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We aim to be

 A world leader in developing and applying mathematical and 

statistical techniques to improve agriculture, food and the 

environment

 Applying & helping develop cutting edge methodology for: 

− statistical analysis of large and/or complex datasets;

− mathematical modelling of processes and systems;

− statistical / computational bioinformatics and genetics

Biomathematics & Statistics Scotland

BioSS Research



Collaboration, Collaboration, Collaboration

 Co-construction of data analysis and modelling

 Statistical design of field trials, experiments, and studies

 Applying & advancing methods to extract maximum value from data 

and from models

 Estimating quantities that are impractical to measure directly

 Using modelling and data analytics to understand complex systems

 Co-constructing actionable insights to manage complex systems

Biomathematics & Statistics Scotland

BioSS Research



Trans-disciplinary success sustained through tension

Applied quantitative research: close links including 

embedding of BioSS staff with applications focussed research 

institutes ensures research is applications focussed and 

responsive to changing priorities.

Applied methodological research: strong links with 

methodological community to ensure continued application and 

development of cutting edge methods.

Biomathematics & Statistics Scotland

BioSS Research

Applied 

quantitative

research: 

current methods

Applied 

methodological 

research:

new tools

Research continuum



Methodological Research Themes

 Statistical methodology

 Bioinformatics and Statistical Genetics

 Process and Systems modelling

This research is inspired by stakeholder problems

Biomathematics & Statistics Scotland

BioSS research



Methodological research

embed process and systems models 
within statistical framework

methods for simplification, analysis 
and approximation of complex 
models

co-construction of models for 
scientific discovery

Process and systems modelling

Parasitoids

Hosts 2Hosts 1
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Collaboration within MAC-MIGS

1. Predicting spread of disease, pests and invasive species on landscapes

Statistical methods to infer and test spread mechanisms both when population at risk is 

known e.g. farm type/location (HPAI) and unknown e.g. wildlife hosts (ASF)

2. Combine process understanding and data for scientific discovery  

Using mathematical and statistical methods to develop data-driven tests of alternative 

hypotheses e.g. understanding within-host disease progression Tb in badgers

3. Phenotype from genotype

Current applications to estimating genetics effects on disease resistance, infectivity and 
recoverability phenotype

4. Systems modelling tools for better outcomes

or How to escape the law of unintended disaster (LOUD)! e.g. natural and chemical pest 

control, unintended effects of culling to control wildlife disease

4 areas of potential interest
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Inference for complex dynamic models

Focus on continuous time discrete state-space Markov processes

The problem: 
 Know model structure but …
 Don’t know model parameters 𝜽
 In reality do not know full history 𝑯 – e.g. all births, deaths etc
 Instead have partial observations given by data 𝑫

How to do inference from data 𝑫 ?

 i.e. how to estimate model parameters 𝜽
 or reconstruct the history 𝑯

https://wiki.bioss.ac.uk/images/c/cf/BioSSLogo_small.png


Combines
• Process model  𝑃 𝐻 | 𝜃 - just the model definition

• Observation model  𝑃 𝐷 | 𝐻
• Prior information about parameters  𝑃 𝜃

To give: 
Posterior distribution of unknowns in terms of knowns

Bayesian inference

𝑃 𝜃,𝐻 | 𝐷 ∝ 𝑃 𝐷 | 𝐻 𝑃 𝐻 | 𝜃 𝑃 𝜃

Inference of unknowns 𝑯, 𝜽 from the data 𝑫
- model parameters 𝜽
- full history 𝑯
- observed data 𝑫

Computational methods e.g. Markov chain Monte Carlo (MCMC) needed to work with 
this distribution (high-dimensional) even when don’t know constant of proportionality 
(normalisation factor) 



Spatial spread models
Dispersal between grid cells in landscape

• reduces with distance from colonised locations

• increases with number of colonised locations

distance (10s km)

Short 
distance

Longer 
distance

Dispersal kernel

Uncolonised
grid cell

Colonised 
grid cell

Suitability of grid cells in landscape

• function of local characteristics

e.g. landuse, climate etc.

• varies across landscape

• represents info on pop at risk 



Inference for complex dynamic models

Inferring the spread of invasive aliens

Apply Bayesian inference to 
 Estimate dispersal model parameters

 Estimate suitability model parameters

 And estimate colonisation times

From observed species distribution maps (atlas data) at two time points 

Infer
missing
colonisation
Times

Dynamics crucial to 
correct inference

Repeatedly simulate from fitted 
stochastic model (the posterior) 
to sample uncertainty in model 
parameters  

From Data – maps at 2 times 
Infer: suitability 
Infer: spatial spread kernel

Suitability map Probability of 
colonisation by 2050 
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• Outbreak data typically comprise ONLY cases with times/locations

• BUT most analysis methods require knowledge of the host distribution

• These methods allow us to model the outbreak data when the host 
distribution is uncertain

• Can perform prediction of spread and control as before

Data-driven risk assessment: population at risk unknown

Application to African Swine Fever



Refine analysis to account for lack of 
data outside EU   

Study area:
the Baltic states
Boundary is split 
into three zones

A

B

C

Estonia

Latvia

Lithuania

Distance from border zone A

Account better for

 Transmission from out with study area 
e.g. treat zones A, B & C separately 

 Differences between countries 
background infection/introduction  



Between-farm outbreak: model

Disease progression on farm: S -> I ->R
S – susceptible     I – infectious 

R – detected and depopulated 

• S -> I – disease transmission (see next slide)

• I ->R – disease detection 

Time to 
detection



Between-farm outbreak: model

Spread of disease between farms
• Transmission reduces with distance between 

infected and susceptible farms

• Increases with number of infected farms
distance (10s km)

Short distance

Longer distance

Transmission kernel

Note: farms can be arranged anyhow



Rapid inference to support emergency outbreak response

Note log scale on 
vertical axis

Gamado, K.M., Marion, G. and Porphyre, T. (2017). Frontiers in Veterinary Science 4, 16. 

Transmission kernel  
Here can infer
• Times of infection
• Time to detection I->R
• Transmission kernel  

Time to detection

Data-driven risk assessment

Transmission risk 
lower than seen 
in NL outbreak

Cumulative prob. of time to detection

Methods extended to understand 2015 US outbreak of HPAI (H5N2) 

• Explore the role of local transmission between farms of known location in Iowa (77 detected cases)
• Infer the time taken by surveillance to detect infection in farms – corroborated by analysis of within farm mortality
• Estimate non-local disease incursions (95% Cr. I. 0.76, 17.0) 

Porphyre (Roslin), Gamado, Marion (BioSS), Delgado, Schoenbaum, Torchetti (USDA-VS) 

Can also apply model assessment tools to 
select between competing models

Application to CSF data from 2000 Norfolk outbreak

Assess transmission kernels: K1 poor fit

Between-farm transmission kernel

Use Bayesian latent residuals to assess 
models of transmission kernels
Lau et al 2014 Journal of the Royal 
Society Interface 11, 20131093. 



Collaboration within MAC-MIGS

1. Predicting spread of disease, pests and invasive species on landscapes

Statistical methods to infer and test spread mechanisms both when population at risk is 

known e.g. farm type/location (HPAI) and unknown e.g. wildlife hosts (ASF)

2. Combine process understanding and data for scientific discovery  

Using mathematical and statistical methods to develop data-driven tests of alternative 

hypotheses e.g. understanding within-host disease progression Tb in badgers
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Current applications to estimating genetics effects on disease resistance, infectivity and 
recoverability phenotype

4. Systems modelling tools for better outcomes

or How to escape the law of unintended disaster (LOUD)! e.g. natural and chemical pest 

control, unintended effects of culling to control wildlife disease

4 areas of potential interest
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Data on badger population and disease dynamics

Woodchester Park 
 Long term study site for badgers and bTB ~ 40 years

 Very detailed data on individuals and groups

 Capture-mark-recapture data on ~2700 individuals 

 4 capture campaigns per year

 Individual data on approx. age, sex, location captured

 disease status as measured by several different tests  

• Unidentified badgers recorded and ‘marked’

Aim: understand TB dynamics in badgers          
+  our ability to monitor them



Individual based stochastic 
model accounts for 

• Demography including births, 
deaths and dispersal

• Age and sex

• Disease induced mortality 𝑚𝑑

• Disease progression 

• Transmission both within 𝛽
and  between 𝜆 social groups

• External transmission 𝜙

Individual-based model: demography and disease

Individuals live in social groups



Badgers live in social groups with stable territories



Individual-based model: spatially explicit

Individual dispersal and between social group 
disease transmission occurs on neighbourhood 
structure determined from bait marking maps

Longer range interactions negligible  

Individual based stochastic 
model accounts for 

• Demography including births, 
deaths and dispersal

• Age and sex

• Disease induced mortality 𝑚𝑑

• Disease progression 

• Transmission both within 𝛽

• and between 𝝀 social groups

• External transmission 𝜙



1. Process model represents underlying life 
history events including disease dynamics

𝑃 𝐷 | 𝐻

2. Observation model 
determines probability of 
observed data given complete 
life history event sequence 𝑯

It accounts for 

• Individual trapping

• Sex and age differences in 
trapability

• Seasonal variation in capture 
rates

• Se & Sp of diagnostic tests
 State R undetectable by diagnostics 

 states E and I detectable by Brock-
ELISA, Stat-Pak, and IFN-γ, 

 M. bovis culture detects only 
individuals in the infectious state 
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Life history event sequence 𝑯



Combines
• Process model  𝑃 𝐻 | 𝜃 - just the model definition

• Observation model  𝑃 𝐷 | 𝐻
• Prior information about parameters  𝑃 𝜃

To give: 
Posterior distribution of unknowns in terms of knowns

Bayesian inference

𝑃 𝜃,𝐻 | 𝐷 ∝ 𝑃 𝐷 | 𝐻 𝑃 𝐻 | 𝜃 𝑃 𝜃
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Computational methods e.g. Markov chain Monte Carlo (MCMC) needed to work with 
this distribution (high-dimensional) even when don’t know constant of proportionality 
(normalisation factor) 



Proposals: approximate sampling of individual event sequences 
Corrected as usual using Metropolis-Hastings accept/reject step

Optimising MCMC proposals

Two stage process which involves 

a) back propagation from death of individual 
to birth to calculate effective ‘observation 
probability’ 𝑃𝑑 𝑡 of being in disease state d

Depends on 
- events affecting location and age
- obs. on disease states (test results)

b) forward simulation scheme to generate the 
new proposed sequence of events based on 
model (Gillespie algorithm) and 𝑃𝑑 𝑡

- modified Gillespie algorithm

Approximate sampling scheme based on using discrete time (black vertical lines):

Note: Apply to each individual classification 
(disease state, age, location) separately



Disease transitions 
non-zero suggesting: 

• R state  (I -> R)

• E -> R transition

• R -> I transition 

But not

• R -> S transition 

Infer biological mechanism: disease dynamics

SEI model is the 
standard view of 
TB dynamics 
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Dormant state
• average duration 7.6 years a significant fraction of a typical badger lifespan
• whereas the exposed state lasts on average for only 10 months
• 9%, 6% and 12% of individuals in states E, I and R resp. for WP parameters

Dormancy recognised in human TB and as a evolutionary adaptation to persistence in 
small groups of humans – Chisholm & Tanaka, Proc. R. Soc. B-Biological Sci. 283, 20160499 (2016).

Previous study suggested pathology of TB in badgers consistent with dormant state –
Gallagher et al Vet. Rec. 142, 710–714 (1998)

But standard models of TB in badgers have not included such a state

Evidence of a long lasting inactive state R 

https://wiki.bioss.ac.uk/images/c/cf/BioSSLogo_small.png


Combine process understanding and data 
for scientific discovery
 TBMI consortium led by Glasgow aims to provide next 

generation of models to inform UK policy for bovine TB. 
 BioSS led state-of-the-art parametrisation of models 

characterising local dynamics of badgers and TB
— enables, for the first time, simultaneous estimation of operational, 

diagnostic, demographic and epidemiological parameters
— informs national modelling of TB in cattle led by Glasgow
— yields novel insights into badger-TB system

Evidence of a temporarily inactive state R 

Standard models 
over many years 
have ignored the 
non-infectious 
inactive state R

Field performance of diagnostic tests 

Test 

sensitivity

Field 

estimate –

full method

Field 

estimate -

raw data

Previous

studies*

SeELISA 0.74 – 0.81 0.79 0.50

SeStatPak 0.79 – 0.89 0.78 0.58

SeIFN- 0.45 – 0.55 0.58 0.81 

SeCult 0.24 – 0.30 -- 0.275 

 Estimates typically  based on post-
mortem confirmation

 Our results suggest this does not 
reflect infectiousness in the field

Pooley (Roslin), White (York), Hutchings (SRUC) Kao (Roslin), Bishop (Roslin), Smith (APHA), Delahay (APHA) and Marion (BioSS), In 
preparation 
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Collaboration within MAC-MIGS
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Current applications to estimating genetics effects on disease resistance, infectivity and 
recoverability phenotype

4. Systems modelling tools for better outcomes

or How to escape the law of unintended disaster (LOUD)! e.g. natural and chemical pest 

control, unintended effects of culling to control wildlife disease

4 areas of potential interest
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Phenotype from genotype

Adapting disease dynamics models to account for  host genetics

 Quantifying host SNPs in terms of impact on 
susceptibility, infectivity and recovery

 Estimate genetic effects from field observations 
or disease challenge experiments where SNP data 
are available

 Potential future application to GWAS type studies 

Design
 Use models to assess empirical design

A general approach – not just for disease! 
simulate data and see how good inferences 
would be

Pooley (Roslin), Marion (BioSS), Bishop (Roslin), and Doeschl-Wilson (Roslin),In preparation 

A fast design tool for 
challenge experiments
based on analytical solutions
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Unintended impact of pesticide useUnderstanding natural pest control  

Systems modelling tools for better outcomes

Relative effect: high 
rates needed to see 
any benefit

Pesticide use 
makes things 
worse

Serious issue for rice production



Culling spreads disease between groups

Systems modelling tools for better outcomes

Perturbation effect: Culling of wildlife 
to control disease is sometimes 
observed to lead to increases in 
disease levels

Use models to explore mechanisms, 
design strategies and when it is not 
worth it

Spatial distribution and duration of cull 
of effort impacts perturbation effect size

Model results

3 yr cull



Collaboration within MAC-MIGS

Modelling methods for highly heterogeneous systems. 

Current applications: modelling microbial communities with applications to human gut-
health, methane production in ruminants and anti-microbial resistance

Quantitative tools for modelling dynamics of and on networks 

Current applications: animal trading networks and disease spread on them

Parameter inference for stochastic processes which aims to be fast, 
rigorous and readily applicable to a range of models and data. 

Current applications in epidemiology, ecology and genetics of disease resistance

Efficient model selection methods to drive data-driven hypothesis

testing via comparison of models that represent different sub-system

processes. 

Current applications in epidemiology and ecology

Applications need new methodology 

glenn.marion@bioss.ac.uk 
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