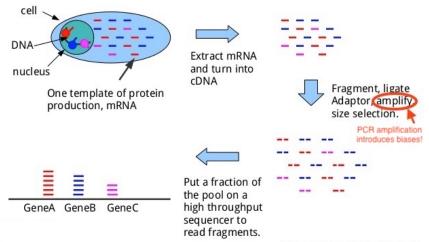
Correctly counting molecules with a little help from a well-known population model

Florian Pflug and Arndt von Haeseler

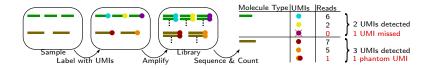
Edinburgh, July 17th 2018

The Basic RNA-Seq Workflow



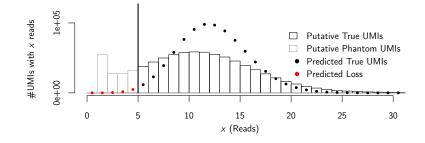
Nature Reviews Molecular Cell Biology 11, 467-478

To measure absolute transcript counts, and avoid errors due to *PCR amplification bias*, mRNA transcripts are labelled with Unique Molecular Identifiers (UMIs; \bullet , \bullet , \bullet , \bullet , \bullet) *before amplification* ...



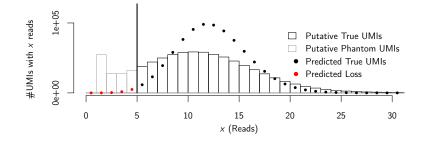
... and after sequencing, not *Reads* but *Unique UMIs* are counted to measure transcript abundance

We sequence only a small percentage of all molecules...



.. but there's more dispersion than stochastic sampling can explain

We sequence only a small percentage of all molecules...



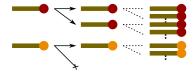
.. but there's more dispersion than stochastic sampling can explain

We must consider the stochasticity of the PCR

PCR as a supercritical Galton-Watson branching process

Of each UMI-labelled molecule there initially is a single copy. During each cycle, each molecule is duplicated with probability E,

$$M_0 = 1,$$
 $M_i = M_{i-1} + \text{Binom}(M_{i-1}, E),$ $\mathbb{E}M_i = (1+E)^i$



after 1^{st} cycle after *n* cycles

PCR as a supercritical Galton-Watson branching process

Of each UMI-labelled molecule there initially is a single copy. During each cycle, each molecule is duplicated with probability E,

$$M_0 = 1,$$
 $M_i = M_{i-1} + \text{Binom}(M_{i-1}, E),$ $\mathbb{E}M_i = (1 + E)^i$

We normalize M_0, M_1, \ldots to have expected value 1,

$$F_i = \frac{M_i}{(1+E)^i}$$

PCR as a supercritical Galton-Watson branching process

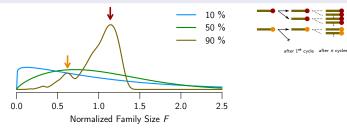
Of each UMI-labelled molecule there initially is a single copy. During each cycle, each molecule is duplicated with probability E,

$$M_0 = 1,$$
 $M_i = M_{i-1} + \text{Binom}(M_{i-1}, E),$ $\mathbb{E}M_i = (1 + E)^i$

We normalize M_0, M_1, \ldots to have expected value 1,

$$F_i = \frac{M_i}{(1+E)^i}$$

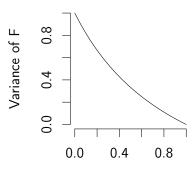
And call the limit $F = \lim_{i \to \infty} F_i$ (normalized) family size.



The family size distribution - Variance

While the density of the family size distribution doesn't seem to be analytically tractable, the variance has a simple analytic expression

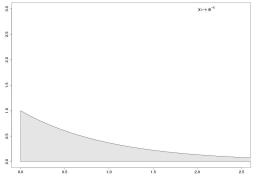
$$\mathbb{V}F = \frac{1-E}{1+E}$$



Efficiency

To compute the density, we must resort to numeric methods

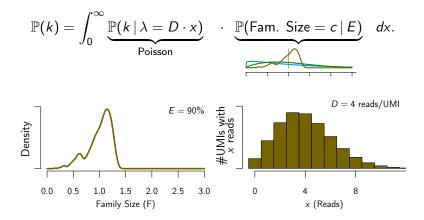
We used simulations+KDE, but now a fast method developed by Straub and Neininger (Göthe-Universität Frankfurt) is available



(Video due to Straub & Neininger)

From the family size to the reads/UMI distribution

Sequencing is Poissonian sampling from families of unknown size



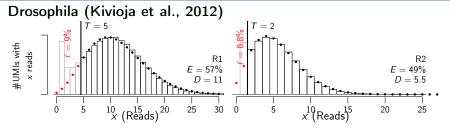
The complete model has two parameters, depth D and efficiency E.

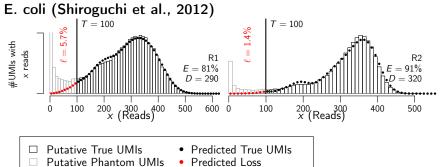
For the reads count C per UMI, we can analytically find

$$\mathbb{E}(C) = D, \qquad \mathbb{V}(C) = D + D^2 \frac{1-E}{1+E}.$$

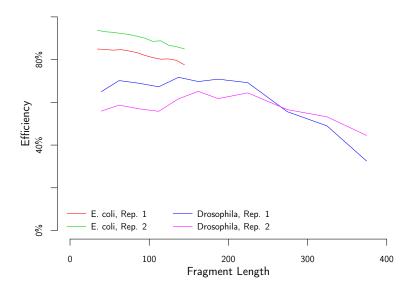
We can estimate *D*, *E* with the *method of moments*.

Observed & Expected Reads/UMI

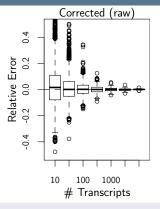




PCR efficiency vs. length

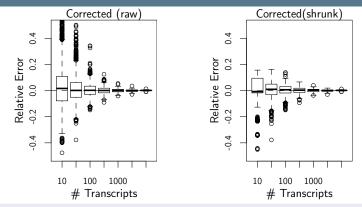


Correcting for gene-wise biases



For genes with few transcripts, we have little data to estimate D, E, and the correction hurts more than it helps...

Correcting for gene-wise biases



We shrink the gene-wise loss estimate $\hat{\ell}_g^{\mathsf{raw}}$ towards global ones

$$\hat{\ell}_g^{\mathsf{shrink}} = \lambda_g \cdot \hat{\ell}_g^{\mathsf{raw}} + (1 - \lambda_g) \cdot \hat{\ell}_g^{\mathsf{all}}$$

- The Galton-Watson branching process model captures the main stochastic properties of the PCR reaction
- while still allowing efficient parameter estimation
- and allows us to predict, detect & correct biases
- as well as studying of early-cycle PCR behaviour.

Most of this work was recently published in: Florian G. Pflug and Arndt von Haeseler. TRUmiCount: Correctly counting absolute numbers of molecules using unique molecular identifiers.

Bioinformatics (2018).

And we provide an \P package gwpcR which implements the family size distribution, Poisson mixture, and parameter estimation

Every at the **CIBIV**, in particular: Olga Chernomor Celine Prakash Luis Paulin-Paz

Goethe-Universität Frankfurt: Jasmin Straub & Günther Neininger

Thank You for your Attention