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Processor Sharing (PS) Queue

• Each job in system simultaneously served at rate

1

# jobs in the system
.

• Idealized model for computer time-sharing

algorithms introduced by Kleinrock in ‘60’s.

• Until early 2000’s, only analyzed under restrictive

distributional assumptions.
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• Initial condition:

# jobs in the system a time 0, each with strictly

positive residual service time

• Arrivals:

rate α delayed renewal process

• Service times:

strictly positive, i.i.d. with distribution ν
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• Residual service times:

For each job in the system at time t, the residual

service time at time t is the amount of processing

time remaining at t

• Infinite dimensional system:

Must track all residual service times.
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State Descriptor for GI/GI/1 PS Queue

Z(t)

b b b b b b b b b b b b b b b

For each Borel set A ⊂ [0,∞),

〈1A,Z(t)〉 = # jobs in the system at time t

with residual service time in A.

Z(·) is an r.c.l.l. stochastic process taking values in the

set of finite, nonnegative Borel measures M on [0,∞).

M endowed with the topology of weak convergence is

a Polish space metrizable by the Prokhorov metric d.



State Descriptor for GI/GI/1 PS Queue

Z(t)

b b b b b b b b b b b b b b b

Observe that

Q(t) ≡ 〈1,Z(t)〉 = # jobs in system at time t,

W (t) ≡ 〈χ,Z(t)〉 = immediate workload at time t,

where χ(x) = x, x ∈ [0,∞).
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Jean-Marie & Robert ‘94 (transient, overloaded queue)

Chen, Kella & Weiss ‘97 (fluid limits for queue length)
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Limit Theorems via a Modular Approach

Gromoll, Puha & Williams ‘02 (fluid limit)

Puha & Williams ‘04 (analysis of critical fluid model solutions)

Gromoll ‘04 (diffusion limit)
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α ∈ (0,∞) is the arrival rate of fluid

ν is a Borel probability measure on [0,∞) by which

the fluid is distributed as it enters the system such

that

ν({0}) = 0 and ρ = α〈χ, ν〉 = 1.

Initial Condition: ξ ∈ M

ξ is a finite, nonnegative Borel measure on [0,∞)

that gives the initial distribution of fluid



Critical Fluid Model (GPW ‘02)

A Fluid Model Solution for the critical data (α, ν)

and initial condition ξ ∈ M is a function ζ : [0,∞) → M

with ζ(0) = ξ that is continuous, does not charge the

origin, and



Critical Fluid Model (GPW ‘02)

A Fluid Model Solution for the critical data (α, ν)

and initial condition ξ ∈ M is a function ζ : [0,∞) → M

with ζ(0) = ξ that is continuous, does not charge the

origin, and

for all g ∈ C1
b with g(0) = 0 and g′(0) = 0, satisfies

〈g, ζ(t)〉 = 〈g, ξ〉+ α t 〈g, ν〉 −

∫ t

0

〈g′, ζ(u)〉

〈1, ζ(u)〉
du,

for 0 ≤ t < t∗ = inf{u : 〈1, ζ(u)〉 = 0}, and

ζ(t) = 0, for t ≥ t∗.
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Let K be the set of continuous measures in M:

K = {η ∈ M : η({x}) = 0 for all x ∈ [0,∞)}.

Theorem (GPW ‘02).

Given critical data (α, ν) and ξ ∈ K, there exists a

unique fluid model solution ζξ for the data (α, ν) such

that ζξ(0) = ξ.
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Definition. Given critical data (α, ν), ξ ∈ K is an

invariant state if ζξ(t) = ξ for all t ≥ 0.

Definition. Given η ∈ M such that 0 < 〈χ, η〉 < ∞, the

associated excess life probability measure ηe is the

probability measure with density fe given by

fe(x) =
〈1(x,∞), η〉

〈χ, η〉
, for x ∈ [0,∞).

Theorem (PW ‘04). The set of invariant states I for

critical data (α, ν) is given by

I = {cνe : c ∈ [0,∞)}.
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Main Result

Given critical data (α, ν) and u, l > 0, let

Mu,l = {η ∈ M : l ≤ 〈χ, η〉 and

〈1(x,∞), η〉 ≤ u〈1(x,∞), νe〉

for all x ∈ [0,∞)},

and set Ku,l = K ∩Mu,l.

Theorem 3.1 (PW ‘16). Let (α, ν) be critical data

such that 〈χ2, ν〉 < ∞ and u, l > 0. Then

lim
t→∞

sup
ξ∈Ku,l

d(ζξ(t), I) = 0.
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For absolutely continuous Borel probability measures η

and γ on R+ with densities f and g,

E(η, γ) =

∫ ∞

0
f(x) ln

(

f(x)

g(x)

)

dx.

By convention, 0 ln 0 = 0 and y ln(y/0) = ∞ for y > 0.

Relative entropy is not a metric, but

1. E(η, γ) = 0 if and only if η = γ, and

2. d(η, γ) ≤
√

E(η,γ)
2

.
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Problem

Recall I = {cνe : c ∈ [0,∞)}.

Since νe is absolutely continuous, all invariant states

are absolutely continuous.

The value ζ(t) of a fluid model solution ζ at time t is

not necessarily absolutely continuous.

Hence, it is possible that for all t ≥ 0,

E

(

ζ(t)
〈

1, ζ(t)
〉 , νe

)

= ∞.
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Key Idea

Fix critical data (α, ν) such that 〈χ2, ν〉 < ∞.

Recall that I = {cνe : c ∈ [0,∞)}.

Note that, for c > 0,
(

c(νe)
)

e
= (νe)e.

Given η ∈ M such that 0 < 〈χ, η〉 < ∞, let

H(η) = E(ηe, (νe)e).

Then, given ξ ∈ K such that 0 < 〈χ, ξ〉 < ∞, let

Hξ(t) = H(ζξ(t)) = E(ζξe(t), (νe)e), for t ≥ 0.
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Strategy for Proving the Main Result

Show:

Hξ(t) → 0 uniformly as t → ∞ on Ku,l for any u, l > 0.

Immediate Conclusion:

d(ζξe(t), (νe)e) → 0 uniformly as t → ∞ on Ku,l for any

u, l > 0.

Desired Conclusion:

d(ζξ(t), I) → 0 uniformly as t → ∞ on Ku,l for any

u, l > 0.

Final Step:

Show that the Desired Conclusion follows.



Main Technical Result

Theorem 3.2 (PW ‘16). Let (α, ν) be critical data

such that
〈

χ2, ν
〉

< ∞ and let u, l > 0. For each

ξ ∈ Ku,l, Hξ is nonincreasing. Furthermore,

lim
t→∞

supξ∈Ku,l
Hξ(t) = 0.

Recall Hξ(t) = E(ζξe(t), (νe)e) for t ≥ 0 and ξ ∈ Ku,l.
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Absolute Continuity of Hξ

Theorem 7.1 (PW ‘16). Let (α, ν) be critical data

such that
〈

χ2, ν
〉

< ∞ and let u, l > 0. For each

ξ ∈ Ku,l, there exists a continuous function

κξ : [0,∞) → (−∞, 0] such that for all 0 ≤ s < t < ∞,

Hξ(t)−Hξ(s) =

∫ t

s
κξ(u)du,

and κξ(u) = 0 if and only if ζξ(u) ∈ I.

Proof Technique. We compute κξ explicitly.

Henceforth, u, l > 0 and critical data (α, ν) such that
〈

χ2, ν
〉

< ∞ are fixed .



An Explicit Expression for κξ
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For x ∈ (0,∞), set k(x) = x− 1− ln(x) and set k(0) = ∞.
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An Explicit Expression for κξ

Let ξ ∈ Ku,l. For t, x ∈ [0,∞), set

qξ(t) = 〈1, ζξ(t)〉,

qξ(t, x) = 〈1(x,∞), ζ
ξ(t)〉,

Ne(x) = 〈1(x,∞), νe〉.

Then, for t > 0,

κξ(t) =
−1

〈χ, ξ〉
Eνe



k

(

qξ(t,X)

qξ(t)Ne(X)

)



 .
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An Associated PDE

Corollary 7.1 (PW ‘16)

Let ξ ∈ K. Suppose that

• ν does not have atoms, and

• ξ is nonzero and has a continuous density.

Then for all (t, x) ∈ [0,∞)2,

∂

∂t
qξ(t, x) = α〈1(x,∞), ν〉 −

∂
∂x
qξ(t, x)

qξ(t)
.

Remark. Used by Paganini et. al. ‘12 to study stability

properties of subcritical Bandwidth sharing models.



Prf of Theorem 7.1: Absolute Continuity of Hξ

1. Verify that κξ is finite and continuous.

2. Restrict to absolutely continuous ξ ∈ Ku,l.

a) Prove that a weak formulation of the PDE

holds.

b) Use integration-by-parts together with the

weak formulation of the PDE and other

identities to verify that κξ is the density of Hξ.

3. Use approximation arguments to extend to

ξ ∈ Ku,l.
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Prf of Theorem 3.2: Hξ(t) ց 0 uniformly on Ku,l.

Fix u, l, T, ε > 0. We show that there exist

1. B > 0 such that Hξ(t) ≤ B for all t ≥ 0 and ξ ∈ Ku,l,

2. a compact set Mu,l,T that does not contain the

zero measure and such that for all ξ ∈ Ku,l,

ζξ(t) ∈ Mu,l,T for all t ≥ T .

3. δ > 0 such that if t ≥ T and Hξ(t) ≥ ε, then

κξ(t) ≤ −δ.

It follows by monotonicity of Hξ that Hξ(t) < ε for all

t ≥ T +B/δ.
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Prf of Main Result: Properties of H

Recall that for η ∈ M such that 0 < 〈χ, η〉 < ∞,

H(η) = E(ηe, (νe)e).

Let J = {η ∈ M : η = aδ0 + cνe for some a, c ∈ [0,∞)}.

Note I = {η ∈ J : 〈1{0}, η〉 = 0}, and I ⊂ J.

Proposition.

1. For η ∈ M such that 0 < 〈χ, η〉 < ∞,

H(η) = 0 if and only if η ∈ J.

2. H is continuous on Mu,l.
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Prf of Main Result: An Intermediate Result

Corollary 6.1 (PW ‘16).

lim
t→∞

sup
ξ∈Ku,l

d(ζξ(t),J) = 0.

Pf Sketch. ∃ u∗, l∗ > 0 s.t. ζξ(t) ∈ Ku∗,l∗ for all t ≥ 0.

By continuity of H and compactness of Mu∗,l∗, given

ε > 0, there exists γ > 0 such that

{η ∈ Mu∗,l∗ : d(η,J) ≥ ε} ⊆ {η ∈ Mu∗,l∗ : H(η) ≥ γ}.

By Theorem 3.2, H(ζξ(t)) is uniformly close to zero.
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Prf of Main Result

Theorem 3.1 (PW ‘16)

lim
t→∞

sup
ξ∈Ku,l

d(ζξ(t), I) = 0.

Pf Sketch.

By Corollary 6.1, the above holds with I replaced by J.

But 〈1{0}, ζ
ξ(t)〉 = 0 for all t ≥ 0 and ξ ∈ K.

Using this and other properties of ζξ for ξ ∈ Ku,l, it can

be shown that J in Corollary 6.1 can be replaced by I.
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(w/ J. Mulvany & R. Williams).

Thank you for your attention.


