𝛽𝑥 − 1 − 𝛼 𝜇 𝑣 − 𝑦7 − 𝜃𝑦7		

(11)



Main result (sufficient local stability conditions)

Theorem 8: Fluid limit is locally stable if either

(i)

(ii)

or

𝛾 > max
𝛼𝜇 − 𝛿
𝛽 ,

2 − 𝛼 𝜖𝜇 + 𝛼𝜖𝛿
𝛽𝜇

�

𝛾 > max
𝛼𝜇 − 𝛿 + (𝛼𝜇 − 𝛿)a+4𝛼𝜇a�

2𝛽 , 𝑚𝑎𝑥
𝛼𝜖(𝛿 − 𝜇)

𝛽𝜇 , 0
�
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Some existing theory

◆ Even without the reflecting (regulating) boundary on x, we have 
ODE with 2 domains (y ≥ 0 and y < 0). This is a switched linear system

◆ For local stability (stability of the system without boundary), it is sufficient that a 
Common Quadratic Lyapunov Function (CQLF) exists.

◆ There is literature on existence of CQLF for switched linear systems:

◆ R. Shorten, O. Mason, F. O’Cairbre, P. Curran. A unifying framework for the 
siso circle criterion and other quadratic stability criteria. International Journal of 
Control, 77(1): 1-9, 2004. 

◆ R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King. Stability criteria for 
switched and hybrid systems. Society for Industrial and Applied Mathematics, 
49(4):545-592, 2007.

◆ H. Lin, P. J. Antsaklis. Stability and stabilizability of switched linear systems: A 
survey of recent results. IEEE Transactions on Automatic Control, 54(2):308-
322, 2009. 
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Fluid limit dynamics (when away from boundary)

◆ Fluid limit dynamics when away from boundary

◆ 2 domains:

]
𝑥V = −𝛾𝑦V − 𝜖𝑦																																								
𝑦V = 𝛽𝑥 + 𝛼𝜇 𝑣 − 𝑦7 + 𝛿𝑦6 − 𝜃𝑦7

𝑣V = 𝛽𝑥 − 1 − 𝛼 𝜇 𝑣 − 𝑦7 − 𝜃𝑦7		

(11)

]
𝑥V = −𝛾𝛽 𝑥 + 𝛾𝛼𝜇 + 𝛾𝜃 − 𝜖 𝑦 + −𝛾𝛼𝜇 𝑣			
𝑦V = 𝛽 𝑥 + −𝛼𝜇 − 𝜃 𝑦 + 𝛼𝜇 𝑣																							
𝑣V = 𝛽 𝑥 + 1 − 𝛼 𝜇 − 𝜃 𝑦 + − 1 − 𝛼 𝜇 𝑣

𝑦 ≥ 0

]
𝑥V = −𝛾𝛽 𝑥 + 𝛾𝛿 − 𝜖 𝑦 + −𝛾𝛼𝜇 𝑣			
𝑦V = 𝛽 𝑥 + −𝛿 𝑦 + 𝛼𝜇 𝑣																						
𝑣V = 𝛽 𝑥 + − 1 − 𝛼 𝜇 𝑣																								

𝑦 < 0
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Fluid limit dynamics (when away from boundary)

◆ In matrix form: 𝑢 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑣 𝑡 )f

𝐴O =
−𝛾𝛽 𝛾𝛼𝜇 + 𝛾𝜃 − 𝜖 −𝛾𝛼𝜇
𝛽 −𝛼𝜇 − 𝜃 𝛼𝜇
𝛽 −	(1 − 𝛼)𝜇 −	(1 − 𝛼)𝜇

𝐴a =
−𝛾𝛽 𝛾𝛿 − 𝜖 −𝛾𝛼𝜇
𝛽 −𝛿 𝛼𝜇
𝛽 0 −	(1 − 𝛼)𝜇

𝑦 ≥ 0
𝑢V 𝑡 = 𝐴O𝑢(𝑡)

𝑦 < 0
𝑢V 𝑡 = 𝐴a𝑢(𝑡)



Existence of CQLF

Proposition 9: Let 𝐴O and 𝐴a be Hurwitz matrices in ℝh×h, such	that		𝐴O − 𝐴a has 
rank one. Then the two systems

Necessary and sufficient condition for the existence of CQLF for switched linear 
systems [Shorten et al, 2007]

𝑢V 𝑡 = 𝐴O𝑢(𝑡) 𝑢V 𝑡 = 𝐴a𝑢(𝑡)and
have a CQLF if and only if 𝐴O𝐴a has no negative real eigenvalues.
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Theorem 8: Proof outline

◆ 𝐴O is always Hurwitz

◆ 𝐴a is Hurwitz if  𝛾 > no6p
q

◆ 𝑟𝑎𝑛𝑘 𝐴O − 𝐴a = 1

◆ Key part: 𝐴O𝐴a has no negative real eigenvalues if either (i) or (ii) holds

(i)

(ii)

𝛾 > max
𝛼𝜇 − 𝛿
𝛽 ,

2 − 𝛼 𝜖𝜇 + 𝛼𝜖𝛿
𝛽𝜇

�

𝛾 > max
𝛼𝜇 − 𝛿 + (𝛼𝜇 − 𝛿)a+4𝛼𝜇a�

2𝛽 , max
𝛼𝜖(𝛿 − 𝜇)

𝛽𝜇 , 0
�



Theorem 8: Proof outline

det 𝐴O6O + 𝜏𝐴a < 0 if either (i) or (ii) holds

(i)

(ii)

𝛾 > max
𝛼𝜇 − 𝛿
𝛽 ,

2 − 𝛼 𝜖𝜇 + 𝛼𝜖𝛿
𝛽𝜇

�

𝛾 > max
𝛼𝜇 − 𝛿 + (𝛼𝜇 − 𝛿)a+4𝛼𝜇a�

2𝛽 , max
𝛼𝜖(𝛿 − 𝜇)

𝛽𝜇 , 0
�

Proposition 10 [Shorten et al, 2004]: If 𝐴O6O is non-singular, 𝐴O𝐴a has no 
negative real eigenvalues if and only if 𝐴O6O + 𝜏𝐴a is non-singular for all 𝜏 ≥ 0.
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Some useful corollaries (sufficient local stability conditions)

Corollary 11: Given all other parameters are fixed, fluid limit is locally stable for all 

sufficiently large 𝛾

Corollary 12: If 𝛼𝜇 ≤ 𝛿, then fluid limit is locally stable for all sufficiently small 𝜖

Corollary 13: If 𝛼𝜇 > 𝛿 and  𝜖 ≤ (no6p)xo
a6n oq7npq

, then fluid limit is locally stable under 

condition 𝛾 >
𝛼𝜇 − 𝛿
𝛽
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Some useful corollaries (sufficient local stability conditions)

Corollary 14: If 𝜇 > 𝛿, then fluid limit is locally stable under condition

Corollary 15: If α = 0, then fluid limit is locally stable for all positive β, µ, ϵ, γ,

and δ ≥ 0, θ ≥ 0

𝛾 >
𝛼𝜇 − 𝛿 + (𝛼𝜇 − 𝛿)a+4𝛼𝜇a�

2𝛽
(does not depend on 𝜖)
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Numerical and simulation results 

◆ Simulate the true system, with the boundary 

◆ Vary parameters and initial conditions 

◆ Is there a gap between local and global stability?
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Numerical and simulation examples: Example 1

◆ The sufficient local stability conditions are satisfied

Trajectory hits boundary on x

Different initial conditions

𝑋 0 , 𝑌 0 , 𝑍 0 = (0,0,0) 𝑋 0 , 𝑌 0 , 𝑍 0 = (2000,4000,1000)

𝜆𝑟 = 2000	, 𝛼 = 0.5	, 𝛽 = 3	, 𝜇 = 2	, 𝛾 = 1	, 𝜖 = 1.5	, 𝛿 = 1	, 𝜃 = 0.1

Conjecture 16: Our system is globally stable if it is locally stable. 
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Numerical and simulation examples: Example 2

◆ Stabilizing impact of larger	𝛾

Increasing 𝛾 from 1 to 10 makes system locally stable (Corollary 1). 
Simulation results indicate that it also makes fluid limit globally stable => 
supports Conjecture 16. 

𝜆𝑟 = 2000	, 𝛼 = 0.9	, 𝛽 = 0.05	, 𝜇 = 0.5	, 𝜸 = 𝟏	, 𝜖 = 1	, 𝛿 = 0.01	, 𝜃 = 0.01

𝑋 0 , 𝑌 0 , 𝑍 0 = (1000,6000,2000)

𝜆𝑟 = 2000	, 𝛼 = 0.9	, 𝛽 = 0.05	, 𝜇 = 0.5	, 𝜸 = 𝟏𝟎	, 𝜖 = 1	, 𝛿 = 0.01	, 𝜃 = 0.01
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Discussion of / further work on the generalized model(s)

◆ Adaptive algorithm 

– Relation between local and global stability: seems challenging
– Boundary causes major difficulties

◆ Further model extensions

– multi-class customers, multi-type agents, finite pools of agents, …

◆ Different algorithms
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