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Two goals

• Suppose we try to learn from random projections of the data

– what are generalisation guarantees? & what structural

characteristics they depend on?

• From the answers, obtain better guarantees for the original

problem & bettter understand what structural characteristics

they depend on



Linear Classification

• Given:

· T N = {(xn, yn) : (xn, yn)
i.i.d∼ D}Nn=1, where D is an unknown

distribution over X × Y,X ⊆ Rd,Y = {−1, 1}
· H := {x→ sign (hTx) : h ∈ Rd, x ∈ X}
· ` : Y × Y → {0, 1}, `(ŷ, y) = 1(ŷ 6= y)

• Goal: Find ĥ ∈ H s.t. its risk is as small as possible

E[` ◦ ĥ] := E(x,y)∼D[`(ĥ(x), y)|T N ]

• Optimal classifier: h∗ := arg inf
h∈H

E(x,y)∼D[`(h(x), y)]

• Known: |E[` ◦ ĥ]− Ê[` ◦ ĥ]| = Θ̃(
√
d/N) in general.

• Q: What if d > N?



Compressive ERM Classifier

• Let R ∈ Rk×d, k ≤ d be a random matrix with i.i.d. 0-mean

(sub-)Gaussian rows.

· T NR = {(Rxn, yn)}Nn=1 RP of the training set

· HR := {Rx→ sign (hTRRx) : hR ∈ Rk ∈ R, x ∈ X}

• Compressive ERM: ĥR = arg min
hR∈HR

1
N

∑N
n=1 `(hR(Rxi), yi)

• What is the generalization error of ĥR:

E[` ◦ ĥR] := E(x,y)∼D
[
`(ĥR(Rx), y)|T N , R

]
≤?



Risk bound for compressive ERM classification

Theorem [K-D, 2017] Let R be a k × d sub-Gaussian random

matrix with i.i.d. entries, k ≤ d. For any δ ∈ (0, 1), the following

holds for the compressive ERM classifier ĥR with probability 1−2δ:

Ex,y[1(ĥTRRxy ≤ 0)] ≤ Ex,y[1(h∗Txy ≤ 0)] + 2c

√
k + log(1/δ)

N
...

+ Ex,y[f
+
k (θh

∗

xy)] + min

{
1− δ
δ
· Ex,y[f

+
k (θh

∗

xy)],

√
1

2
log

1

δ

}

where c > 0 is a constant, θhu is the angle betwen u and h, and

f+
k

(θhu) := fk(θ
h
u) · 1(hTu > 0),

where fk(θ
h
u) = PrR

{
hTRTRu ≤ 0

}
.



• On RHRs, first 2 terms match a VC bound for k-dimensional

linear classifier – complexity reduced from d to k < d.

• Last 2 terms pay the price.

• If k grows to d, we recover classical VC bound.

• Note, no sparse representation was required for the compressive

classification to succeed.

• The last 2 terms can be ≤ ε despite k << d if we are ‘lucky’:

for k ≥ 8 log(1/(εδ))

inf(x,y) cos2(θh
∗
xy)

, provided inf(x,y) cos(θh
∗
xy) > 0

What if inf(x,y) cos(θh
∗
xy) ≤ 0?



Proof (sketch).
• For a fixed instance of R, VC bound in the compressed space
gives, ∀δ ∈ (0, 1) w.p. 1− δ over T N ,

Ex,y[1(ĥTRRxy ≤ 0)] ≤ Ex,y[1(h∗TR Rxy ≤ 0) + 2c

√
k + log(1/δ)

N

RP reduces the complexity term but can increase error of best

classifier in the class. By how much?

• Noting that Rh∗ ∈ HR, and since h∗R is optimal in HR,

E[1(h∗TR Rxy ≤ 0)] ≤ E[1(h∗TRTRxy ≤ 0)]

=
(

E[1
(
h∗TRTRxy ≤ 0

)
− 1

(
h∗Txy ≤ 0

)
]
)

+ 1
(
h∗Txy ≤ 0

)
≤ ... ≤ E[1

(
h∗TRTRxy ≤ 0

)
1
(
h∗Txy > 0

)
]︸ ︷︷ ︸

S

+E[1
(
h∗Txy ≤ 0

)
]

• Finally, bound S from ER[S] w.h.p, w.r.t. R. �



Variant: When infx,y cos(θhxy) ≤ 0:

Corollary Fix some γ > 0. Let R be a k×d sub-Gaussian random

matrix with i.i.d. entries, k ≤ d. For any δ ∈ (0, 1), w.p. 1 − 2δ

the compressive ERM classifier ĥR satisfies:

Ex,y{1(ĥTRRxy ≤ 0)} ≤ Ex,y[1{cos(θh
∗

xy)] ≤ γ}+ c

√
k + log(1/δ)

N
...

+ Ex,y[f
γ
k (θh

∗

xy)] + min

{
1− δ
δ
· E[fγk (θh

∗

xy),

√
1

2
log

1

δ

}

where c > 0 is a constant, and f
γ
k

(θhu) := fk(θ
h
u) · 1(cos(θhu) > γ),

where fk(θ
h
u) = PrR

{
hTRTRu ≤ 0

}
.



Variant: Tighter bound when R is Gaussian

Theorem For all δ ∈ (0, 1), w.p. 1− 2δ:

Ex,y{ĥTRRxy ≤ 0} ≤ Ex,y[fk(θ
h∗
xy)] + 2c

√
k + log 1

δ

N

+ min

{
1− δ
δ
· Ex,y[fk(θh

∗
xy)],

√
1

2
log

1

δ

}
where c is an absolute constant.

Captures both flipping the prediction from right to wrong, and

from wrong to right after RP.



The sign flipping probability

Lemma [Flip probability - Gaussian case] Let R be a 0-mean

Gaussian RP matrix. Let h, x ∈ Rd, and let θ = θhx ∈ [0, π) be the

angle between them. Assume hTx 6= 0, Then,

1. Exact form:

fk(θ) :=
Γ(k)

(Γ(k/2))2

∫ 1−cos(θ)
1+cos(θ)

0

z(k−2)/2

(1 + z)k
dz = Pr

{
(Rh)TRx ≤ 0

}
Pr

{
(Rh)TRx

hTx
≤ 0

}
= fk(θ) · 1(hTx > 0) + (1− fk(θ)) · 1(hTx < 0)

2. Upper bound: Pr

{
(Rh)TRx

hTx
≤ 0

}
≤ exp(−k cos2(θ)/2)
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Definition [sub-Gaussian random variable] A zero-mean random

variable X is subgaussian with parameter σ2 if ∃σ2 > 0 such that:

E {exp(λX)} ≤ exp
{
σ2λ2/2

}
Lemma [Flip probability - sub-Gaussian case] Let R be a RP

matrix with entries rij drawn i.i.d. from a zero-mean subgaussian

distribution, let h, x ∈ Rd, and let θ = θhx be the angle between

them. If hTx 6= 0, then:

Pr

{
(Rh)TRx

hTx
≤ 0

}
≤ exp(−k cos2(θ)/8) (1)



Relation of Sign Flipping Probability to Margin

θ
h

m Flip probability and Margins

f+
k

(θ) ≤ exp(−1
8k cos2(θ))

cos(θ) = m

Large margin ⇒
small flip probability (no ⇐)



When does RP cost nothing? Explicitly

geometry-aware bound

U :=
{

xy
‖x‖ : x ∈ X , y ∈ {−1, 1}

}
For h ∈ H, γh := infu∈U cos(θhu)

T+
h,γ :=

{
u ∈ U : cos(θhu) ≥ γ

}
⊂ Sd−1; where γ > 0

Theorem Let R be a k × d, k ≤ d isotropic subgaussian ran-
dom matrix with independent rows each having subgaussian norm
bounded as ‖Ri‖ψ2

≤ K. Fix some γ > 0 s.t. γ ≥ γh. Then, for
any δ > 0 there are absolute constants C, c > 0 s.t. w.p. 1− 2δ,

Ex,y[ĥ
T
RRxy ≤ 0] ≤ Ex,y[1

(
cos(θh

∗

xy) < γ
)

] + c

√
k + log(1/δ)

N
(2)

provided k ≥ CK4
(
w(T+

h,γ
) +
√

log(1/δ)
)2
γ−1, where

w(T ) ≡ Eg∼N (0,I) supx∈T g
Tx denotes Gaussian width of set T .



Back in the original data space

We have seen:

• RP has ability to exploit benign geometric structure – this explains why
compressive classification works well on e.g. image data sets, but not so
well on noisy medical data.

• Easy problem = has good structure = classifier works well on RP-ed
data; difficult problem = the opposite

Can we exploit this insight to better understand the original

problem?

• Hypothetical RP of inputs to capture the difficulty of the

problem instance.



Back in the original data space

Theorem Fix any positive integer k(≤ d). For any δ > 0, with

probability at least 1−δ with respect to the random draws of T N

of size N , uniformly ∀h ∈ H it holds:

Ex,y[1(hTxy ≤ 0)] ≤
1

N

N∑
n=1

min(1, 2fk(θ
h
xnyn)) +

2
√

2
√
π

√
k

N
+ 3

√
log(2/δ)

2N

• The ‘complexity-term’ (k) replaces VC-dimension at the expense of the new

empirical error term.

• Empirical error small if ‘benign structure’ present (for instance, margin).

• If k → d we recover the classical VC bound.

• Informative even if N small: Rather than wishing N was large, choose the

matching complexity k, and measure the error from the empirical term.
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Proof.

The following inequality is immediate:

Ex,y[1(hTxy ≤ 0)] ≤ Ex,y[1(hTxy ≤ 0) + 2fk(θ
h
xy)1(hTxy > 0)]

By Rademacher complexity bound, for any fixed k > 0,

Ex,y[1(hTxy ≤ 0)] ≤
1

N

N∑
n=1

{
1(hTxnyn ≤ 0) + 2fk(θ

h
xnyn) · 1(hTxnyn > 0)

}

+ 2R̂N(Gk) + 3

√
log(2/δ)

2N
(3)

where

Gk = {u→ 1(hTu ≤ 0) + 2fk(θ
h
u) · 1(hTu > 0) : h ∈ Rd}



To compute the empirical Rademacher complexity, observe:

Gk = `k ◦ F

where `k : [−1, 1]→ [0, 1],

`k(a) = 2
Γ(k)

(Γ(k/2))2

∫ 1−a
1+a

0

z(k−2)/2

(1 + z)k
dz · 1(a > 0) + 1(a ≤ 0)

F = {u→
hT

‖h‖
u

‖u‖
: h ∈ Rd}

We show that `k is Lipschitz with constant L: (1) on a ∈ [−1, 0]

it is constant; (2) on a ∈ [0, 1] by Leibniz integration rule:

|`′k(a)| =
∣∣∣∣−2

Γ(k)

2k−1(Γ(k/2))2
(1− a2)

k−2
2

∣∣∣∣ ≤ 2
Γ(k)

(Γ(k/2))2 2k−1
= L
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Make L pretty ... (details omitted):

L = 2
Γ(k/2 + 1/2)
√
π Γ(k/2)

≤
√

2k

π

Using this, by Talagrand’s contraction lemma,

R̂N(Gk) ≤
√

2k

π
· R̂N(F) (4)

Note, F is a linear function class in h/‖h‖. Since and both h/‖h‖
and xy/‖x‖ have unit norm, so

R̂N(F) ≤
1
√
N

Combining this with eqs (3) and (4) completes the proof. �



How good is the theory? - Predicting test error

from training error
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Bound minimising classifier
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Bound minimising classifier

Test error rates ± std for the bound optimizer in comparisons.

Bold font indicates significant win against SVM at the 0.05 level

cf. a paired t-test. Underline in last two columns indicates sta-

tistically significant loss of competing methods. No statistically

significant loss of our approach has been observed on the data

sets tested,

Data set N d New SVM 0-1 Loss LDM
Australian 690 14 0.137± 0.015 0.148± 0.013 0.156±0.077 0.149± 0.014
German 1000 24 0.260± 0.018 0.280± 0.016 0.264±0.021 0.315±0.015
Haberman 306 3 0.265± 0.025 0.285± 0.050 0.268±0.024 0.276±0.030
Parkinsons 195 22 0.141± 0.032 0.221± 0.049 0.141± 0.036 0.135±0.034
PlRelax 182 12 0.285± 0.029 0.361± 0.166 0.299±0.035 0.290±0.051
Sonar 208 60 0.256± 0.045 0.271± 0.036 0.245±0.044 0.264±0.044



How good is the theory? - New connections

Theorem Let k : Rd ×H → N a deterministic function specified
independently of T N . Then ∀h ∈ H, with probability 1 − δ with
respect to the random draw of a training set of size N , the
generalization error of h is upper bounded as the following:

Ex,y[h
Txy ≤ 0] ≤

1

N

N∑
n=1

min(1, 2fk(xnyn,h)(θ
h
xnyn)) + 2

√
2

π

√
1

N

N
max
n=1

k(xnyn, h)

+ 3

√
log(2/δ)

2N
+ 3

√
log(2)

2

√
1

N

N
max
n=1

k(xnyn, h)

Proof.

· SRM allows choosing k after seeing the sample for 3

√
log(2)

2

√
k
N .

Choose k := kmax = maxn k(xnyn, h).

· Observe that fk(θ
h
xnyn) ≥ fkmax(θhxnyn).

⇒ RHS is upper bound on RHS of previous Thm. �



Connection with the Large Margin Distribution

Machine

Corollary W.p. 1− δ (w.r.t. the training set of size N), ∀h ∈ H,

Ex,y[h
Txy ≤ 0] ≤

1

N

N∑
n=1

2 exp

(
−

hTxnyn

‖h‖ · ‖xn‖

)
+

4
√
π

1
√
N
·max

n

√
‖h‖ · ‖xn‖
|hTxn|

+ 3

√
log(2/δ)

2N
+ 3

√
log(2)

N
·max

n

√
‖h‖ · ‖xn‖
|hTxn|

(5)

Proof.

· Bound: min(1, 2fk(θ)) ≤ 2 exp

{
−k cos2(θ)·sgn(cos(θ))

2

}
· Choose k(xy, h) := 2

|cos(θhxy)|
· Plug into previous Thm. �
Lo & behold: Denote γhn = cos(θhxnyn);
1
N

∑N
n=1 exp

(
− hTxnyn
‖h‖·‖xn‖

)
= 1

N

∑N
n=1 exp

(
−γhn

)
= 1− 1

N

∑N
n=1 γ

h
n + 1

N

∑N
n=1(γ

h
n)2 − ...



Linear combination of weighted ensemble:

Connecting two views

Consider a linearly weighted ensemble of binary valued base
learners from the class B = {b : X × {−1, 1}}, with weights
α = (α1, α2, ..., αT ):

Fens =

{
x→

T∑
t=1

αtbt(x) : bt ∈ B,
T∑
i=1

|αi| ≤ 1

}
(6)

Corollary [Margin distribution view] Fix any k(≤ T ) positive
integer, and δ > 0. With probability 1−δ w.r.t. the training set of
size N , uniformly for all αt,

∑T
t=1 |αt| ≤ 1 and all bt ∈ B, t = 1, ..., T ,

Ex,y[

T∑
t=1

αtbt(x)y ≤ 0] ≤
1

N

N∑
n=1

min
(

1, 2fk(θ
α
b(xn)yn

)
)

+ c

√
k · V (B)

N
+ 3

√
log(2/δ)

2N

(7)

where V denotes VC-dimension, and c is an absolute constant.



Linear combination of weighted ensemble:

Connecting 2 views

Applying the ’local’ Theorem with the choice k(h, b(x)y) :=
2‖b(x)‖2
| cos(θα

b(x)y
)|·

‖α‖2
‖α‖1

, where b is the vector of binary predictions (bt)t=1,...,T , yields:

Corollary [Exponential loss view] With probability 1 − δ w.r.t.

the training set of size N , uniformly for all αt,
∑T

t=1 |αt| ≤ 1 and

all bt ∈ B, t = 1, ..., T ,

Ex,y[α
T b(x)y ≤ 0] ≤

1

N

N∑
n=1

2 exp

(
−
αT b(xn)yn

‖α‖1

)
+ 3

√
log(2/δ)

2N

+

c
√
V (B)

N
+ 3

√
log(2)

2N

√2T max
n

√
‖α‖1

|αT b(xn)|



Summing up linear discriminative classification

For linear classifiers trained by ERM on i.i.d. traiing sample (and

no other assumptions a-priori), the use of RP revealed:

• The task is solvable in a random linear subspace (i.e. with

performance guarantees) if the label flipping probabilities un-

der a RP are small. This requirement is more general than

large margin.

• The dataspace ERM classifier’s error is small under the same

conditions.

• We did not require any sparse representation for our bounds

to hold, as usually compressed learning approaches do.



Generative classification. Fisher’s Linear

Discriminant (FLD)

µµ
0
.

1.

• Simple and popular linear classifier, in widespread application. Classes
are modelled as identical multivariate Gaussians.

• Assign class label to any query point according to its Mahalanobis dis-
tance from the class means.

• Simple enough to allow a deeper analysis addressing our questions.



Approach

• The FLD model assumes equal class covariances, but the true

class covariances may differ.

• We need good bounds on largest and smalest eigenvalue of

random-projected projected covariance matrix.

Definition. Let Σ be a trace class covariance matrix in a sep-

arable Hilbert space, i.e. Tr(Σ) < ∞, and denote by λmax(Σ)

its largest eigenvalue. The effective rank of Σ is defined as

r(Σ) =
Tr(Σ)
λmax(Σ)

. For the model under consideration we will call

this the effective dimension of the data.



Dimension-free Bounds on the Extreme

Eigenvalues of Weighted Wishart

Lemma Let Σ be a covariance matrix in Rd, and we denote by

λmax(·) and λmin(·) its largest and smallest eigenvalues. Let R

be a k × d random matrix with i.i.d. standard Gaussian entries.

For any ε > 0 we have w.p. at least 1− exp(−ε2/2):

λmax(RΣRT ) ≤
(√

Tr(Σ) +
√
k · λmax(Σ) + ε

)2

. (8)

If k < b Tr(Σ)
λmax(Σ)

c then for any ε ∈ (0, 1) we have with probability at

least 1− exp(−ε2/2):

λmin(RΣRT ) ≥
(√

Tr(Σ)−
√
k · λmax(Σ)− ε

)2

+
. (9)



Comparison with (Davidson & Szarek, 2001)

Our proof uses comparison inequalities for the suprema of Gaus-

sian processes, extending work by (Davidson & Szarek, 2001).

Lemma [Davidson & Szarek, 2001] Let R be a k × d matrix

with entries sampled i.i.d from N (0, 1). Then for all ε > 0 with

probability at least 1− 2 exp(−ε2/2) we have:

(
√
d−
√
k− ε)2

+ ≤ λmin(RRT ) ≤ λmax(RRT ) ≤ (
√
d+
√
k+ ε)2. (10)

where the lower estimate requires that k < d.

Using this, an easy alternative for us would be to write:

d · λmin(Σ)(1−
√
k/d− ε/

√
d)2

+ ≤ λmin(RΣRT ) ≤ λmax(RΣRT ) ≤ d · λmax(Σ)(1 +
√
k/d+ ε/

√
d)2

w.p. 1− 2 exp(−ε2/2), where (·)+ = max(·, 0).
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Illustration of the bounds. The d × d covariance matrix, d = 500. Σ has its

first 80 eigenvalues equal to 1 and the remaining eigenvalues decay as the

sequence (1/i2)i=1,...,d−80.



• Whend is finite, and Σ = Id, we recover exactly the upper and

lower estimates of (Davdson & Szarek, 2001), of which the

upper bound on the largest eigenvalue is known to be sharp.

• Our λmax bound is tighter than λmax(RΣRT ) ≤ λmax(Σ)λmax(RRT )

with the bound of (Davdson & Szarek, 2001) on the latter

term – indeed, the effective dimension Tr(Σ)/λmax(Σ) is al-

ways no larger than the ambient dimension d.

• There are cases when our λmin bound is also tighter than

λmin(RΣRT ) ≥ λmin(Σ)λmin(RRT ) with the bound of (Davd-

son & Szarek, 2001) applied on the latter term.

• d can be arbitrary large as our bounds do not depend on d

directly.



Application to Compressive FLD

In the true data distribution we assume multivariate Gaussian

classes, but the true class covariances need not be shared. Need

only that the true class covariances have finite trace.

The FLD model assumes a shared covariance. Covariance mis-

specification effects are part of our analysis.

Denote by Σ̂ the ML estimate of the pooled covariance and by
µ̂0 and µ̂1 the ML estimates of the class means in Rd. Decision
function of compressive FLD for an input query point x is:

ĥR(x) = 1

{
(µ̂1 − µ̂0)

TRT (RΣ̂RT )−1R

(
x−

µ̂0 + µ̂1

2

)
> 0

}
Interested in the generalisation error Prx,y[ĥR(Rx) 6= y|T RN ].



Theorem. Let (x, y) ∼ D be a query point with unknown label
y and Gaussian class conditionals x|y = i ∼ N (µi,Σi) with trace
class covariances, i.e. Tr(Σi) < ∞, ∀i = {0, 1}. Let πi = Pr(y = i)
be bounded away from both 0 and 1. Let R be a k × d random
matrix with i.i.d. standard Gaussian entries. Then, ∀ε ∈ (0, 1),

Prx,y[ĥ
R(Rx) 6= y|TN ] ≤ ...

1∑
i=0

πiΦ

−
[
√
k − ε]+

[√
‖µ1 − µ0‖2 +

Tr(β1Σ0+β0Σ1)
Nα0α1

− ε
√

λmax(α1Σ0+α0Σ1)
Nβ0β1

]
+√

Tr(Σi) +
√
kλmax(Σi) + ε

g(κ̃i)−
√
k + ε
√
Nβi


+


w.p. 1− 10 exp(−ε2/2)− 2 exp(−π0Nε

2/3), where:

• Φ is the standard Gaussian cumulative distribution function,

• α0 = π0(1+ε), α1 = 1−π0(1−ε), β0 = π0(1−ε), β1 = 1−π0(1+ε),

• g(κ̃i) =
√
κ̃i

1+κ̃i
,

• κ̃i... (on next slide)



In the case when Σ0 6= Σ1, then

κ̃i =

[
(
√
N − 2 +

√
k + ε)2 + (

√
Nα¬i − 1 +

√
k + ε)2λ̃max(Mi)− (

√
Nβ¬i − 1−

√
k − ε)2

+

]
+[

(
√
N − 2−

√
k − ε)2

+ + (
√
Nβ¬i − 1−

√
k − ε)2

+λ̃min(Mi)− (
√
Nα¬i − 1 +

√
k + ε)2

]
+

,

(11)

provided that k and N are such that this is finite.

In the above, Mi := (RΣiR
T )−1/2RΣ¬iRT (RΣiR

T )−1/2 encodes the
mismatch between the true class-covariances after RP, so:

λ̃max(Mi) = min

{
(
√

Tr(Σ¬i) +
√
k · λmax(Σ¬i) + ε)2

(
√

Tr(Σi)−
√
k · λmax(Σi)− ε)2

+

, λmax(Σ+
i Σ¬i)

}
(12)

λ̃min(Mi) = max

{
(
√

Tr(Σi)−
√
k · λmax(Σi)− ε)2

+

(
√

Tr(Σ¬i) +
√
k · λmax(Σ¬i) + ε)2

, λmin(Σ+
i Σ¬i)

}
(13)

where (·)+ stands for any choice of generalised inverse.



Corollary [Asymptotic error bound]. Under the conditions of
Theorem, and using the same function g(·), we have:

lim sup
N→∞

Prx,y[ĥ
R(Rx) 6= y|TN ] ≤

1∑
i=0

πiΦ

(
−

(
√
k − ε)‖µ1 − µ0‖√

Tr(Σi) +
√
k · λmax(Σi) + ε

· g
(
λ̃max(Mi)

λ̃min(Mi)

))

w.p. 1− 4 exp(−ε2/2), where λ̃max(Mi) and λ̃min(Mi) are as pre-

viously, in eqs. (12)-(13).

Main characteristics:

• upper bound on the Bayes error of FLD

• distance between class means relative to size of covariances λmax(Σi) plays
a crucial role

• −g(·) is the price of covariance misestimation and/or misspecification
of a shared covariance: increases with the condition number of Mi =
(RΣiRT )−1/2RΣ¬iRT (RΣiRT )−1/2

• bound is independent of d, scales with the effective dimension Tr(Σi)/λmax(Σi)



Proof sketch & further interpretation

We start from the error of FLD conditional on training set, ap-
plied in the RP space, and decompose it:

Prx,y[ĥ
R(Rx) 6= y|TN , R] = ...

1∑
i=0

πiΦ

−1

2

(µ̂¬i − µ̂i)T RT (RΣ̂RT )−1R (µ̂¬i + µ̂i − 2µi)√
(µ̂1 − µ̂0)TRT (RΣ̂RT )−1RΣiRT (RΣ̂RT )−1R(µ̂1 − µ̂0)

 = ...

1∑
i=0

πiΦ

−1

2

(µ̂1 − µ̂0)
T RT (RΣ̂RT )−1R (µ̂1 − µ̂0)− 2 (µi − µ̂i)T RT (RΣ̂RT )−1R (µ̂¬i − µ̂i)√

(µ̂1 − µ̂0)TRT (RΣ̂RT )−1RΣiRT (RΣ̂RT )−1R(µ̂1 − µ̂0)

 ≤
1∑
i=0

πiΦ (−[AiBi − Ci]) (14)

where
Ai := ‖(RΣiR

T )−
1
2R (µ̂1 − µ̂0) ‖ we lower bound this

Bi :=

√
κ((RΣ̂RT )−

1
2RΣiRT (RΣ̂RT )−

1
2)

1 + κ((RΣ̂RT )−
1
2RΣiRT (RΣ̂RT )−

1
2)

we lower bound this

Ci := ‖(RΣiR
T )−

1
2R(µi − µ̂i)‖ we upper bound this



Experiments on synthetic data

• From analysis, low effective dimension of class covariances, and

large distance between class means are benign characteristacs.

• Generated such data in d = 500:

Tr(Σ0)/λmax(Σ0) = 28.09, Tr(Σ1)/λmax(Σ1) = 12.98; ‖µ0 − µ1‖ =

44.72. N0 = N1 = 1000 for training + same amount for testing.

Independent repeats 20 times.
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Experiments on synthetic data: Bound vs.

empirical test error
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Tr(Σ0)/λmax(Σ0) = 28.09, Tr(Σ1)/λmax(Σ1) = 12.98; ‖µ0−µ1‖ = 44.72. N0 = N1 =

1000 for training + same amount for testing. Independent repeats 20 times.



Experiments on real data

d can be arbitrary large – including functional data.
Kernel methods is a context where functional data appears frequently.

Kernel trick is a smooth transformation – reason to expect low effective
dimension & separability of the classes.

13 UCI benchmark data sets previously used in studying kernel-FLD (KFLD).
KFLD with ridge-regularised covariance vs. compressive KFLD no regulari-
sation.
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Summing up compressive FLD

• Our analysis disentangles the effects of RP on various components of
the error:

– RP has beneficial effects on both misestimation and misspecification
of the class covariances.

– RP has beneficial effects on misestimation of class centers.

– RP has detrimental effect by reducing class separability.

• Dimension free bound under mild assumptions.

• The key technical ingredient – new dimension-free bounds on the largest
and smallest eigenvalues of the compresed covariance – may be of inde-
pendent interest.



When a single RP looses too much

Noise can make the data fill more of the ambient space.

Not enough structure for a single RP.

• Can we achieve (or improve on) the classification perfor-

mance in data space, using a compressive ensemble?

• Can we understand how the ensemble acts to improve per-

formance?

• Can we interpret the pramters of the compressive ensemble

in the original data space?



Ensemble of compressive FLDs

Interested in N � d setting, which is a common situation e.g.

medical imaging, genomics, proteomics, etc.

For a single RP FLD classifier, the decision rule is:

1

{
(µ̂1 − µ̂0)TRT

(
RΣ̂RT

)−1
R

(
xq −

µ̂1 + µ̂0

2

)
> 0

}

For the ensemble we will use:

1

 1

M

M∑
i=1

(µ̂1 − µ̂0)TRTi

(
RiΣ̂R

T
i

)−1
Ri

(
xq −

µ̂1 + µ̂0

2

)
> 0


Linear combination rules are a common choice for ensembles.



Observation

We can rewrite decision rule as:

1

(µ̂1 − µ̂0)T
1

M

M∑
i=1

RTi

(
RiΣ̂R

T
i

)−1
Ri

(
xq −

µ̂1 + µ̂0

2

)
> 0


Then, at convergence, enough to consider:

lim
M→∞

1

M

M∑
i=1

RTi

(
RiΣ̂R

T
i

)−1
Ri = E

[
RT
(
RΣ̂RT

)−1
R

]



Ingredients of analysis

• Rows (and columns) of R drawn from a spherical Gaussian,

hence for any orthogonal matrix U , R ∼ RU . Eigendecomposing

Σ̂ = UΛ̂UT and using UUT = I we find that:

E

[
RT
(
RΣ̂RT

)−1
R

]
= U E

[
RT
(
RΛ̂RT

)−1
R

]
UT (15)

• Furthermore since a matrix A is diagonal if and only if V AV T =

A for all diagonal orthogonal matrices V = diag{±1} one can eas-

ily show that the expectation on RHS is diagonal.

• Now enough to evaluate the diagonal terms on RHS!

• (Marzetta et al.’11) has an algorithm that calculates this ex-

actly. We are more interested in interpretable estimates, to relate

it to Σ̂.



Ingredients of analysis

Define ρ := rank(Λ̂) = rank(Σ̂).

Work with positive semidefinite ordering: A � B ⇐⇒ A − B

is positive semidefinite (p.s.d ≡ symmetric with all eigenvalues

> 0).

Upper and lower bound the diagonal matrix expectation (15) in

the p.s.d ordering with spherical matrices αmax · I, αmin · I to

bound its condition number in terms of data space parameters:

αmax · I � E

[
RT
(
RΛRT

)−1
R

]
� αmin · I

Where α = α(k, ρ, λmax, λmin 6=0), k is the projected dimensionality,

ρ = rank(Λ̂) = rank(Σ̂), λmax and λmin 6=0 are respectively the

greatest and least non-zero eigenvalues of Σ̂.



Results: The regularisation effect

Theorem [D-K, MLJ] Let Σ̂ ∈ Md×d be a symmetric posi-

tive semi-definite matrix with rank ρ ∈ {3, ..., d − 1}, and de-

note by λmax(Σ̂), λmin 6=0(Σ̂) > 0 its greatest and least non-zero

eigenvalues. Let k < ρ − 1 be a positive integer, and let R ∈
Mk×d be a random matrix with i.i.d N (0, 1) entries. Let Ŝ−1 :=

E

[
RT
(
RΣ̂RT

)−1
R

]
, and denote by κ(Ŝ−1) its condition number,

κ(Ŝ−1) = λmax(Ŝ−1)/λmin(Ŝ−1). Then:

κ(Ŝ−1) 6
ρ

ρ− k − 1
·
λmax(Σ̂)

λmin 6=0(Σ̂)

This theorem implies that for a large enough ensemble the condition number

of the sum of random matrices 1
M

∑M
i=1R

T
i

(
RiΣ̂RT

i

)−1
Ri is bounded.



Exact Generalisation error of the converged

ensemble conditioned on fixed training set

Lemma [D-K, MLJ]. Let xq|yq ∼ N (µy,Σ), where Σ ∈ Md×d is

a full rank covariance matrix. Let R ∈Mk×d be a RP matrix with

i.i.d. Gaussian entries and denote S−1
R

:= 1
M

∑M
i=1R

T
i

(
RiΣ̂R

T
i

)−1
Ri.

Then the error of the ensemble conditioned on training set equals:

1∑
y=0

πyΦ

−1

2

(µ̂¬y − µ̂y)TS−1
R

(µ̂0 + µ̂1 − 2µy)√
(µ̂1 − µ̂0)TS−1

R
ΣS−1

R
(µ̂1 − µ̂0)


For the converged ensemble, substitute the expectation (15) for

S−1
R

above.



Generalisation error of the converged ensemble

Theorem [D-K, MLJ]. Let T = {(xi, yi)}Ni=1 be a set of training data of
size N = N0 + N1, subject to N < d and Ny > 1 ∀y. Let xq be a query point
with Gaussian class-conditionals xq|yq ∼ N (µy,Σ), and let Pr{yq = y} = πy. Let
ρ be the rank of the maximum likelihood estimate of the covariance matrix
and let k < ρ − 1 be a positive integer. Then for any δ ∈ (0, 1) we have w.p.
1− δ w,r,t, random draws of T :

Pr
xq,yq

(ĥens(xq) 6= yq) 6
1∑
y=0

πyΦ

(
−
[
g

(
κ̄

(√
2 log

5

δ

))
× . . . (16)

. . .

√‖Σ− 1

2(µ1 − µ0)‖2 +
dN

N0N1
−

√
2N

N0N1
log

5

δ


+

−

√
d

Ny

(
1 +

√
2

d
log

5

δ

)
where κ̄(ε) is a high probability (w.r.t draws of T ) upper bound

on the condition number of ΣŜ−1 (given in the paper) and g(·)
is the function g(a) :=

√
a

1+a.



Experiments: Datasets

Datasets:
Name Source #samples #features
colon [Alon et al.] 62 2000
leukemia [Golub et al.] 72 3571
leukemia large [Golub et al.] 72 7129
prostate [Singh et al.] 102 6033
duke [West et al.] 44 7129

Standardised features to have mean 0 and variance 1 and ran experiments

on 100 independent splits. In each split took 12 points for testing, rest for

training.



Experiments: Results for k = ρ/2

Base learners are compressive FLDs with full covariance and no

regularisation when k 6 ρ and pseudoinverted FLD when k > ρ.

Dataset ρ/2 100 RP-FLD 1000 RP-FLD SVM

colon 24 13.58 ± 0.89 13.08 ± 0.86 16.58 ± 0.95
leuk. 29 1.83 ± 0.36 1.83 ± 0.37 1.67 ± 0.36
leuk.lg. 29 4.91± 0.70 3.25 ± 0.60 3.50 ± 0.46
prost. 44 8.00 ± 0.76 8.00 ± 0.72 8.00 ± 0.72
duke 15 17.41 ±1.27 16.58 ± 1.27 13.50 ± 1.10

More comparisons: For data space experiments on colon and leukaemia used

ridge-regularised FLD for comparison and fitted regularisation parameter us-

ing 5-fold CV.

For other datasets we used diagonal FLD in the data space (size, no sig. diff.

in error on colon, leuk.).



Experiments – effect of k
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FLD data space
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FLD data space
RP−FLD
Averaging 10 RP−FLDs
Averaging 100 RP−FLDs
Averaging 3000 RP−FLDs

Test error rates versus k and error bars mark 1 standard error estimated from

100 runs. In these experiments we used Gaussian random matrices with i.i.d

N (0, 1) entries.



Experiments – different RP matrices
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=24 Averaging
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RP−FLD k=10 Averaging
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=29 Averaging
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Dataspace FLD
RP−FLD k=1 Averaging
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Dataspace FLD
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Dataspace FLD
RP−FLD k=1 Averaging
RP−FLD k=5 Averaging
RP−FLD k=10 Averaging
RP−FLD k=29 Averaging

Column 1 : Majority Vote using Gaussian random matrices; Column 2 : Averaging ensemble

using Gaussian r.m; Column 3 : Averaging ensemble using ±1 random matrices. Column 4 :

Averaging ensemble using the sparse {−1, 0,+1} random matrices from [Achlioptas ’03].



How far is the finite ensemble from the infinite

ensemble?

Approximating the inverse of a singular covariance matrix is a

problem of independent interest (e.g. small sample problems

with Gaussian mixtures, Gaussian graphical models).

Given M a d × d psd, rank ρ < d matrix, the precision matrix

approximator of our cFLD ensemble:

ick(M) = E[RT (RMRT )−1R]

was previously proposed as a general purpose method in (Marzetta

et al., 2011). A rotation-invarant method, different from sparsity

approaches.



In (Marzetta et al., 2011),

• Shown to be always non-singular, regularised inverse of M .

• Empirically demonstrated to outperform the Ledoit-Wolf in

terms of Frobenius norm from the unknown true covariance

• Theoretical analyses so far existed only for the infinite ensem-

ble, implying good performance for ‘large-enough’ ensemble.

• How large is ‘large enough’ ?



Result: How large is large enough?

Theorem [K, ALT’17] Let M be a d × d, rank 3 ≤ ρ < d psd

matrix. Let Ri, i = 1, ...,m be i.i.d. copies of a k × d, k < ρ − 1

random matrix with i.i.d. standard Gaussian entries, k finite. If

ρ− k + 1 ≥ Ω(log(d− ρ)), then, ∃c, η > 0 s.t. ∀ε ∈ (0, 1), we have:

E

[
‖

1

m

m∑
i=1

RT
i (RiMRT

i )−1Ri − E
[
RT (RMRT )−1R

]
‖
]
≤ ε · E

[
RT (RMRT )−1R

]
provided that the ensemble size is:

m ≥ C1(c, η) ·
d

ε2+2/η

where ‖ · ‖ denotes spectral norm, and C1(c, η) is an absolute

constants independent of d.



The condition is mild.

• If M was a singular covariance estimate, then ρ is always no

larger than the sample size.

• Exponentially many irrelevant features can still fit the bill.



Technical ingredients of proof (1): Upper bound

on the spectral norm of a matrix-variate T

Let P and Q be two independent random matrices with i.i.d.

standard normal entries, of size k× ρ, and k× r respectively, and

assume that k < ρ− 1. So,

PPT ∼ W(ρ, Ik) is a Wishart matrix independent of Q,

T := (PPT )−1/2Q ∼ Tk×r(0, Ik, Ir, ν) has a zero mean matrix-

variate T-distribution, with ν = ρ− k + 1.

• T T ∼ Tr×k(0, Ir, Ik, ν)

• Jj ∼ tr(0, Ir, ν) = T1×r(0, 1, Ir, ν)

Pr

{
λmax

(
QT (PPT )−1Q

)
·
ρ− k − 1

k
≥ t
}
≤?

where λmax denotes largest eigenvalue of its argument.



Technical ingredients of proof (1): Upper bound

on the spectral norm of a matrix-variate T

Lemma[K, ALT’17] [Chernoff-type bound on square norm of t-

vector]

Let x ∼ Tr(0, Ir, ν). Then ∀t > r,

Pr
{
‖x‖2 > t

}
≤
(r
t

)−r2 (r + ν

t+ ν

)ν+r
2

• tightens with increasing ν

• recovers χ2 Chernoff bound as ν →∞

Using Lemma,

Pr

{
λmax

(
QT (PPT )−1Q

)
·
ρ− k − 1

k
≥ t
}
≤ k ·

(
t

r

)r
2
·
(
r + ν

t+ ν

)ν+r
2



Technical ingredients of proof (2): Tools from

random matrix theory

Definition (Youssef, 2013) [Matrix Strong Regularity (MSR)
condition] A d × d psd random matrix U with E[U ] = Id satisfies
MSR if ∃η, cMSR > 0 constants s.t.

Pr {‖AUA‖ ≥ t} ≤
cMSR

t1+η
, ∀t ≥ cMSR · rank(A), ∀A orthogonal projection in Rd

Theorem (Youssef, 2013) [Covariance of random matrices] Let
U be a d × d positive semidefinite matrix having E[U ] = Id and
satisfying the MSR for some η, cMSR > 0, and let U1, U2, ..., Um
be independent copies of U . Then, ∀ε ∈ (0, 1), for m = C1 · d

ε2+2/η ,

E[‖
1

m

m∑
i=1

Ui − Id‖] ≤ ε

where C1 is a constant that depends only on η and cMSR.
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Numerical experiment demonstrating that the required ensemble

size grows linearly in d, for ε = 0.5, and ε = 0.3. Here M = M0

with ρ = 50.
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Singular matrix M of rank ρ = 50 with condition number κ(M) =

1.5 in its range space. Ensemble size required for ε convergence

of the ensemble scales linearly with d.



Summing up

The ensemble of compressive learners only needs random pro-

jections of the data, and can be run in parallel.

Improves performance of ridge regularised dataspace FLD clas-

sifier.

Detailed analysis shows it implements a sophisticated regularisa-

tion scheme in the original data space.

Results on single compressive learners, as well as on ensembles,

suggest that random projections may be used to uncover the

structures and problem characteristics that allow effective and

efficient learning for high dimensional data.
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