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Box at each integer x € Z.

Ball configuration 7 € {0, 1}*
n(x) = 0 — empty box, n(x) =1 — ball at x
Finite number of balls: Carrier visits boxes from left to right.
Carrier picks balls from occupied boxes
Carrier deposits one ball, if carried, at empty boxes.
0010110001110100000 17
001012100123232100 0 carrier
0001001100001011100 1Tn
Tm : configuration after the carrier visited all boxes.

Ball-Box-System by Takahashi-Satsuma (1990)

Queue: 1's are arrivals and Qs are services. Carrier load = queue size.



Motivation: Korteweg & de Vries equation

"

. !
u=u +uu

with u(r,t) € RY, r € R, t € RT. Interacting soliton solutions for KdV:

But there is no mathematical relation (yet) between KdV and BBS.



BBS with infinitely many balls
Walk representation £ of ball configuration 7:
¢ € 77 with £(0) = 0 and
§e+1) = &) =20z +1) - 1)

m 0000000111100011110000000000

x is a (down) record for n if {(x) < &(y),for all y < x.

Excursion:= configuration between two successive records.



BBS with infinitely many balls

Tn(z) := (1 —n(z)) Lz is not a record for n}

Non local! Coincides with previous definition for finite 7.

Walk version of n and T'n

Excursions are flipped down.



Configurations with density A:

Xy = {77 € {0,1}2: lim 1 zn:n(x)‘ = /\},
=0

n—tooln,

Lemma 1. If X € (0, 5) then

[ n € X\ implies Tn € X\ J

Work on

A measure p on X is invariant for T if n ~ p implies T ~ p.



Goals of lecture

1) Soliton decomposition of ball configurations.

2) Evolution is a hierarchical translation of soliton components.

3) Measures with independent soliton components are invariant for 7.
4) Asymptotic speed of solitons.

5) Explicit soliton decomposition for iid Bernoulli, Ising models and
other ball distributions.

Soliton: a solitary wave that propagates with little loss of energy and
retains its shape and speed after colliding with another such wave



Conserved solitons. Motivation.
k-soliton: set of k successive ones followed by k zeroes.

Isolated k-solitons travel at speed k and conserve shape and distance:

000001110000000000000000001110000000000000
000000001110000000000000000001110000000000
000000000001110000000000000000001110000000
000000000000001110000000000000000001110000

k-solitons and distances are conserved after interacting with m-solitons:

000001110000000100000000000011100000000000000000000000
000000001110000010000000000000011100000000000000000000
000000000001110001000000000000000111000000000000000000
000000000000001110100000000000000000111000000000000000
000000000000000001011100000000000000000111000000000000
000000000000000000100011100000000000000000111000000000



Conserved solitons. Motivation.
k-soliton: set of k successive ones followed by k zeroes.
Isolated k-solitons travel at speed k and conserve the distances:

..... 111000...............111000..........
........ 111000...............111000.......

........... 111000...............111000....
.............. 111000...............111000.
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k-solitons and distances are conserved after interacting with m-solitons:

..... 111000....10........ ... 111000. .. ...t
........ 111000..10...... ... ... 111000, ..o oo
........... 11100010..............111000...............
.............. 11101000..............111000............
................. 10111000..............111000.........



Conserved solitons. Motivation.

0...1100....1100..1100.11001100...1100...1010..10...10.10.
1100..1100.11001100...1100..1010.
. 1100..1100.11001100...1100.1010. . 10
.1100....1100..1100.116011060...11601010.
..1100....1100..1100.11001100. . 110101@0 10
1010110010
. .1010. 1101@0
.11@0,.1190.11091100 1010. 101100 1@ 10.
. .1100..1100.110011601010..160.110010.10.....
..1100....1100..1100.1106011010100.10..11010010.. .
1100....1100..1100.11601010110010. ..10110100. ...
1100..1100.11010160110100..16.101100...10
.1100..1100.10101100101160.10.10.1100. .10
.1100..11001010.110100110010.16..1100.10.
1100..11010100.10116011016010. ..110010.. ..
1100..1010110016.110016110100. ..110160. .
.1100.10160.110100.1101601011060.
.11001010..101100. 101101091100
11016100.10.110010. 1911901100 10
1010110010..11610010. 1100119910
. .1016.110100. .10110100,11001101@0. .
..1100..1010..101100.10.101160.1100101160...1100
.1100...1100.1010..160.110016.16.1160.1101001160. . . 116
.1100...11001016..10..11010016..1100.1011601100. ..11060....
1100...11010100.10 10110106..110010.11001100. ..1100.
1100...101601160010...10.101100..1101660.110011060. ..1100
.1100..1010.110160..10.10.1100..101160.11001100. ..1100
.1100.1010..16011060.10.10..1160.10.1100.11001100. . .1160.
11001010..16.110010.10...110010..1160.11001100. ..1100.
110101600.10..11010010 .110100..1100.11001100. . .1100
..1010110010...10110100. ...101100..1100.11601100. ..1160...
..1010.110100..16.101100...16.1100..1100.11001100. ..1160.
.1010..101100.10.16.1100..10..1160..1100.11601100. ..1160.
1010..10.116010.10..1160.16...1100..1160.11001160...1100.
1010..10..11010010...110010. 1100..1100.11001160. . .
.1016..10...10110160...110100....1100..1160.110011060. .
1010..10...16.101100...101160....1100. .1100.11001100 B
.1010..10...10.10.1100..10.1160....1100. .1106.11001190 . .1106. .
10.10..1100.16..1100....1160..1100.11601160...1100
o .10.10...110016...1100....11600..1100.11601100. ..1160
.1016..10...10.16....110100. . . .1100..1100.11001100. . .1100.
..1010..10...10.10..... 1e11ee... ..1100..1160.11001100. . .11€
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Takahashi-Satsuma soliton identification

7 with a finite number of balls.

Run: segments induced by broken lines in the walk representation.

Explore runs from left to right.
If run has length & < m = lenght of the successive run, then

k boxes of short run and the first k£ boxes of long run is k-soliton.

12



Takahashi-Satsuma soliton identification

7 with a finite number of balls.

Run: segments induced by broken lines in the walk representation.

Explore runs from left to right.
If run has length & < m = lenght of the successive run, then

k boxes of short run and the first k£ boxes of long run is k-soliton.
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Ignore identified k-solitons and iterate:

head of k-soliton ~v:= position of ones

tail of k-soliton v:= zeroes

Infinite configurations:

N
N
N
AV

AN
N\

h(v) =A{h,. ..
t(y) ={t1,...

Apply TS algorithm to each excursion, pretending it is isolated.

14
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k-soliton conservation under T°

Proposition. For anyn € X:

n has k-soliton ~ with tail t(v) = a
if and only if

Tn has k-soliton v with head h(') = a.



k-soliton conservation under T

16
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Slots
Given a configuration 7 with finite excursions we can identify its solitons.
Will decompose 7 in soliton components.

Insert 3-soliton in 3-slot of 5-soliton:

AN /"\
, /



Soliton components

3-slots: records and soliton boxes where a 3-soliton can be inserted.

S31 1= Um>3 Uyern $0a(7), -+ oy B (), 84 (), - - s tm(7)} U Ry
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Soliton components
Enumerate 3-slots.

Insert 3-soliton in 3-slot number 1:

In this case denote:
M37](1> =1.

3-component at coordinate 1 has 1 soliton.
(The other coordinates in this picture have 0 solitons)

19



Soliton components
Soliton components.

Insert 3-soliton in 3-slot number 3:

—

M;sn(3) = 1.

20



Slots
ball configuration n +— slot configuration Sn:

Sn:7Z—{0,1,2,...} U{oo}

Sn(z) = {

00 if x is a record for 7

x is a k-slot for i if and only if Sn(z) > k

Sin := set of k-slots of n
Rn := set of records of 7

Rn C Sky1m C Skn

i—1, ifxe{tiv),hi(y)}, for some v, k;ie{l,...

7k}7

21
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S5¢

[

Walk representation and slot configuration of a ball configuration 7.
Records have infinite dots but we drawn only 7 in the picture.

The numbered rows are the k-slots Sgn for k =1,2,...,7.



Enumerate the k-slots:

sk(n,0) := position of Record 0 for all k > 1
sk(n, i) := position of the i-th k-slot counting from the Record 0

Enumerating 3-slots:

Enumerating 1-slots:

23



Soliton decomposition of ball configuration n

N

S¢

“— Record 0
2nd 1-slot and 1st 2-slot O-th Feslot for all k

{ 4th 4-slot, 2nd 5-slot, etc

11th I-slot, 8th 2-slot and 5th 3-slot

24
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Soliton decomposition of ball configuration n
Let n € X.

k-component Mjn:
M;yn(7) := number of k-solitons appended to i-th k-slot

In the example

Msn(2) =1, Mn(9) =1, Mmn(18)=1.
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Reconstruction of & from (.

g2t g0 !
5 olololo Ci ()
4 olo|1]o
3 ol1]o 0 1]o
2 o[t ool2000000[1
k=1 |o[2100001/110020010000000|102
1
5 0 5 10 15

| NN V\/\x

In the lower part we show Records —2 to 2 in boldface and the excursions

between them. Above we show the parts of the field { that used in the

reconstruction of ¢ 2 s g1 s 50, el



Reconstruction of excursion 0 of previous page.

Reconstruction of ¢°

©)

I
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Reconstruction algorithm for the other excursions.
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Component evolution are hierarchical translations

r*(n,0) := position of Record 0 in T*¢
Tte .= 07" (10Tt process as seen from Record 0

st(n,0) := position of the tagged 0-th k-slot in 77

29
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/N
/N /]
// \\ // N //

/]
record O
record 6 T

record O
\\ /| N N VAN
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Component evolution

Flow of m-solitons through Record 0:

JE (n) := #{m-solitons to the left of record 0 in 7
and to the right of record 0 in 77}

Label of zero k-slot in MT"n:

01, (1,0) := Y 2(m — k)J}, (n) (1)

m>k

Position of zero k-slot in Mthn:

401,0) = i (T, 04 (n, ) (2)

04.(n,0) and st (n,0) are functions of (M,,n : m > k).
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Component evolution. Solitons!

Theorem 2.

k-soliton component of Ttn is a shift of the k-soliton component of n:

Mthn _ 902(77,0)+/€th77

0k (n,0) :=">_ 2(m — k).J},(n)
m>k
Jt

(1) := Flow of m-solitons thru O-record
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Solitons!

Theorem [FNRW] We have proven

[ MTn:@Mn ]

Dynamics of components is a hierarchical translation and components conserve
distances and shapes (solitons).

O(Cy k> 1) := (951K | > 1)
M : {0,132 — (NBYN given by Mn = (Myn : k > 1)



Independent-component invariant measures

Theorem [FNRW]

Cx € NZ independent k-soliton configurations with shift-stationary law.

Let { = (¢ : k > 1) and assume
M~ e X° as.
Let pu = law of n := M, ball configuration with components (j,.

Then i is T-invariant: uT = U.

34



Independent-component invariant measures
Proof. Call n:= M~1(.
Want to show that slot decomposition of Tn has same law as C:

E(]] Fe(MT™)) = [ EFe(&),  n=>2,
k=1 k=1

F}, are local functions.

E(Fk(Mthn) |.7:(MmTt77 tm > k))
= B(Eu(0° O M) | F (G m > k) (Propo[)
= B(Fp(0° M%) | F (G s m > k) (definition)
= EF(Cr)

because (j, is independent of st (1,0) € F((m : m > k).

35
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Asymptotic speed of k-solitons (in records per unit time)

For a k-soliton ~ define y! := # (records between record-0 at time ¢ and ) .

Theorem 3. There exists v = (vy)k>1 such that,

t

im Jk — i,
tlirglo L= Uk peas. (3)

If Y, k*pr < oo, the vector (vy),>1 is the unique finite solution of
ve=k+ Y 20m—k)(vm — vk)pm, k=1, (4)
m>k

Asymptotic speed of the position of Record 0 is given by

_r'(n,0)
tlggo = ngl 2MPr U,  [-a.S. (5)
and the asymptotic speed of ~' is
Position of ~*
lim OO v + Z 2mpm (Vg — Um), p-a.s. (6)

t—o00 t
m>1



k-components of iid Bernoulli are independent iid geometrics.

With Davide Gabrielli
Let X € (0, 3).
Let ¢1 := A(1 — ) and for k > 2,
af
i g

Theorem 4 (F, Gabrielli). If (n(x) : = € Z) iid Bernoulli(\), then

Q=

(Myn(s) : s € Z) iid Geometric(1 — qi) and

(Myn : k > 1) are independent.

37



Other measures with independent geometric k-components.

Let oy > 0 such that Y, . ai < oo.
Let € be an excursion between Record 0 and Record 1 and

ng(g) := number of k-solitons of ¢.
weight wq (€) := H ozzk(a)
k=1

induces a measure

Concatenate independent excursions to obtain a measure i, on X.

38

(7)

u := Anti-Palm(u) has independent components geometric with parameters ¢;
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Theorem 5. Let v, = Q). V., (independent excursions induced by weights w)
If (n(z) : x € Z) ~ vy, then
(Mgn(s) : s € Z) iid Geometric(1 — qi) and

(Myn : k > 1) are independent.

Special cases

e a; = [A(1 -\, A < 1. Product measure with density A

o a; =e?/e" h < 0. Ising measure with pair interaction J and external field

h.
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When the k-components of invariant measures are independent?

Let /2 on X° be invariant for 7" and record-mixing(?). Then,

AM = Q) M.
k>1

That is, if n has law |1,

(Mgn : k > 1) is a family of independent configurations.
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