Asymptotic Behavior of a Critical Fluid Model for a Processor Sharing Queue via Relative Entropy

Stochastic Networks Conference

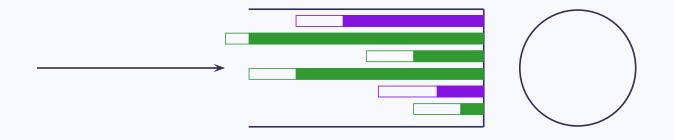
Edinburgh June 2018

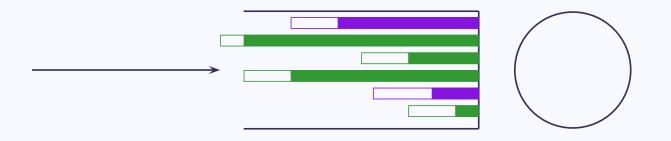
A. L. Puha

CSUSM

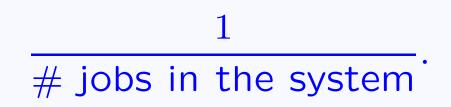
Department of Mathematics apuha@csusm.edu http://public.csusm.edu/apuha

Joint work with Ruth J. Williams





• Each job in system simultaneously served at rate

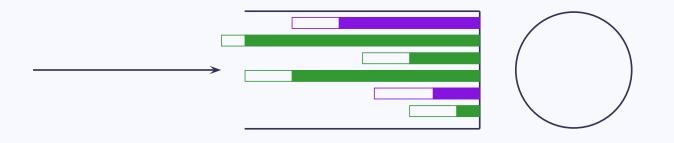


• Each job in system simultaneously served at rate

jobs in the system

1

 Idealized model for computer time-sharing algorithms introduced by Kleinrock in '60's.



• Each job in system simultaneously served at rate

jobs in the system

- Idealized model for computer time-sharing algorithms introduced by Kleinrock in '60's.
- Until early 2000's, only analyzed under restrictive distributional assumptions.



• Initial condition:

jobs in the system a time 0, each with strictly positive residual service time



• Initial condition:

jobs in the system a time 0, each with strictly positive residual service time

• Arrivals:

rate α delayed renewal process



• Initial condition:

jobs in the system a time 0, each with strictly positive residual service time

• Arrivals:

rate α delayed renewal process

• Service times:

strictly positive, i.i.d. with distribution ν

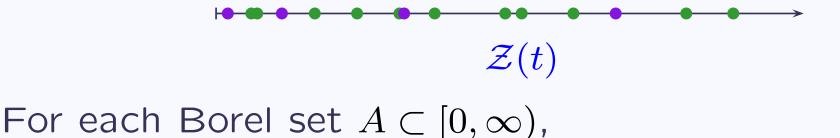
• Residual service times:

For each job in the system at time t, the residual service time at time t is the amount of processing time remaining at t

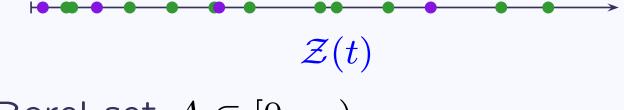
• Residual service times:

For each job in the system at time t, the residual service time at time t is the amount of processing time remaining at t

• Infinite dimensional system: Must track all residual service times.



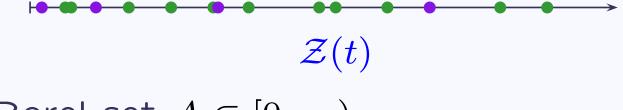
 $\langle 1_A, \mathcal{Z}(t) \rangle = \#$ jobs in the system at time twith residual service time in A.



For each Borel set $A \subset [0,\infty)$,

 $\langle 1_A, \mathcal{Z}(t) \rangle = \#$ jobs in the system at time t with residual service time in A.

 $\mathcal{Z}(\cdot)$ is an r.c.l.l. stochastic process taking values in the set of finite, nonnegative Borel measures M on $[0,\infty)$.

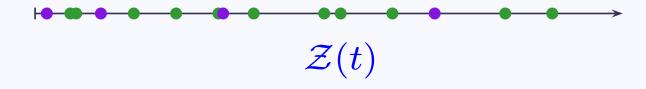


For each Borel set $A \subset [0,\infty)$,

 $\langle 1_A, \mathcal{Z}(t) \rangle = \#$ jobs in the system at time t with residual service time in A.

 $\mathcal{Z}(\cdot)$ is an r.c.l.l. stochastic process taking values in the set of finite, nonnegative Borel measures M on $[0,\infty)$.

M endowed with the topology of weak convergence is a Polish space metrizable by the Prokhorov metric d.



Observe that

 $Q(t) \equiv \langle 1, \mathcal{Z}(t) \rangle = \#$ jobs in system at time t, $W(t) \equiv \langle \chi, \mathcal{Z}(t) \rangle =$ immediate workload at time t, where $\chi(x) = x$, $x \in [0, \infty)$. Survey

Yashkov '87 (mostly with restrictive distributional assumptions)

Survey

Yashkov '87 (mostly with restrictive distributional assumptions) **More Recent** (mostly with general distributions) Baccelli & Towsley '90 (correlation of sojourn times) Grishechkin '94 (heavy traffic steady-state asymptotics) Jean-Marie & Robert '94 (transient, overloaded queue) Chen, Kella & Weiss '97 (fluid limits for queue length) Lambert, Simatos & Zwart '13 (diffusion limits via regeneration,M/G/1) Survey

Yashkov '87 (mostly with restrictive distributional assumptions) **More Recent** (mostly with general distributions) Baccelli & Towsley '90 (correlation of sojourn times) Grishechkin '94 (heavy traffic steady-state asymptotics) Jean-Marie & Robert '94 (transient, overloaded queue) Chen, Kella & Weiss '97 (fluid limits for queue length) Lambert, Simatos & Zwart '13 (diffusion limits via regeneration, M/G/1) Limit Theorems via a Modular Approach Gromoll, Puha & Williams '02 (fluid limit) Puha & Williams '04 (analysis of critical fluid model solutions) Gromoll '04 (diffusion limit)

Outline

- 1. Critical Fluid Model Solution (CMFS)
 - a) Definition
 - b) Existence & Uniqueness
 - c) Invariant States
- 2. Statement of the Main Result in PW '16
- 3. Proof Strategy via Relative Entropy Arguments
- 4. Statement of Main Technical Result in PW '16
- 5. Proof of the Main Technical Result

Model inputs: critical data (α, ν)

- $\alpha \ \in (0,\infty)$ is the arrival rate of fluid
- $\nu\,$ is a Borel probability measure on $[0,\infty)$ by which the fluid is distributed as it enters the system such that

$$u(\{0\}) = 0 \quad \text{and} \quad \rho = \alpha \langle \chi, \nu \rangle = 1.$$

Model inputs: critical data (α, ν)

- $\alpha \ \in (0,\infty)$ is the arrival rate of fluid
- $\nu\,$ is a Borel probability measure on $[0,\infty)$ by which the fluid is distributed as it enters the system such that

$$u(\{0\}) = 0 \quad \text{and} \quad \rho = \alpha \langle \chi, \nu \rangle = 1.$$

Initial Condition: $\xi \in \mathbf{M}$

 ξ is a finite, nonnegative Borel measure on $[0,\infty)$ that gives the initial distribution of fluid

A Fluid Model Solution for the critical data (α, ν) and initial condition $\xi \in \mathbf{M}$ is a function $\zeta : [0, \infty) \to \mathbf{M}$ with $\zeta(0) = \xi$ that is continuous, does not charge the origin, and

A Fluid Model Solution for the critical data (α, ν) and initial condition $\xi \in \mathbf{M}$ is a function $\zeta : [0, \infty) \to \mathbf{M}$ with $\zeta(0) = \xi$ that is continuous, does not charge the origin, and

for all $g \in \mathbf{C}_b^1$ with g(0) = 0 and g'(0) = 0, satisfies

$$\langle g, \boldsymbol{\zeta}(t) \rangle = \langle g, \boldsymbol{\xi} \rangle + \alpha t \langle g, \nu \rangle - \int_0^t \frac{\langle g', \boldsymbol{\zeta}(u) \rangle}{\langle 1, \boldsymbol{\zeta}(u) \rangle} du,$$

for $0 \le t < t^* = \inf\{u : \langle 1, \zeta(u) \rangle = 0\}$, and

$$\zeta(t) = \mathbf{0}, \qquad ext{ for } t \geq t^*.$$

Existence and Uniqueness of CFMS

Let \mathbf{K} be the set of continuous measures in \mathbf{M} :

 $\mathbf{K} = \{\eta \in \mathbf{M} : \eta(\{x\}) = 0 \text{ for all } x \in [0,\infty)\}.$

Existence and Uniqueness of CFMS

Let \mathbf{K} be the set of continuous measures in \mathbf{M} :

 $\mathbf{K} = \{\eta \in \mathbf{M} : \eta(\{x\}) = 0 \text{ for all } x \in [0,\infty)\}.$

Theorem (*GPW '02*).

Given critical data (α, ν) and $\xi \in \mathbf{K}$, there exists a unique fluid model solution ζ^{ξ} for the data (α, ν) such that $\zeta^{\xi}(0) = \xi$.

Invariant States for CFMS

Definition. Given critical data (α, ν) , $\xi \in \mathbf{K}$ is an invariant state if $\zeta^{\xi}(t) = \xi$ for all $t \ge 0$.

Invariant States for CFMS

Definition. Given critical data (α, ν) , $\xi \in \mathbf{K}$ is an invariant state if $\zeta^{\xi}(t) = \xi$ for all $t \ge 0$.

Definition. Given $\eta \in \mathbf{M}$ such that $0 < \langle \chi, \eta \rangle < \infty$, the associated excess life probability measure η_e is the probability measure with density f_e given by

$$f_e(x) = rac{\langle 1_{(x,\infty)}, \eta
angle}{\langle \chi, \eta
angle},$$

for $x \in [0, \infty)$.

Invariant States for CFMS

Definition. Given critical data (α, ν) , $\xi \in \mathbf{K}$ is an invariant state if $\zeta^{\xi}(t) = \xi$ for all $t \ge 0$.

Definition. Given $\eta \in \mathbf{M}$ such that $0 < \langle \chi, \eta \rangle < \infty$, the associated excess life probability measure η_e is the probability measure with density f_e given by

$$f_e(x) = rac{\langle 1_{(x,\infty)}, \eta
angle}{\langle \chi, \eta
angle}, \qquad ext{ for } x \in [0,\infty).$$

Theorem (PW '04). The set of invariant states I for critical data (α, ν) is given by

$$\mathbf{I} = \{ \boldsymbol{c}\nu_e : \boldsymbol{c} \in [0,\infty) \}.$$

Main Result

Given critical data (α, ν) and u, l > 0, let

$$egin{aligned} \mathbf{M}_{u,l} &= \{\eta \in \mathbf{M} \ : \ l \leq \langle \chi, \eta
angle \ and \ & \langle 1_{(x,\infty)}, \eta
angle \leq oldsymbol{u} \langle 1_{(x,\infty)},
u_e
angle \ & for \ all \ x \in [0,\infty) \}, \end{aligned}$$

and set $\mathbf{K}_{u,l} = \mathbf{K} \cap \mathbf{M}_{u,l}$.

Main Result

Given critical data (α, ν) and u, l > 0, let

$$\mathbf{M}_{u,l} = \{\eta \in \mathbf{M} : l \leq \langle \chi, \eta \rangle \text{ and} \ \langle 1_{(x,\infty)}, \eta \rangle \leq u \langle 1_{(x,\infty)}, \nu_e
angle \ for all \ x \in [0,\infty) \},$$

and set $\mathbf{K}_{u,l} = \mathbf{K} \cap \mathbf{M}_{u,l}$.

Theorem 3.1 (PW '16). Let (α, ν) be critical data such that $\langle \chi^2, \nu \rangle < \infty$ and u, l > 0. Then

$$\lim_{t\to\infty}\sup_{\xi\in\mathbf{K}_{u,l}}d(\zeta^{\xi}(t),\mathbf{I})=0.$$

Relative Entropy

For absolutely continuous Borel probability measures η and γ on \mathbb{R}_+ with densities f and g,

$$\mathcal{E}(\eta, \gamma) = \int_0^\infty f(x) \ln\left(\frac{f(x)}{g(x)}\right) dx.$$

By convention, $0 \ln 0 = 0$ and $y \ln(y/0) = \infty$ for y > 0.

Relative Entropy

For absolutely continuous Borel probability measures η and γ on \mathbb{R}_+ with densities f and g,

$$\mathcal{E}(\eta, \gamma) = \int_0^\infty f(x) \ln\left(\frac{f(x)}{g(x)}\right) dx.$$

By convention, $0 \ln 0 = 0$ and $y \ln(y/0) = \infty$ for y > 0. Relative entropy is not a metric, but

1. $\mathcal{E}(\eta, \gamma) = 0$ if and only if $\eta = \gamma$, and 2. $d(\eta, \gamma) \leq \sqrt{\frac{\mathcal{E}(\eta, \gamma)}{2}}$.

Problem

Recall $\mathbf{I} = \{ \mathbf{c}\nu_e : \mathbf{c} \in [0,\infty) \}.$

Problem

Recall $\mathbf{I} = \{ \mathbf{c}\nu_e : \mathbf{c} \in [0,\infty) \}.$

Since ν_e is absolutely continuous, all invariant states are absolutely continuous.

Recall $\mathbf{I} = \{ \mathbf{c}\nu_e : \mathbf{c} \in [0,\infty) \}.$

Since ν_e is absolutely continuous, all invariant states are absolutely continuous.

The value $\zeta(t)$ of a fluid model solution ζ at time t is not necessarily absolutely continuous.

Recall $\mathbf{I} = \{ \mathbf{c}\nu_e : \mathbf{c} \in [0,\infty) \}.$

Since ν_e is absolutely continuous, all invariant states are absolutely continuous.

The value $\zeta(t)$ of a fluid model solution ζ at time t is not necessarily absolutely continuous.

Hence, it is possible that for all $t \ge 0$,

$$\mathcal{E}\left(rac{\zeta(t)}{\langle 1,\zeta(t)
angle},
u_e
ight)=\infty.$$

Fix critical data (α, ν) such that $\langle \chi^2, \nu \rangle < \infty$.

Fix critical data (α, ν) such that $\langle \chi^2, \nu \rangle < \infty$.

Recall that $\mathbf{I} = \{ \boldsymbol{c}\nu_e : \boldsymbol{c} \in [0,\infty) \}.$

Fix critical data (α, ν) such that $\langle \chi^2, \nu \rangle < \infty$.

Recall that $\mathbf{I} = \{ \boldsymbol{c}\nu_e : \boldsymbol{c} \in [0,\infty) \}.$

Note that, for c > 0, $(c(\nu_e))_e = (\nu_e)_e$.

Fix critical data (α, ν) such that $\langle \chi^2, \nu \rangle < \infty$. Recall that $\mathbf{I} = \{ c\nu_e : c \in [0, \infty) \}$. Note that, for c > 0, $(c(\nu_e))_e = (\nu_e)_e$. Given $\eta \in \mathbf{M}$ such that $0 < \langle \chi, \eta \rangle < \infty$, let

 $H(\eta) = \mathcal{E}(\eta_e, (\nu_e)_e).$

Fix critical data (α, ν) such that $\langle \chi^2, \nu \rangle < \infty$. Recall that $\mathbf{I} = \{ c\nu_e : c \in [0, \infty) \}$. Note that, for c > 0, $(c(\nu_e))_e = (\nu_e)_e$. Given $\eta \in \mathbf{M}$ such that $0 < \langle \chi, \eta \rangle < \infty$, let

 $H(\eta) = \mathcal{E}(\eta_e, (\nu_e)_e).$

Then, given $\xi \in \mathbf{K}$ such that $0 < \langle \chi, \xi \rangle < \infty$, let

 $\mathcal{H}_{\xi}(t) = H(\zeta^{\xi}(t)) = \mathcal{E}(\zeta_e^{\xi}(t), (\nu_e)_e), \quad \text{for } t \ge 0.$

Strategy for Proving the Main Result

Show:

 $\mathcal{H}_{\xi}(t) \to 0$ uniformly as $t \to \infty$ on $\mathbf{K}_{u,l}$ for any u, l > 0.

Show:

 $\mathcal{H}_{\xi}(t) \to 0$ uniformly as $t \to \infty$ on $\mathbf{K}_{u,l}$ for any u, l > 0.

Immediate Conclusion:

 $d(\zeta_e^{\xi}(t), (\nu_e)_e) \to 0$ uniformly as $t \to \infty$ on $\mathbf{K}_{u,l}$ for any u, l > 0.

Show:

 $\mathcal{H}_{\xi}(t) \to 0$ uniformly as $t \to \infty$ on $\mathbf{K}_{u,l}$ for any u, l > 0.

Immediate Conclusion:

 $d(\zeta_e^{\xi}(t), (\nu_e)_e) \to 0$ uniformly as $t \to \infty$ on $\mathbf{K}_{u,l}$ for any u, l > 0.

Desired Conclusion:

 $d(\zeta^{\xi}(t), \mathbf{I}) \rightarrow 0$ uniformly as $t \rightarrow \infty$ on $\mathbf{K}_{u,l}$ for any u, l > 0.

Show:

 $\mathcal{H}_{\xi}(t) \to 0$ uniformly as $t \to \infty$ on $\mathbf{K}_{u,l}$ for any u, l > 0.

Immediate Conclusion:

 $d(\zeta_e^{\xi}(t), (\nu_e)_e) \to 0$ uniformly as $t \to \infty$ on $\mathbf{K}_{u,l}$ for any u, l > 0.

Desired Conclusion:

 $d(\zeta^{\xi}(t), \mathbf{I}) \rightarrow 0$ uniformly as $t \rightarrow \infty$ on $\mathbf{K}_{u,l}$ for any u, l > 0.

Final Step:

Show that the Desired Conclusion follows.

Main Technical Result

Theorem 3.2 (PW '16). Let (α, ν) be critical data such that $\langle \chi^2, \nu \rangle < \infty$ and let u, l > 0. For each $\xi \in \mathbf{K}_{u,l}$, \mathcal{H}_{ξ} is nonincreasing. Furthermore,

$$\lim_{t o\infty} \sup_{\xi\in \mathbf{K}_{u,l}} \mathcal{H}_{\xi}(t) = 0.$$

Recall $\mathcal{H}_{\xi}(t) = \mathcal{E}(\zeta_e^{\xi}(t), (\nu_e)_e)$ for $t \ge 0$ and $\xi \in \mathbf{K}_{u,l}$.

Absolute Continuity of \mathcal{H}_{ξ}

Theorem 7.1 (PW '16). Let (α, ν) be critical data such that $\langle \chi^2, \nu \rangle < \infty$ and let u, l > 0. For each $\xi \in \mathbf{K}_{u,l}$, there exists a continuous function $\kappa_{\xi} : [0, \infty) \to (-\infty, 0]$ such that for all $0 \le s < t < \infty$,

$$\mathcal{H}_{\xi}(t) - \mathcal{H}_{\xi}(s) = \int_{s}^{t} \kappa_{\xi}(u) du,$$

and $\kappa_{\xi}(u) = 0$ if and only if $\zeta^{\xi}(u) \in I$.

Absolute Continuity of \mathcal{H}_{ξ}

Theorem 7.1 (PW '16). Let (α, ν) be critical data such that $\langle \chi^2, \nu \rangle < \infty$ and let u, l > 0. For each $\xi \in \mathbf{K}_{u,l}$, there exists a continuous function $\kappa_{\xi} : [0, \infty) \to (-\infty, 0]$ such that for all $0 \le s < t < \infty$,

$$\mathcal{H}_{\xi}(t)-\mathcal{H}_{\xi}(s)=\int_{s}^{t}\kappa_{\xi}(u)du,$$

and $\kappa_{\xi}(u) = 0$ if and only if $\zeta^{\xi}(u) \in I$.

Proof Technique. We compute κ_{ξ} explicitly.

Absolute Continuity of \mathcal{H}_{ξ}

Theorem 7.1 (PW '16). Let (α, ν) be critical data such that $\langle \chi^2, \nu \rangle < \infty$ and let u, l > 0. For each $\xi \in \mathbf{K}_{u,l}$, there exists a continuous function $\kappa_{\xi} : [0, \infty) \to (-\infty, 0]$ such that for all $0 \le s < t < \infty$,

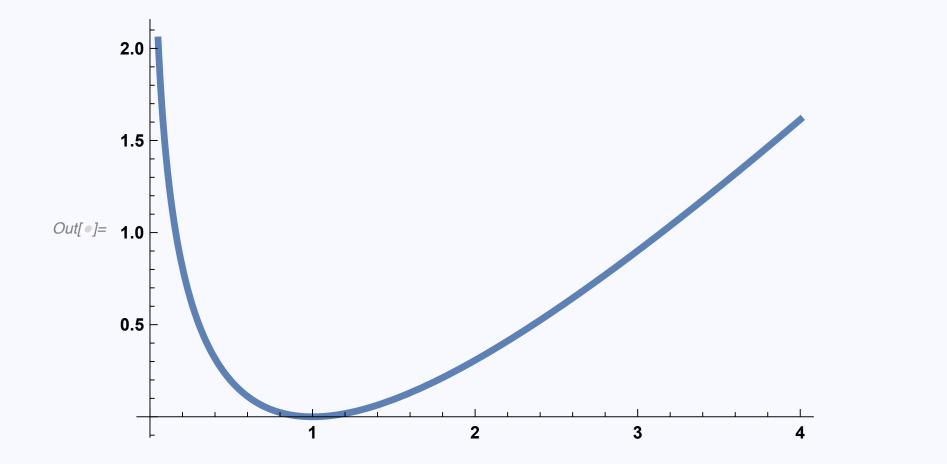
$$\mathcal{H}_{\xi}(t)-\mathcal{H}_{\xi}(s)=\int_{s}^{t}\kappa_{\xi}(u)du,$$

and $\kappa_{\xi}(u) = 0$ if and only if $\zeta^{\xi}(u) \in I$.

Proof Technique. We compute κ_{ξ} explicitly.

Henceforth, u, l > 0 and critical data (α, ν) such that $\langle \chi^2, \nu \rangle < \infty$ are fixed .

An Explicit Expression for κ_{ξ}



For $x \in (0, \infty)$, set $k(x) = x - 1 - \ln(x)$ and set $k(0) = \infty$.

An Explicit Expression for κ_{ξ}

Let $\xi \in \mathbf{K}_{u,l}$. For $t, x \in [0, \infty)$, set

$$egin{aligned} q^{\xi}(t) &= \langle 1, \zeta^{\xi}(t)
angle, \ \overline{q}^{\xi}(t,x) &= \langle 1_{(x,\infty)}, \zeta^{\xi}(t)
angle, \ \overline{N}_e(x) &= \langle 1_{(x,\infty)},
u_e
angle. \end{aligned}$$

An Explicit Expression for κ_{ξ}

Let $\xi \in \mathbf{K}_{u,l}$. For $t, x \in [0, \infty)$, set $q^{\xi}(t) = \langle 1, \zeta^{\xi}(t) \rangle,$ $\overline{q}^{\xi}(t, x) = \langle 1_{(x,\infty)}, \zeta^{\xi}(t) \rangle,$ $\overline{N}_{e}(x) = \langle 1_{(x,\infty)}, \nu_{e} \rangle.$

Then, for t > 0,

$$\kappa_{\xi}(t) = rac{-1}{\langle \chi, \xi
angle} \mathbb{E}_{
u_e} \left[k \left(rac{\overline{q}^{\xi}(t, X)}{q^{\xi}(t) \overline{N}_e(X)}
ight)
ight]$$

An Associated PDE

Corollary 7.1 (PW '16) Let $\xi \in \mathbf{K}$. Suppose that

- ν does not have atoms, and
- ξ is nonzero and has a continuous density.

An Associated PDE

Corollary 7.1 (PW '16) Let $\xi \in \mathbf{K}$. Suppose that

- ν does not have atoms, and
- ξ is nonzero and has a continuous density.

Then for all $(t,x)\in [0,\infty)^2$,

$$rac{\partial}{\partial t}\overline{q}^{\xi}(t,x)=lpha\langle 1_{(x,\infty)},
u
angle-rac{\partial}{\partial x}\overline{q}^{\xi}(t,x)rac{\partial}{q^{\xi}(t)}.$$

An Associated PDE

Corollary 7.1 (PW '16) Let $\xi \in \mathbf{K}$. Suppose that

- ν does not have atoms, and
- ξ is nonzero and has a continuous density.

Then for all $(t,x)\in [0,\infty)^2$,

$$rac{\partial}{\partial t} \overline{q}^{\xi}(t,x) = lpha \langle 1_{(x,\infty)},
u
angle - rac{rac{\partial}{\partial x} \overline{q}^{\xi}(t,x)}{q^{\xi}(t)}.$$

Remark. Used by Paganini et. al. '12 to study stability properties of subcritical Bandwidth sharing models.

Prf of Theorem 7.1: Absolute Continuity of \mathcal{H}_{ξ}

- 1. Verify that κ_{ξ} is finite and continuous.
- 2. Restrict to absolutely continuous $\xi \in \mathbf{K}_{u,l}$.
 - a) Prove that a weak formulation of the PDE holds.
 - b) Use integration-by-parts together with the weak formulation of the PDE and other identities to verify that κ_{ξ} is the density of \mathcal{H}_{ξ} .
- 3. Use approximation arguments to extend to $\xi \in \mathbf{K}_{u,l}$.

Fix $u, l, T, \varepsilon > 0$. We show that there exist

1. B > 0 such that $\mathcal{H}_{\xi}(t) \leq B$ for all $t \geq 0$ and $\xi \in \mathbf{K}_{u,l}$,

Fix $u, l, T, \varepsilon > 0$. We show that there exist

- 1. B > 0 such that $\mathcal{H}_{\xi}(t) \leq B$ for all $t \geq 0$ and $\xi \in \mathbf{K}_{u,l}$,
- 2. a compact set $\mathbf{M}_{u,l,T}$ that does not contain the zero measure and such that for all $\xi \in \mathbf{K}_{u,l}$, $\zeta^{\xi}(t) \in \mathbf{M}_{u,l,T}$ for all $t \geq T$.

Fix $u, l, T, \varepsilon > 0$. We show that there exist

- 1. B > 0 such that $\mathcal{H}_{\xi}(t) \leq B$ for all $t \geq 0$ and $\xi \in \mathbf{K}_{u,l}$,
- 2. a compact set $\mathbf{M}_{u,l,T}$ that does not contain the zero measure and such that for all $\xi \in \mathbf{K}_{u,l}$, $\zeta^{\xi}(t) \in \mathbf{M}_{u,l,T}$ for all $t \geq T$.
- 3. $\delta > 0$ such that if $t \ge T$ and $\mathcal{H}_{\xi}(t) \ge \varepsilon$, then $\kappa_{\xi}(t) \le -\delta$.

Fix $u, l, T, \varepsilon > 0$. We show that there exist

- 1. B > 0 such that $\mathcal{H}_{\xi}(t) \leq B$ for all $t \geq 0$ and $\xi \in \mathbf{K}_{u,l}$,
- 2. a compact set $\mathbf{M}_{u,l,T}$ that does not contain the zero measure and such that for all $\xi \in \mathbf{K}_{u,l}$, $\zeta^{\xi}(t) \in \mathbf{M}_{u,l,T}$ for all $t \geq T$.
- 3. $\delta > 0$ such that if $t \ge T$ and $\mathcal{H}_{\xi}(t) \ge \varepsilon$, then $\kappa_{\xi}(t) \le -\delta$.
- It follows by monotonicity of \mathcal{H}_{ξ} that $\mathcal{H}_{\xi}(t) < \varepsilon$ for all $t \ge T + B/\delta$.

Recall that for $\eta \in \mathbf{M}$ such that $0 < \langle \chi, \eta \rangle < \infty$,

 $H(\eta) = \mathcal{E}(\eta_e, (\nu_e)_e).$

Recall that for $\eta \in \mathbf{M}$ such that $0 < \langle \chi, \eta \rangle < \infty$,

$H(\eta) = \mathcal{E}(\eta_e, (\nu_e)_e).$

Let $\mathbf{J} = \{\eta \in \mathbf{M} : \eta = a\delta_0 + c\nu_e \text{ for some } a, c \in [0, \infty)\}.$

Recall that for $\eta \in \mathbf{M}$ such that $0 < \langle \chi, \eta \rangle < \infty$,

 $H(\eta) = \mathcal{E}(\eta_e, (\nu_e)_e).$

Let $\mathbf{J} = \{\eta \in \mathbf{M} : \eta = a\delta_0 + c\nu_e \text{ for some } a, c \in [0, \infty)\}.$ Note $\mathbf{I} = \{\eta \in \mathbf{J} : \langle 1_{\{0\}}, \eta \rangle = 0\}$, and $\mathbf{I} \subset \mathbf{J}.$

Recall that for $\eta \in \mathbb{M}$ such that $0 < \langle \chi, \eta \rangle < \infty$,

 $H(\eta) = \mathcal{E}(\eta_e, (\nu_e)_e).$

Let $\mathbf{J} = \{\eta \in \mathbf{M} : \eta = a\delta_0 + c\nu_e \text{ for some } a, c \in [0, \infty)\}.$ Note $\mathbf{I} = \{\eta \in \mathbf{J} : \langle 1_{\{0\}}, \eta \rangle = 0\}$, and $\mathbf{I} \subset \mathbf{J}.$ **Proposition**.

- 1. For $\eta \in \mathbf{M}$ such that $0 < \langle \chi, \eta \rangle < \infty$, $H(\eta) = 0$ if and only if $\eta \in \mathbf{J}$.
- 2. *H* is continuous on $\mathbf{M}_{u,l}$.

Corollary 6.1 (PW '16).

$$\lim_{t\to\infty}\sup_{\xi\in\mathbf{K}_{u,l}}d(\boldsymbol{\zeta}^{\xi}(t),\mathbf{J})=0.$$

Corollary 6.1 (PW '16).

$$\lim_{t\to\infty}\sup_{\xi\in\mathbf{K}_{u,l}}d(\boldsymbol{\zeta}^{\xi}(t),\mathbf{J})=0.$$

Pf Sketch. $\exists u^*, l^* > 0$ s.t. $\zeta^{\xi}(t) \in \mathbf{K}_{u^*, l^*}$ for all $t \ge 0$.

Corollary 6.1 (PW '16).

$$\lim_{t\to\infty}\sup_{\xi\in\mathbf{K}_{u,l}}d(\zeta^{\xi}(t),\mathbf{J})=0.$$

Pf Sketch. $\exists u^*, l^* > 0$ s.t. $\zeta^{\xi}(t) \in \mathbf{K}_{u^*, l^*}$ for all $t \ge 0$.

By continuity of H and compactness of \mathbf{M}_{u^*,l^*} , given $\varepsilon > 0$, there exists $\gamma > 0$ such that

 $\{\eta \in \mathbf{M}_{u^*,l^*} : d(\eta, \mathbf{J}) \ge \varepsilon\} \subseteq \{\eta \in \mathbf{M}_{u^*,l^*} : H(\eta) \ge \gamma\}.$

Corollary 6.1 (PW '16).

$$\lim_{t\to\infty}\sup_{\xi\in\mathbf{K}_{u,l}}d(\zeta^{\xi}(t),\mathbf{J})=0.$$

Pf Sketch. $\exists u^*, l^* > 0$ s.t. $\zeta^{\xi}(t) \in \mathbf{K}_{u^*, l^*}$ for all $t \ge 0$.

By continuity of H and compactness of \mathbf{M}_{u^*,l^*} , given $\varepsilon > 0$, there exists $\gamma > 0$ such that

 $\{\eta \in \mathbf{M}_{u^*, l^*} : d(\eta, \mathbf{J}) \ge \varepsilon\} \subseteq \{\eta \in \mathbf{M}_{u^*, l^*} : H(\eta) \ge \gamma\}.$

By Theorem 3.2, $H(\zeta^{\xi}(t))$ is uniformly close to zero.

Prf of Main Result

Theorem 3.1 (*PW '16*)

$$\lim_{t\to\infty}\sup_{\xi\in\mathbf{K}_{u,l}}d(\boldsymbol{\zeta}^{\xi}(t),\mathbf{I})=0.$$

Pf Sketch.

Theorem 3.1 (*PW '16*)

$$\lim_{t\to\infty}\sup_{\xi\in\mathbf{K}_{u,l}}d(\boldsymbol{\zeta}^{\xi}(t),\mathbf{I})=0.$$

Pf Sketch.

By Corollary 6.1, the above holds with I replaced by J.

Theorem 3.1 (*PW '16*)

$$\lim_{t\to\infty}\sup_{\xi\in\mathbf{K}_{u,l}}d(\boldsymbol{\zeta}^{\xi}(t),\mathbf{I})=0.$$

Pf Sketch.

By Corollary 6.1, the above holds with I replaced by J. But $\langle 1_{\{0\}}, \zeta^{\xi}(t) \rangle = 0$ for all $t \ge 0$ and $\xi \in \mathbf{K}$.

Theorem 3.1 (*PW '16*)

$$\lim_{t\to\infty}\sup_{\xi\in\mathbf{K}_{u,l}}d(\zeta^{\xi}(t),\mathbf{I})=0.$$

Pf Sketch.

By Corollary 6.1, the above holds with I replaced by J.

But $\langle 1_{\{0\}}, \zeta^{\xi}(t) \rangle = 0$ for all $t \ge 0$ and $\xi \in \mathbf{K}$.

Using this and other properties of ζ^{ξ} for $\xi \in \mathbf{K}_{u,l}$, it can be shown that **J** in Corollary 6.1 can be replaced by **I**.

Extension to multiclass processor sharing queues (w/ J. Mulvany & R. Williams).

Extension to multiclass processor sharing queues (w/ J. Mulvany & R. Williams).

Thank you for your attention.