MAC-MIGS Sandpit Nov 22nd 2019

glenn.marion@bioss.ac.uk

Head of Research

Biomathematics & Statistics Scotland is:

- A research institute, partly funded by Scottish Government, scientifically independent but formally part of the James Hutton Institute
- A member of the <u>S</u>cottish <u>Environment Food & Agriculture Research</u> <u>Institutes (SEFARI) collective</u>
- Eligible for UKRI funding since June 2018 (happy to discuss potential bids)

BioSS Research

We aim to be

- A world leader in developing and applying mathematical and statistical techniques to improve agriculture, food and the environment
- > Applying & helping develop cutting edge methodology for:
 - statistical analysis of large and/or complex datasets;
 - mathematical modelling of processes and systems;
 - statistical / computational bioinformatics and genetics

BioSS Research

Collaboration, Collaboration, Collaboration

- Co-construction of data analysis and modelling
- Statistical design of field trials, experiments, and studies
- Applying & advancing methods to extract maximum value from data and from models
- Estimating quantities that are impractical to measure directly
- Using modelling and data analytics to understand complex systems
- Co-constructing actionable insights to manage complex systems

BioSS Research

Trans-disciplinary success sustained through tension

Applied quantitative research: close links including embedding of BioSS staff with applications focussed research institutes ensures research is applications focussed and responsive to changing priorities.

Applied methodological research: strong links with methodological community to ensure continued application and development of cutting edge methods.

BioSS research

Methodological Research Themes

- Statistical methodology
- Bioinformatics and Statistical Genetics
- Process and Systems modelling

This research is inspired by stakeholder problems

Methodological research

Process and systems modelling

embed process and systems models within statistical framework

methods for simplification, analysis and approximation of complex models

co-construction of models for scientific discovery

0.5

20 30 50 80

% arable

Martin et al. (in review)

50

% arable

80

20 30

Collaboration within MAC-MIGS

4 areas of potential interest

1. Predicting spread of disease, pests and invasive species on landscapes

Statistical methods to infer and test spread mechanisms both when population at risk is known e.g. farm type/location (HPAI) and unknown e.g. wildlife hosts (ASF)

2. Combine process understanding and data for scientific discovery

Using mathematical and statistical methods to develop data-driven tests of alternative hypotheses e.g. understanding within-host disease progression Tb in badgers

3. Phenotype from genotype

<u>Current applications</u> to estimating genetics effects on disease resistance, infectivity and recoverability phenotype

4. Systems modelling tools for better outcomes

or <u>How to escape the law of unintended disaster (LOUD)</u>! e.g. natural and chemical pest control, unintended effects of culling to control wildlife disease

Collaboration within MAC-MIGS

4 areas of potential interest

1. Predicting spread of disease, pests and invasive species on landscapes

Statistical methods to infer and test spread mechanisms both when population at risk is known e.g. farm type/location (HPAI) and unknown e.g. wildlife hosts (ASF)

2. Combine process understanding and data for scientific discovery

Using mathematical and statistical methods to develop data-driven tests of alternative hypotheses e.g. understanding within-host disease progression Tb in badgers

3. Phenotype from genotype

<u>Current applications</u> to estimating genetics effects on disease resistance, infectivity and recoverability phenotype

4. Systems modelling tools for better outcomes

or <u>How to escape the law of unintended disaster (LOUD)</u>! e.g. natural and chemical pest control, unintended effects of culling to control wildlife disease

Inference for complex dynamic models

Focus on continuous time discrete state-space Markov processes

The problem:

- □ Know model structure but ...
- lacksquare Don't know model parameters m heta
- \Box In reality do not know full history H e.g. all births, deaths etc
- □ Instead have **partial observations given by data D**

How to do inference from data **D** ?

- $oldsymbol{\square}$ i.e. how to estimate **model parameters** $oldsymbol{ heta}$
- \Box or reconstruct the **history** H

Bayesian inference

Combines

- Process model $P(H \mid \theta)$ just the model definition
- Observation model $P(D \mid H)$
- Prior information about parameters $P(\theta)$

To give:

Posterior distribution of unknowns in terms of knowns

$P(\theta, H \mid D) \propto P(D \mid H)P(H \mid \theta)P(\theta)$

Inference of unknowns H, θ from the data D

- model parameters **\theta**
- full history H
- observed data D

Computational methods e.g. Markov chain Monte Carlo (MCMC) needed to work with this distribution (high-dimensional) even when don't know constant of proportionality (normalisation factor)

Spatial spread models

Dispersal between grid cells in landscape

- reduces with distance from colonised locations
- increases with number of colonised locations

Suitability of grid cells in landscape

- function of local characteristics e.g. landuse, climate etc.
- varies across landscape
- represents info on pop at risk

Inference for complex dynamic models

Apply Bayesian inference to

- Estimate dispersal model parameters
- Estimate suitability model parameters
- And estimate colonisation times

From observed species distribution maps (atlas data) at two time points

Inferring the spread of invasive aliens

Data-driven risk assessment: population at risk unknown

- Outbreak data typically comprise ONLY cases with times/locations
- BUT most analysis methods require knowledge of the host distribution
- These methods allow us to model the outbreak data when the host distribution is uncertain
- Can perform prediction of spread and control as before

Application to African Swine Fever

Refine analysis to account for lack of data outside FU

Account better for

- Transmission from out with study area
 e.g. treat zones A, B & C separately
- Differences between countries background infection/introduction

Distance from border zone A

Between-farm outbreak: model

Disease progression on farm: S -> I ->R

- S susceptible I infectious
- R detected and depopulated
- S -> I disease transmission (see next slide)
- I ->R disease detection

Centre of Expertise on Animal Disease Outbreaks

Between-farm outbreak: model

Spread of disease between farms

Centre of Expertise or

Animal Disease Outbreaks

- Transmission reduces with distance betweer infected and susceptible farms
- Increases with number of infected farms

Rapid inference to support emergency outbreak response

Application to CSF data from 2000 Norfolk outbreak

Here can infer

- Times of infection
- Time to detection I->R
- Transmission kernel

Data-driven risk assessment

Use Bayesian latent residuals to assess models of transmission kernels Lau et al 2014 Journal of the Royal Society Interface 11, 20131093.

Methods extended to understand 2015 US outbreak of HPAI (H5N2)

- Explore the role of local transmission between farms of known location in Iowa (77 detected cases)
- Infer the time taken by surveillance to detect infection in farms corroborated by analysis of within farm mortality
- Estimate non-local disease incursions (95% Cr. I. 0.76, 17.0) .

Can also apply model assessment tools to select between competing models

Model assessment via latent residuals for transmission kernel functions

Kernels	<u>Pr(</u> p < 5%)	
$K_1(d_{ij})$	0.1435	
$K_2(d_{ij})$	0.0674	
$K_3(d_{ij})$	0.0598	

Assess transmission kernels: K₁ poor fit

Porphyre (Roslin), Gamado, Marion (BioSS), Delgado, Schoenbaum, Torchetti (USDA-VS)

Collaboration within MAC-MIGS

4 areas of potential interest

1. Predicting spread of disease, pests and invasive species on landscapes Statistical methods to infer and test spread mechanisms both when population at risk is known e.g. farm type/location (HPAI) and unknown e.g. wildlife hosts (ASF)

2. Combine process understanding and data for scientific discovery

Using mathematical and statistical methods to develop data-driven tests of alternative hypotheses e.g. understanding within-host disease progression Tb in badgers

3. Phenotype from genotype

<u>Current applications</u> to estimating genetics effects on disease resistance, infectivity and recoverability phenotype

4. Systems modelling tools for better outcomes

or <u>How to escape the law of unintended disaster (LOUD)</u>! e.g. natural and chemical pest control, unintended effects of culling to control wildlife disease

Data on badger population and disease dynamics

Woodchester Park

- Long term study site for badgers and bTB ~ 40 years
- Very detailed data on individuals and groups
- Capture-mark-recapture data on ~2700 individuals
 - 4 capture campaigns per year
 - Individual data on approx. age, sex, location captured
 - disease status as measured by several different tests
 - Unidentified badgers recorded and 'marked'

<u>Aim</u>: understand TB dynamics in badgers + our ability to monitor them

Individual-based model: demography and disease

Individual based stochastic model accounts for

- Demography including births, deaths and dispersal
- Age and sex
- Disease induced mortality m_d
- Disease progression
- Transmission both within β and between λ social groups
- External transmission φ

Individuals live in social groups

Badgers live in social groups with stable territories

Individual-based model: spatially explicit

Individual based stochastic model accounts for

- Demography including births, deaths and **dispersal**
- Age and sex
- Disease induced mortality m_d
- Disease progression
- **Transmission** both within β
- and **between λ social groups**
- External transmission ϕ

Individual dispersal and between social group disease transmission occurs on neighbourhood structure determined from bait marking maps

Longer range interactions negligible

1. Process model represents underlying life history events including disease dynamics

2. Observation model $P(D \mid H)$ determines probability of observed data given complete life history event sequence **H**

It accounts for

- Individual trapping
- Sex and age differences in trapability
- Seasonal variation in capture rates
- Se & Sp of diagnostic tests
 - State R undetectable by diagnostics
 - states E and I detectable by Brock-ELISA, Stat-Pak, and IFN-γ,
 - M. bovis culture detects only individuals in the infectious state

 $P(D \mid H) = \prod_{obs.} p_D \prod_{not \ obs.} (1 - p_D) \prod_k Se_k^{N_k^{+,+}} (1 - Se_k)^{N_k^{+,-}} Sp_k^{N_k^{-,-}} (1 - Sp_k^{N_k^{+,+}}),$ $p_D = \max \left\{ z_d p_{a,g} \left(1 + \Delta p_D \cos \left(2\pi (t + \theta_D) \right) \right), 1 \right\}$

Bayesian inference

Combines

- Process model $P(H \mid \theta)$ just the model definition
- Observation model $P(D \mid H)$
- Prior information about parameters $P(\theta)$

To give:

Posterior distribution of unknowns in terms of knowns

$P(\theta, H \mid D) \propto P(D \mid H)P(H \mid \theta)P(\theta)$

Inference of unknowns H, θ from the data D

- model parameters **\theta**
- full history H
- observed data D

Computational methods e.g. Markov chain Monte Carlo (MCMC) needed to work with this distribution (high-dimensional) even when don't know constant of proportionality (normalisation factor)

Optimising MCMC proposals

Proposals: approximate sampling of individual event sequences Corrected as usual using Metropolis-Hastings accept/reject step

Approximate sampling scheme based on using discrete time (black vertical lines):

Two stage process which involves

- a) back propagation from death of individual to birth to calculate effective 'observation probability' $P_d(t)$ of being in disease state *d* Depends on
 - events affecting location and age
 - obs. on disease states (test results)
- b) forward simulation scheme to generate the new proposed sequence of events based on model (Gillespie algorithm) and $P_d(t)$
 - modified Gillespie algorithm

Note: Apply to each individual classification (disease state, age, location) separately

Infer biological mechanism: disease dynamics

 η

SEI model is the standard view of TB dynamics

Disease transitions non-zero suggesting:

- R state (I -> R)
- E -> R transition
- R -> I transition
 But not
- R -> S transition

Dormant state

- average duration 7.6 years a significant fraction of a typical badger lifespan
- whereas the exposed state lasts on average for only 10 months
- 9%, 6% and **12% of individuals** in states E, I and **R** resp. for WP parameters

Dormancy recognised in human TB and as a evolutionary adaptation to persistence in small groups of humans – Chisholm & Tanaka, *Proc. R. Soc. B-Biological Sci.* **283**, 20160499 (2016).

Previous study suggested pathology of TB in badgers consistent with dormant state – Gallagher et al *Vet. Rec.* **142,** 710–714 (1998)

But standard models of TB in badgers have not included such a state

Evidence of a long lasting inactive state R

Combine process understanding and data for scientific discovery

- □ **TBMI consortium** led by Glasgow aims to provide next generation of models to inform UK policy for bovine TB.
- BioSS led state-of-the-art parametrisation of models characterising local dynamics of badgers and TB
 - enables, for the first time, simultaneous estimation of operational, diagnostic, demographic and epidemiological parameters
 - informs national modelling of TB in cattle led by Glasgow
 - yields novel insights into badger-TB system

Field performance of diagnostic tests

Test	Field	Field	Previous
sensitivity	estimate –	estimate -	studies*
	full method	raw data	
Se _{ELISA}	0.74 – 0.81	0.79	0.50
Se _{StatPak}	0.79 – 0.89	0.78	0.58
Se _{IFN-Y}	0.45 – 0.55	0.58	0.81
Se _{cult}	0.24 – 0.30		0.275

- Estimates typically based on postmortem confirmation
- Our results suggest this does not reflect infectiousness in the field

Pooley (Roslin), White (York), Hutchings (SRUC) Kao (Roslin), Bishop (Roslin), Smith (APHA), Delahay (APHA) and Marion (BioSS), In

Collaboration within MAC-MIGS

4 areas of potential interest

1. Predicting spread of disease, pests and invasive species on landscapes Statistical methods to infer and test spread mechanisms both when population at risk is known e.g. farm type/location (HPAI) and unknown e.g. wildlife hosts (ASF)

2. Combine process understanding and data for scientific discovery

Using mathematical and statistical methods to develop data-driven tests of alternative hypotheses e.g. understanding within-host disease progression Tb in badgers

3. Phenotype from genotype

<u>Current applications</u> to estimating genetics effects on disease resistance, infectivity and recoverability phenotype

4. Systems modelling tools for better outcomes

or <u>How to escape the law of unintended disaster (LOUD)</u>! e.g. natural and chemical pest control, unintended effects of culling to control wildlife disease

Phenotype from genotype

Adapting disease dynamics models to account for host genetics

- Quantifying host SNPs in terms of impact on susceptibility, infectivity and recovery
- Estimate genetic effects from field observations or disease challenge experiments where SNP data are available
- Potential future application to GWAS type studies

Design

Use models to assess empirical design A general approach – not just for disease! simulate data and see how good inferences would be

$$\begin{array}{ccc} a_{g} & a_{f} & a_{r} \\ s^{\text{SNP}} = a_{g}\Delta_{g} \,, & f_{j}^{\text{SNP}} = a_{f}\Delta_{f} \,, & r_{j}^{\text{SNP}} = a_{r}\Delta_{r} \\ -a_{g} & -a_{f} & -a_{r} \end{array} \right\} \begin{array}{c} \text{if } j \text{ is } AA \\ \text{if } j \text{ is } AB \,. \\ \text{if } j \text{ is } BB \end{array}$$

A fast design tool for challenge experiments based on analytical solutions

Pooley (Roslin), Marion (BioSS), Bishop (Roslin), and Doeschl-Wilson (Roslin), In preparation

 $in a_r = 0.208$

(Infectivity)

 $\Delta g = 0.059/|a_g|$ (Dom. in Susc.) $\Delta f = 0.059/|a_f|$ (Dom. in Inf.) $\Delta s = 0.024/|a_f|$ (Dom. in Rec.)

Collaboration within MAC-MIGS

4 areas of potential interest

1. Predicting spread of disease, pests and invasive species on landscapes Statistical methods to infer and test spread mechanisms both when population at risk is known e.g. farm type/location (HPAI) and unknown e.g. wildlife hosts (ASF)

2. Combine process understanding and data for scientific discovery

Using mathematical and statistical methods to develop data-driven tests of alternative hypotheses e.g. understanding within-host disease progression Tb in badgers

3. Phenotype from genotype

<u>Current applications</u> to estimating genetics effects on disease resistance, infectivity and recoverability phenotype

4. Systems modelling tools for better outcomes

or <u>How to escape the law of unintended disaster (LOUD)</u>! e.g. natural and chemical pest control, unintended effects of culling to control wildlife disease

Systems modelling tools for better outcomes

Systems modelling tools for better outcomes

Perturbation effect: Culling of wildlife to control disease is sometimes observed to lead to increases in disease levels

Use models to explore mechanisms, design strategies and when it is not worth it

Culling spreads disease between groups

Spatial distribution and duration of cull of effort impacts perturbation effect size

Collaboration within MAC-MIGS

Applications need new methodology

Modelling methods for highly heterogeneous systems.

<u>Current applications</u>: modelling microbial communities with applications to human guthealth, methane production in ruminants and anti-microbial resistance

Quantitative tools for **modelling dynamics of and on networks** <u>Current applications</u>: animal trading networks and disease spread on them

Parameter inference for stochastic processes which aims to be fast, rigorous and readily applicable to a range of models and data. <u>Current applications</u> in epidemiology, ecology and genetics of disease resistance

Efficient model selection methods to drive data-driven hypothesis testing via comparison of models that represent different sub-system processes.

<u>Current applications</u> in epidemiology and ecology

glenn.marion@bioss.ac.uk

