Scaling up Bayesian Inference

David Dunson

Departments of Statistical Science & Mathematics, Duke University

July 2, 2018
Outline

Motivation & background

EP-MCMC

aMCMC

Designer MCMC

Generalized Bayes
Complex & high-dimensional data

Focus: new methods for analyzing & interpreting complex, high-dimensional data
Complex & high-dimensional data

Focus: new methods for analyzing & interpreting complex, high-dimensional data

Arise routinely in broad fields of sciences, engineering & even arts & humanities
Complex & high-dimensional data

- **Focus**: new methods for analyzing & interpreting complex, high-dimensional data
- Arise routinely in broad fields of **sciences**, engineering & even arts & humanities
- Statistical, computational & mathematical methods to solve real problems in broad areas
Complex & high-dimensional data

Focus: new methods for analyzing & interpreting complex, high-dimensional data

Arise routinely in broad fields of sciences, engineering & even arts & humanities

Statistical, computational & mathematical methods to solve real problems in broad areas

Despite huge interest in big data, there are vast gaps that have fundamentally limited progress in many fields
Typical approaches to big data

There is an increasingly immense literature focused on big data
Typical approaches to big data

- There is an increasingly immense literature focused on big data.
- Most of the focus has been on penalized optimization methods.
Typical approaches to big data

- There is an increasingly immense literature focused on big data.
- Most of the focus has been on penalized optimization methods.
- Rapidly obtaining a point estimate even when sample size n & overall ‘size’ of data is immense.
Typical approaches to big data

- There is an increasingly immense literature focused on big data
- Most of the focus has been on penalized optimization methods
- Rapidly obtaining a point estimate even when sample size n & overall ‘size’ of data is immense
- Huge focus on specific settings - e.g., linear regression, identifying cats in images, etc
Typical approaches to big data

- There is an increasingly immense literature focused on big data
- Most of the focus has been on penalized optimization methods
- Rapidly obtaining a point estimate even when sample size n & overall ‘size’ of data is immense
- Huge focus on specific settings - e.g., linear regression, identifying cats in images, etc
- **Bandwagons**: most people work on very similar problems, while critical open problems remain untouched
My focus - probability models

"I wish we hadn't learned probability 'cause I don't think our odds are good."
My focus - probability models

General probabilistic inference algorithms for complex data

“I wish we hadn’t learned probability ’cause I don’t think our odds are good.”
My focus - probability models

General probabilistic inference algorithms for complex data

We would like to be able to handle arbitrarily complex probability models

“I wish we hadn’t learned probability ’cause I don’t think our odds are good.”
My focus - probability models

- General probabilistic inference algorithms for complex data
- We would like to be able to handle arbitrarily complex probability models
- Algorithms scalable to huge data - potentially using many computers

“I wish we hadn't learned probability 'cause I don't think our odds are good.”
My focus - probability models

- General probabilistic inference algorithms for complex data
- We would like to be able to handle arbitrarily complex probability models
- Algorithms scalable to huge data - potentially using many computers

“I wish we hadn’t learned probability ’cause I don’t think our odds are good.”
My focus - probability models

- General probabilistic inference algorithms for complex data
- We would like to be able to handle arbitrarily complex probability models
- Algorithms scalable to huge data - potentially using many computers

- Accurate uncertainty quantification (UQ) is a critical issue
My focus - probability models

General probabilistic inference algorithms for complex data
- We would like to be able to handle arbitrarily complex probability models
- Algorithms scalable to huge data - potentially using many computers

Accurate uncertainty quantification (UQ) is a critical issue
- Robustness of inferences also crucial
Bayes approaches

Bayesian methods offer an attractive general approach for modeling complex data.
Bayes approaches

Bayesian methods offer an attractive general approach for modeling complex data.

Choosing a prior $\pi(\theta)$ & likelihood $L(Y^{(n)}|\theta)$, the posterior is

$$
\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta)d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}.
$$
Bayes approaches

- Bayesian methods offer an attractive general approach for modeling complex data.
- Choosing a prior \(\pi(\theta) \) & likelihood \(L(Y^{(n)}|\theta) \), the posterior is

\[
\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta) d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}.
\]

- Often \(\theta \) is moderate to high-dimensional & the integral in the denominator is intractable.
Bayes approaches

Bayesian methods offer an attractive general approach for modeling complex data. Choosing a prior $\pi(\theta)$ & likelihood $L(Y^{(n)}|\theta)$, the posterior is

$$
\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta) d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}.
$$

Often θ is moderate to high-dimensional & the integral in the denominator is intractable. Accurate analytic approximations to the posterior have proven elusive outside of narrow settings.
Bayes approaches

Bayesian methods offer an attractive general approach for modeling complex data.

Choosing a prior $\pi(\theta)$ & likelihood $L(Y^{(n)}|\theta)$, the posterior is

$$\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta) \, d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}.$$

Often θ is moderate to high-dimensional & the integral in the denominator is intractable.

Accurate analytic approximations to the posterior have proven elusive outside of narrow settings.

Markov chain Monte Carlo (MCMC) & other posterior sampling algorithms remain the standard.
Bayes approaches

- Bayesian methods offer an attractive general approach for modeling complex data.
- Choosing a prior $\pi(\theta)$ & likelihood $L(Y^{(n)}|\theta)$, the posterior is

$$
\pi_n(\theta|Y^{(n)}) = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{\int \pi(\theta)L(Y^{(n)}|\theta) \, d\theta} = \frac{\pi(\theta)L(Y^{(n)}|\theta)}{L(Y^{(n)})}.
$$

- Often θ is moderate to high-dimensional & the integral in the denominator is intractable.
- Accurate analytic approximations to the posterior have proven elusive outside of narrow settings.
- Markov chain Monte Carlo (MCMC) & other posterior sampling algorithms remain the standard.
- Scaling MCMC to big & complex settings challenging.
MCMC constructs Markov chain with stationary distribution \(\pi_n(\theta | Y^{(n)}) \)

MCMC & Computational bottlenecks
MCMC & Computational bottlenecks

- MCMC constructs Markov chain with stationary distribution $\pi_n(\theta | Y^{(n)})$
- A transition kernel is carefully chosen & iterative sampling proceeds

Motivation & background
MCMC & Computational bottlenecks

MCMC constructs Markov chain with stationary distribution $\pi_n(\theta | Y^{(n)})$

A *transition kernel* is carefully chosen & iterative sampling proceeds

Time per iteration increases with # of parameters/unknowns
MCMC & Computational bottlenecks

- MCMC constructs Markov chain with stationary distribution \(\pi_n(\theta | Y^{(n)}) \)
- A *transition kernel* is carefully chosen & iterative sampling proceeds
- Time per iteration increases with # of parameters/unknowns
- Mixing worse as dimension of data increases
MCMC & Computational bottlenecks

- MCMC constructs Markov chain with stationary distribution $\pi_n(\theta | Y^{(n)})$
- A transition kernel is carefully chosen & iterative sampling proceeds
- Time per iteration increases with # of parameters/unknowns
- Mixing worse as dimension of data increases
- Storing & basic processing on big data sets is problematic
MCMC & Computational bottlenecks

- MCMC constructs Markov chain with stationary distribution \(\pi_n(\theta | Y^{(n)}) \)
- A transition kernel is carefully chosen & iterative sampling proceeds
- Time per iteration increases with # of parameters/unknowns
- Mixing worse as dimension of data increases
- Storing & basic processing on big data sets is problematic
- Usually multiple likelihood and/or gradient evaluations at each iteration
Some Solutions

- **Embarrassingly parallel (EP) MCMC**: run MCMC in parallel for different subsets of data & combine.
Some Solutions

- **Embarrassingly parallel (EP) MCMC**: run MCMC in parallel for different subsets of data & combine.
- **Approximate MCMC**: Approximate expensive to evaluate transition kernels.
Some Solutions

- **Embarrassingly parallel (EP) MCMC**: run MCMC in parallel for different subsets of data & combine.
- **Approximate MCMC**: Approximate expensive to evaluate transition kernels.
- **Designer MCMC**: Carefully design MCMC transition kernels to be scalable
Some Solutions

- **Embarrassingly parallel (EP) MCMC**: run MCMC in parallel for different subsets of data & combine.
- **Approximate MCMC**: Approximate expensive to evaluate transition kernels.
- **Designer MCMC**: Carefully design MCMC transition kernels to be scalable.
- **Generalized Bayes**: Take a step away from full Bayes inferences for scalability & robustness.
Outline

Motivation & background

EP-MCMC

aMCMC

Designer MCMC

Generalized Bayes
Embarrassingly parallel MCMC

Divide large sample size n data set into many smaller data sets stored on different machines

Divide large sample size n data set into many smaller data sets stored on different machines
Embarrassingly parallel MCMC

Divide large sample size n data set into many smaller data sets stored on different machines.

Draw posterior samples for each subset posterior in parallel.
Embarrassingly parallel MCMC

- Divide large sample size n data set into many smaller data sets stored on different machines
- Draw posterior samples for each subset posterior in parallel
- ‘Magically’ combine the results quickly & simply
Toy Example: Logistic Regression

\[
\text{pr}(y_i = 1| x_{i1}, \ldots, x_{ip}, \theta) = \frac{\exp\left(\sum_{j=1}^{p} x_{ij} \beta_j\right)}{1 + \exp\left(\sum_{j=1}^{p} x_{ij} \beta_j\right)}.
\]

 Subset posteriors: ‘noisy’ approximations of full data posterior.
Toy Example: Logistic Regression

\[\text{pr}(y_i = 1 | x_{i1}, \ldots, x_{ip}, \theta) = \frac{\exp\left(\sum_{j=1}^{p} x_{ij} \beta_j \right)}{1 + \exp\left(\sum_{j=1}^{p} x_{ij} \beta_j \right)}. \]

Subset posteriors: ‘noisy’ approximations of full data posterior.

‘Averaging’ of subset posteriors reduces this ‘noise’ & leads to an accurate posterior approximation.
Full data posterior density of \textit{inid} data \(Y^{(n)}\)

\[
\pi_n(\theta \mid Y^{(n)}) = \frac{\prod_{i=1}^{n} p_i(y_i \mid \theta)\pi(\theta)}{\int_\Theta \prod_{i=1}^{n} p_i(y_i \mid \theta)\pi(\theta) d\theta}.
\]
Stochastic Approximation

- Full data posterior density of \textit{inid} data $Y^{(n)}$

$$
\pi_n(\theta \mid Y^{(n)}) = \frac{\prod_{i=1}^{n} p_i(y_i \mid \theta)\pi(\theta)}{\int_{\Theta} \prod_{i=1}^{n} p_i(y_i \mid \theta)\pi(\theta) d\theta}.
$$

- Divide full data $Y^{(n)}$ into k subsets of size m:
 $Y^{(n)} = (Y_{[1]},\ldots,Y_{[j]},\ldots,Y_{[k]})$.
Stochastic Approximation

 Pru Full data posterior density of \textit{inid} data $Y^{(n)}$

$$
\pi_n(\theta \mid Y^{(n)}) = \frac{\prod_{i=1}^{n} p_i(y_i \mid \theta)\pi(\theta)}{\int_{\Theta} \prod_{i=1}^{n} p_i(y_i \mid \theta)\pi(\theta) d\theta}.
$$

 Pru Divide full data $Y^{(n)}$ into k subsets of size m:

$Y^{(n)} = (Y_1, \ldots, Y_j, \ldots, Y_k)$.

 Pru Subset posterior density for jth data subset

$$
\pi_m^{\gamma}(\theta \mid Y_{[j]}) = \frac{\prod_{i \in [j]} (p_i(y_i \mid \theta))^{\gamma} \pi(\theta)}{\int_{\Theta} \prod_{i \in [j]} (p_i(y_i \mid \theta))^{\gamma} \pi(\theta) d\theta}.
$$
Stochastic Approximation

- Full data posterior density of *inid* data $Y^{(n)}$

$$
\pi_n(\theta \mid Y^{(n)}) = \frac{\prod_{i=1}^{n} p_i(y_i \mid \theta)\pi(\theta)}{\int_{\Theta} \prod_{i=1}^{n} p_i(y_i \mid \theta)\pi(\theta) d\theta}.
$$

- Divide full data $Y^{(n)}$ into k subsets of size m:

$$
Y^{(n)} = (Y_{[1]}, \ldots, Y_{[j]}, \ldots, Y_{[k]}).
$$

- Subset posterior density for jth data subset

$$
\pi_m^\gamma(\theta \mid Y_{[j]}) = \frac{\prod_{i \in [j]} (p_i(y_i \mid \theta))^\gamma\pi(\theta)}{\int_{\Theta} \prod_{i \in [j]} (p_i(y_i \mid \theta))^\gamma\pi(\theta) d\theta}.
$$

- $\gamma = O(k)$ - chosen to minimize approximation error
Barycenter in Metric Spaces

Space of probability measures \mathcal{M}
Barycenter in Metric Spaces

$\Pi_M = \arg\min_{\Pi \in \mathcal{M}} \sum_{i=1}^{n} \rho^2(\Pi, \Pi_i)$

Space of probability measures \mathcal{M} with metric ρ
2-Wasserstein distance between $\mu, \nu \in \mathcal{P}_2(\Theta)$

$$W_2(\mu, \nu) = \inf \left\{ \left(\mathbb{E}[d^2(X, Y)] \right)^{\frac{1}{2}} : \text{law}(X) = \mu, \text{law}(Y) = \nu \right\}.$$
2-Wasserstein distance between $\mu, \nu \in \mathcal{P}_2(\Theta)$

$$W_2(\mu, \nu) = \inf \left\{ \left(\mathbb{E}[d^2(X, Y)] \right)^{\frac{1}{2}} : \text{law}(X) = \mu, \text{law}(Y) = \nu \right\}.$$

$\Pi_m^\gamma(\cdot \mid Y_{[j]})$ for $j = 1, \ldots, k$ are combined through WASP

$$\overline{\Pi}^\gamma_n(\cdot \mid Y^{(n)}) = \arg\min_{\Pi \in \mathcal{P}_2(\Theta)} \frac{1}{k} \sum_{j=1}^{k} W_2^2(\Pi, \Pi_m^\gamma(\cdot \mid Y_{[j]})).$$ [Agueh & Carlier (2011)]

WAsserstein barycenter of Subset Posteriors (WASP)
WA_sserstein barycenter of Subset Posteriors (WASP)

\[W_2(\mu, \nu) = \inf \left\{ \left(\mathbb{E}[d^2(X, Y)] \right)^{\frac{1}{2}} : \text{law}(X) = \mu, \text{law}(Y) = \nu \right\}. \]

\[\Pi^\gamma_m (\cdot | Y_{[j]}) \text{ for } j = 1, \ldots, k \text{ are combined through WASP} \]

\[\Pi^\gamma_n (\cdot | Y^{(n)}) = \arg\min_{\Pi \in \mathcal{P}_2(\Theta)} \frac{1}{k} \sum_{j=1}^{k} W_2^2 (\Pi, \Pi^\gamma_m (\cdot | Y_{[j]})). \quad [\text{Agueh & Carlier (2011)}] \]

\[\text{Plugging in } \hat{\Pi}^\gamma_m (\cdot | Y_{[j]}) \text{ for } j = 1, \ldots, k, \text{ a linear program (LP) can be used for fast estimation of an atomic approximation!} \]
Simple & Fast Posterior Interval Estimation (PIE)

\[\text{Li, Srivastava & Dunson (2017)}\]

🎉 Usually report point & interval estimates for different 1-d functionals - *multidimensional posterior difficult to interpret*
Simple & Fast Posterior Interval Estimation (PIE)

Usually report point & interval estimates for different 1-d functionals - *multidimensional posterior difficult to interpret*

WASP has explicit relationship with subset posteriors in 1-d
Simple & Fast Posterior Interval Estimation (PIE)

Li, Srivastava & Dunson (2017)

- Usually report point & interval estimates for different 1-d functionals - *multidimensional posterior difficult to interpret*
- WASP has explicit relationship with subset posteriors in 1-d
- Quantiles of WASP are simple averages of quantiles of subset posteriors
Usually report point & interval estimates for different 1-d functionals - *multidimensional posterior difficult to interpret*

WASP has explicit relationship with subset posteriors in 1-d

Quantiles of WASP are simple averages of quantiles of subset posteriors

Leads to a super trivial algorithm - run MCMC for each subset & average quantiles - *reminiscent of bag of little bootstraps*
Simple & Fast Posterior Interval Estimation (PIE)

Li, Srivastava & Dunson (2017)

- Usually report point & interval estimates for different 1-d functionals - *multidimensional posterior difficult to interpret*
- WASP has explicit relationship with subset posteriors in 1-d
- Quantiles of WASP are simple averages of quantiles of subset posteriors
- Leads to a super trivial algorithm - run MCMC for each subset & average quantiles - *reminiscent of bag of little bootstraps*
- Strong theory showing accuracy of the resulting approximation
Simple & Fast Posterior Interval Estimation (PIE)

Li, Srivastava & Dunson (2017)

 usuusually report point & interval estimates for different 1-d functionals - *multidimensional posterior difficult to interpret*

WASP has explicit relationship with subset posteriors in 1-d

Quantiles of WASP are simple averages of quantiles of subset posteriors

Leads to a super trivial algorithm - run MCMC for each subset & average quantiles - *reminiscent of bag of little bootstraps*

Strong theory showing accuracy of the resulting approximation

Can implement in *STAN*, which allows powered likelihoods
We show 1-d WASP $\overline{\Pi}_n(\xi|Y^{(n)})$ is highly accurate approximation to exact posterior $\Pi_n(\xi|Y^{(n)})$. As subset sample size m increases, the W_2 distance between them decreases at faster than parametric rate $o(n^{-1/2})$. Theorem allows $k = O(n^c)$ and $m = O(n^{1-c})$ for any $c \in (0,1)$, so m can increase very slowly relative to k (recall $n = km$). Their biases, variances, quantiles only differ in high orders of the total sample size. Conditions: standard, mild conditions on likelihood + prior finite 2nd moment & uniform integrability of subset posteriors.
We show 1-d WASP $\overline{\Pi}_n(\xi|Y^{(n)})$ is highly accurate approximation to exact posterior $\Pi_n(\xi|Y^{(n)})$

As subset sample size m increases, W_2 distance between them decreases at faster than parametric rate $o_p(n^{-1/2})$
We show 1-d WASP $\overline{\Pi}_n(\xi|Y^{(n)})$ is highly accurate approximation to exact posterior $\Pi_n(\xi|Y^{(n)})$.

As subset sample size m increases, W_2 distance between them decreases at faster than parametric rate $o_p(n^{-1/2})$.

Theorem allows $k = O(n^c)$ and $m = O(n^{1-c})$ for any $c \in (0, 1)$, so m can increase very slowly relative to k (recall $n = mk$).
Theory on PIE/1-d WASP

We show 1-d WASP $\Pi_n(\xi|Y^{(n)})$ is highly accurate approximation to exact posterior $\Pi_n(\xi|Y^{(n)})$

As subset sample size m increases, W_2 distance between them decreases at faster than parametric rate $o_P(n^{-1/2})$

Theorem allows $k = O(n^c)$ and $m = O(n^{1-c})$ for any $c \in (0, 1)$, so m can increase very slowly relative to k (recall $n = mk$)

Their biases, variances, quantiles only differ in high orders of the total sample size
We show 1-d WASP $\Pi_n(\xi|Y^{(n)})$ is highly accurate approximation to exact posterior $\Pi_n(\xi|Y^{(n)})$

As subset sample size m increases, W_2 distance between them decreases at faster than parametric rate $o_p(n^{-1/2})$

Theorem allows $k = O(n^c)$ and $m = O(n^{1-c})$ for any $c \in (0, 1)$, so m can increase very slowly relative to k (recall $n = mk$)

Their biases, variances, quantiles only differ in high orders of the total sample size

Conditions: standard, mild conditions on likelihood + prior finite 2nd moment & uniform integrability of subset posteriors
Results

- We have implemented for rich variety of data & models

 - Logistic & linear random effects models
 - Mixture models
 - Matrix & tensor factorizations
 - Gaussian process regression
 - Nonparametric models
 - Dependence, hierarchical models, etc.

- We compare to long runs of MCMC (when feasible) & VB

- WASP/PIE is much faster than MCMC & highly accurate

- Carefully designed VB implementations often do very well
Results

- We have implemented for a rich variety of data & models
- Logistic & linear random effects models, mixture models, matrix & tensor factorizations, Gaussian process regression
Results

- We have implemented for a rich variety of data & models
- Logistic & linear random effects models, mixture models, matrix & tensor factorizations, Gaussian process regression
- Nonparametric models, dependence, hierarchical models, etc.
Results

- We have implemented for rich variety of data & models
- Logistic & linear random effects models, mixture models, matrix & tensor factorizations, Gaussian process regression
- Nonparametric models, dependence, hierarchical models, etc.
- We compare to long runs of MCMC (when feasible) & VB
Results

- We have implemented for rich variety of data & models
- Logistic & linear random effects models, mixture models, matrix & tensor factorizations, Gaussian process regression
- Nonparametric models, dependence, hierarchical models, etc.
- We compare to long runs of MCMC (when feasible) & VB
- WASP/PIE is much faster than MCMC & highly accurate
Results

- We have implemented for a rich variety of data & models
- Logistic & linear random effects models, mixture models, matrix & tensor factorizations, Gaussian process regression
- Nonparametric models, dependence, hierarchical models, etc.
- We compare to long runs of MCMC (when feasible) & VB
- WASP/PIE is much faster than MCMC & highly accurate
- Carefully designed VB implementations often do very well
Outline

Motivation & background

EP-MCMC

aMCMC

Designer MCMC

Generalized Bayes
Different way to speed up MCMC - replace expensive transition kernels with approximations
Different way to speed up MCMC - replace expensive transition kernels with approximations

For example, approximate a conditional distribution in Gibbs sampler with a Gaussian or using a subsample of data
Different way to speed up MCMC - replace expensive transition kernels with approximations

For example, approximate a conditional distribution in Gibbs sampler with a Gaussian or using a subsample of data

Can potentially vastly speed up MCMC sampling in high-dimensional settings
Different way to speed up MCMC - replace expensive transition kernels with approximations

For example, approximate a conditional distribution in Gibbs sampler with a Gaussian or using a subsample of data

Can potentially vastly speed up MCMC sampling in high-dimensional settings

Original MCMC sampler converges to a stationary distribution corresponding to the exact posterior
Different way to speed up MCMC - replace expensive transition kernels with approximations

For example, approximate a conditional distribution in Gibbs sampler with a Gaussian or using a subsample of data

Can potentially vastly speed up MCMC sampling in high-dimensional settings

Original MCMC sampler converges to a stationary distribution corresponding to the exact posterior

Not clear what happens when we start substituting in approximations - may diverge etc
aMCMC Overview

- aMCMC is used routinely in an essentially *ad hoc* manner
aMCMC Overview

- aMCMC is used routinely in an essentially *ad hoc* manner
- Our goal: obtain theory guarantees & use these to target design of algorithms
aMCMC Overview

- aMCMC is used routinely in an essentially *ad hoc* manner
- Our goal: obtain theory guarantees & use these to target design of algorithms
- Define ‘exact’ MCMC algorithm, which is computationally *intractable* but has good mixing
aMCMC Overview

- aMCMC is used routinely in an essentially *ad hoc* manner
- Our goal: obtain theory guarantees & use these to target design of algorithms
- Define ‘exact’ MCMC algorithm, which is computationally intractable but has good mixing
- ‘exact’ chain converges to stationary distribution corresponding to exact posterior
aMCMC Overview

- aMCMC is used routinely in an essentially *ad hoc* manner
- Our goal: obtain theory guarantees & use these to target design of algorithms
- Define ‘exact’ MCMC algorithm, which is computationally intractable but has good mixing
- ‘exact’ chain converges to stationary distribution corresponding to exact posterior
- Approximate kernel in exact chain with more computationally tractable alternative
aMCMC Overview

❖ aMCMC is used routinely in an essentially *ad hoc* manner
❖ Our goal: obtain theory guarantees & use these to target design of algorithms
❖ Define ‘exact’ MCMC algorithm, which is computationally intractable but has good mixing
❖ ‘exact’ chain converges to stationary distribution corresponding to exact posterior
❖ Approximate kernel in exact chain with more computationally tractable alternative
❖ ‘Comp-minimax’ = optimal approx level conditional on computational time
Sketch of theory

Define \(s_\epsilon = \tau_1(\mathcal{P}) / \tau_1(\mathcal{P}_\epsilon) \) = computational speed-up, \(\tau_1(\mathcal{P}) \) = time for one step with transition kernel \(\mathcal{P} \)
Define $s_\epsilon = \tau_1(\mathcal{P}) / \tau_1(\mathcal{P}_\epsilon) = \textit{computational speed-up}$, $\tau_1(\mathcal{P}) = \text{time for one step with transition kernel } \mathcal{P}$

Interest: optimizing computational time-accuracy tradeoff for estimators of $\Pi f = \int_\Theta f(\theta) \Pi(d\theta|x)$
Define $s_\epsilon = \tau_1(\mathcal{P}) / \tau_1(\mathcal{P}_\epsilon) = \textit{computational speed-up}$, $\tau_1(\mathcal{P}) =$ time for one step with transition kernel \mathcal{P}

Interest: optimizing computational time-accuracy tradeoff for estimators of $\pi f = \int_\Theta f(\theta) \pi(\theta | x)$

We provide \textit{tight, finite sample} bounds on L_2 error
Sketch of theory

Define $s_{\epsilon} = \tau_1(\mathcal{P}) / \tau_1(\mathcal{P}_\epsilon) = \text{computational speed-up}$, $\tau_1(\mathcal{P}) = \text{time for one step with transition kernel } \mathcal{P}$

Interest: optimizing computational time-accuracy tradeoff for estimators of $\Pi f = \int_\Theta f(\theta)\Pi(d\theta|x)$

We provide **tight, finite sample** bounds on L_2 error

aMCMC estimators win for low computational budgets but have asymptotic bias
Sketch of theory

Define $s_\epsilon = \tau_1(\mathcal{P}) / \tau_1(\mathcal{P}_\epsilon) = \text{computational speed-up}$, $\tau_1(\mathcal{P}) =$ time for one step with transition kernel \mathcal{P}

Interest: optimizing computational time-accuracy tradeoff for estimators of $\Pi f = \int_\Theta f(\theta) \Pi(d\theta|x)$

We provide tight, finite sample bounds on L_2 error

aMCMC estimators win for low computational budgets but have asymptotic bias

Often larger approximation error \rightarrow larger s_ϵ & rougher approximations are better when speed super important
Ex 1: Approximations using subsets

Replace the full data likelihood with

\[L_\varepsilon(x \mid \theta) = \left(\prod_{i \in V} L(x_i \mid \theta) \right)^{N/|V|}, \]

for randomly chosen subset \(V \subset \{1, \ldots, n\} \).
Ex 1: Approximations using subsets

Replace the full data likelihood with

\[
L_ε(x | θ) = \left(\prod_{i ∈ V} L(x_i | θ) \right)^{N/|V|},
\]

for randomly chosen subset \(V ⊂ \{1, \ldots, n\} \).

Applied to Pólya-Gamma data augmentation for logistic regression
Replace the full data likelihood with

$$L_{\epsilon}(x \mid \theta) = \left(\prod_{i \in V} L(x_i \mid \theta) \right)^{N/|V|},$$

for randomly chosen subset $V \subset \{1, \ldots, n\}$.

Applied to Pólya-Gamma data augmentation for logistic regression

Different V at each iteration – trivial modification to Gibbs
Replace the full data likelihood with

\[L_\epsilon(x \mid \theta) = \left(\prod_{i \in V} L(x_i \mid \theta) \right)^{N/|V|}, \]

for randomly chosen subset \(V \subset \{1, \ldots, n\} \).

Applied to Pólya-Gamma data augmentation for logistic regression

Different \(V \) at each iteration – trivial modification to Gibbs

Assumptions hold with high probability for subsets > minimal size (wrt distribution of subsets, data & kernel).
Application to SUSY dataset

$n = 5,000,000$ (0.5 million test), binary outcome & 18 continuous covariates
Application to SUSY dataset

- $n = 5,000,000$ (0.5 million test), binary outcome & 18 continuous covariates
- Considered subsets sizes ranging from $|V| = 1,000$ to 4,500,000

Rate at which loss $\to 0$ with ϵ heavily dependent on loss

For small computational budget & focus on posterior mean estimation, small subsets preferred

As budget increases & loss focused more on tails (e.g., for interval estimation), optimal $|V|$ increases
Application to SUSY dataset

- \(n = 5,000,000 \) (0.5 million test), binary outcome & 18 continuous covariates
- Considered subsets sizes ranging from \(|V| = 1,000\) to 4,500,000
- Considered different losses as function of \(|V|\)
Application to SUSY dataset

- $n = 5,000,000$ (0.5 million test), binary outcome & 18 continuous covariates
- Considered subsets sizes ranging from $|V| = 1,000$ to $4,500,000$
- Considered different losses as function of $|V|$
- Rate at which loss $\to 0$ with ϵ heavily dependent on loss
Application to SUSY dataset

- $n = 5,000,000$ (0.5 million test), binary outcome & 18 continuous covariates
- Considered subsets sizes ranging from $|V| = 1,000$ to $4,500,000$
- Considered different losses as function of $|V|$
- Rate at which loss $\to 0$ with ϵ heavily dependent on loss
- For small computational budget & focus on posterior mean estimation, small subsets preferred
Application to SUSY dataset

- $n = 5,000,000$ (0.5 million test), binary outcome & 18 continuous covariates
- Considered subsets sizes ranging from $|V| = 1,000$ to $4,500,000$
- Considered different losses as function of $|V|$
- Rate at which loss $\to 0$ with ϵ heavily dependent on loss
- For small computational budget & focus on posterior mean estimation, small subsets preferred
- As budget increases & loss focused more on tails (e.g., for interval estimation), optimal $|V|$ increases
Application 2: Mixture models & tensor factorizations

We also considered a nonparametric Bayes model:

\[\text{pr}(y_{i1} = c_1, \ldots, y_{ip} = c_p) = \sum_{h=1}^{k} \lambda_h \prod_{j=1}^{p} \psi_{hc_j}^{(j)}, \]

a very useful model for multivariate categorical data
We also considered a nonparametric Bayes model:

\[
\Pr(y_{i1} = c_1, \ldots, y_{ip} = c_p) = \sum_{h=1}^{k} \lambda_h \prod_{j=1}^{p} \psi_{hcj}^{(j)},
\]

a very useful model for multivariate categorical data

Dunson & Xing (2009) - a data augmentation Gibbs sampler
We also considered a nonparametric Bayes model:

\[
\text{pr}(y_{i1} = c_1, \ldots, y_{ip} = c_p) = \sum_{h=1}^{k} \lambda_h \prod_{j=1}^{p} \psi_{hcj}^{(j)},
\]

a very useful model for multivariate categorical data

- Dunson & Xing (2009) - a data augmentation Gibbs sampler
- Sampling latent classes computationally prohibitive for huge \(n \)
We also considered a nonparametric Bayes model:

\[\text{pr}(y_{i1} = c_1, \ldots, y_{ip} = c_p) = \sum_{h=1}^{k} \lambda_h \prod_{j=1}^{p} \psi_{hcj}^{(j)} , \]

a very useful model for multivariate categorical data

- Dunson & Xing (2009) - a data augmentation Gibbs sampler
- Sampling latent classes computationally prohibitive for huge \(n \)
- Use adaptive Gaussian approximation - avoid sampling individual latent classes
We also considered a nonparametric Bayes model:

\[
\begin{align*}
\Pr(y_{i1} = c_1, \ldots, y_{ip} = c_p) &= \sum_{h=1}^{k} \lambda_h \prod_{j=1}^{p} \psi_{hc_j}^{(j)},
\end{align*}
\]

a very useful model for multivariate categorical data

Dunson & Xing (2009) - a data augmentation Gibbs sampler

Sampling latent classes computationally prohibitive for huge \(n \)

Use adaptive Gaussian approximation - avoid sampling individual latent classes

We have shown Assumptions 1-2, Assumption 2 result more general than this setting
We also considered a nonparametric Bayes model:

\[
\text{pr}(y_{i1} = c_1, \ldots, y_{ip} = c_p) = \sum_{h=1}^{k} \lambda_h \prod_{j=1}^{p} \psi^{(j)}_{hcj},
\]

a very useful model for multivariate categorical data.

- Dunson & Xing (2009) - a data augmentation Gibbs sampler
- Sampling latent classes computationally prohibitive for huge \(n \)
- Use adaptive Gaussian approximation - avoid sampling individual latent classes
- We have shown Assumptions 1-2, Assumption 2 result more general than this setting
- Improved computation performance for large \(n \)
Application 3: Low rank approximation to GP

Gaussian process regression, $y_i = f(x_i) + \eta_i, \eta_i \sim N(0, \sigma^2)$
Application 3: Low rank approximation to GP

- Gaussian process regression, $y_i = f(x_i) + \eta_i$, $\eta_i \sim N(0, \sigma^2)$
- $f \sim GP$ prior with covariance $\tau^2 \exp(-\phi||x_1 - x_2||^2)$
Application 3: Low rank approximation to GP

- Gaussian process regression, $y_i = f(x_i) + \eta_i$, $\eta_i \sim N(0, \sigma^2)$
- $f \sim GP$ prior with covariance $\tau^2 \exp(-\phi ||x_1 - x_2||^2)$
- Discrete-uniform on ϕ & gamma priors on τ^{-2}, σ^{-2}

We show Assumption 1 holds under mild regularity conditions on “truth”, Assumption 2 holds for partial rank-r eigen approximation to Σ. Less accurate approximations clearly superior in practice for small computational budget.
Application 3: Low rank approximation to GP

Gaussian process regression, $y_i = f(x_i) + \eta_i$, $\eta_i \sim N(0, \sigma^2)$

$f \sim GP$ prior with covariance $\tau^2 \exp(-\phi||x_1 - x_2||^2)$

Discrete-uniform on ϕ & gamma priors on τ^{-2}, σ^{-2}

Marginal MCMC sampler updates $\phi, \tau^{-2}, \sigma^{-2}$
Application 3: Low rank approximation to GP

Gaussian process regression, \(y_i = f(x_i) + \eta_i, \eta_i \sim N(0, \sigma^2) \)

\(f \sim GP \) prior with covariance \(\tau^2 \exp(-\phi||x_1 - x_2||^2) \)

Discrete-uniform on \(\phi \) & gamma priors on \(\tau^{-2}, \sigma^{-2} \)

Marginal MCMC sampler updates \(\phi, \tau^{-2}, \sigma^{-2} \)

We show Assumption 1 holds under mild regularity conditions on “truth”, Assumption 2 holds for partial rank-\(r \) eigen approximation to \(\Sigma \)
Application 3: Low rank approximation to GP

- Gaussian process regression, \(y_i = f(x_i) + \eta_i, \eta_i \sim N(0, \sigma^2) \)
- \(f \sim GP \) prior with covariance \(\tau^2 \exp(-\phi ||x_1 - x_2||^2) \)
- Discrete-uniform on \(\phi \) & gamma priors on \(\tau^{-2}, \sigma^{-2} \)
- Marginal MCMC sampler updates \(\phi, \tau^{-2}, \sigma^{-2} \)
- We show Assumption 1 holds under mild regularity conditions on “truth”, Assumption 2 holds for partial rank-\(r \) eigen approximation to \(\Sigma \)
- Less accurate approximations clearly superior in practice for small computational budget
Outline

Motivation & background

EP-MCMC

aMCMC

Designer MCMC

Generalized Bayes
In designing MCMC for large datasets, we need to be careful & clever about the transition kernel.
In designing MCMC for large datasets, we need to be careful & clever about the transition kernel.

Try to exploit structure in the model to accelerate computation.
In designing MCMC for large datasets, we need to be careful & clever about the transition kernel.

Try to exploit structure in the model to accelerate computation.

Increasing rich literature - relying on (biased) subsampling, new classes of MCMC algorithms, etc.
In designing MCMC for large datasets, we need to be careful & clever about the transition kernel.

Try to exploit structure in the model to accelerate computation.

Increasing rich literature - relying on (biased) subsampling, new classes of MCMC algorithms, etc.

I’ll illustrate briefly with a new class of multiscale MCMC algorithms.
Exploit a multiscale characterization the log-likelihood to choose a truncation approximation
Exploit a multiscale characterization the log-likelihood to choose a truncation approximation

Run two Markov chains in parallel targeting the true & approximate posteriors
Exploit a multiscale characterization the log-likelihood to choose a truncation approximation

Run two Markov chains in parallel targeting the true & approximate posteriors

Algorithm 1: use approximating chain as proposals for true chain
Exploit a multiscale characterization of the log-likelihood to choose a truncation approximation.

Run two Markov chains in parallel targeting the true & approximate posteriors.

Algorithm 1: use approximating chain as proposals for true chain.

Algorithm 2: swap states of two chains (as in parallel tempering).
Exploit a multiscale characterization the log-likelihood to choose a truncation approximation

Run two Markov chains in parallel targeting the true & approximate posteriors

Algorithm 1: use approximating chain as proposals for true chain

Algorithm 2: swap states of two chains (as in parallel tempering)

Given time, I’ll just illustrate briefly with two canonical examples
Selection subsampling for logistic regression

In big data applications, the proportion of 1s is often very badly imbalanced
In big data applications, the proportion of 1s is often very badly imbalanced.

This can lead to horrendous mixing for popular MCMC algorithms (Johndrow et al).
Selection subsampling for logistic regression

In big data applications, the proportion of 1s is often very badly imbalanced.

This can lead to horrendous mixing for popular MCMC algorithms (Johndrow et al).

Scalable algorithms using uniform subsampling (including EP-MCMC) fail - all zeros in subsamples.
In big data applications, the proportion of 1s is often very badly imbalanced

This can lead to horrendous mixing for popular MCMC algorithms (Johndrow et al)

Scalable algorithms using uniform subsampling (including EP-MCMC) fail - all zeros in subsamples

Calculate full data MAP θ_{MAP} & select data in subset to maximize information about full data log-likelihood
Generated data from an imbalanced logistic regression model with $N = 10^5$ & $\theta = (-12, 3, 3)$
Generated data from an imbalanced logistic regression model with $N = 10^5$ & $\theta = (-12, 3, 3)$

Big enough to illustrate the advantages of proposed approach while still being able to run MCMC on full data
Results for logistic regression simulation

Generated data from an imbalanced logistic regression model with \(N = 10^5 \) & \(\theta = (-12, 3, 3) \)

Big enough to illustrate the advantages of proposed approach while still being able to run MCMC on full data

We avoided Polya-Gamma data augmentation due to results in Johndrow et al
Results for logistic regression simulation

- Generated data from an imbalanced logistic regression model with $N = 10^5$ & $\theta = (-12, 3, 3)$
- Big enough to illustrate the advantages of proposed approach while still being able to run MCMC on full data
- We avoided Polya-Gamma data augmentation due to results in Johndrow et al
- Ran MCMC using 1, 5, 10, 50, 100% of the data with $N(0, 100)$ priors
Gaussian process example

\[Y_i = f(X_i) + \epsilon_i, \quad i = 1, \ldots, N, \] with \(f \) given a Gaussian process (GP) prior
Gaussian process example

\[Y_i = f(X_i) + \epsilon_i, \quad i = 1, \ldots, N, \text{ with } f \text{ given a Gaussian process (GP) prior} \]

\[\text{Marginalizing out } f, \text{ obtain } Y | \theta, \sigma^2 \sim N(0, K_\theta + \sigma^2 I) \]
\[Y_i = f(X_i) + \epsilon_i, \quad i = 1, \ldots, N, \text{ with } f \text{ given a Gaussian process (GP) prior} \]

- Marginalizing out \(f \), obtain \(Y|\theta, \sigma^2 \sim N(0, K_\theta + \sigma^2 I) \)

- Can run a Metropolis-Hasting algorithm to update covariance parameters but \(O(N^3) \) per step
Gaussian process example

\[Y_i = f(X_i) + \epsilon_i, \quad i = 1, \ldots, N, \text{ with } f \text{ given a Gaussian process (GP) prior} \]

\[\text{Marginalizing out } f, \text{ obtain } Y|\theta, \sigma^2 \sim N(0, K_\theta + \sigma^2 I) \]

\[\text{Can run a Metropolis-Hasting algorithm to update covariance parameters but } O(N^3) \text{ per step} \]

\[\text{truncated SVD can be used to approximate } K_\theta \text{ & speed this up} \]
Gaussian process example

\[Y_i = f(X_i) + \epsilon_i, \quad i = 1, \ldots, N, \] with \(f \) given a Gaussian process (GP) prior

Marginalizing out \(f \), obtain \(Y|\theta, \sigma^2 \sim N(0, K_\theta + \sigma^2 I) \)

Can run a Metropolis-Hasting algorithm to update covariance parameters but \(O(N^3) \) per step

truncated SVD can be used to approximate \(K_\theta \) & speed this up

To illustrate our approach, we used \(N = 1,000 \) & ran for ranks of 100, 200, \ldots, 1000
Outline

Motivation & background

EP-MCMC

aMCMC

Designer MCMC

Generalized Bayes
Often it is useful to take a step away from an exactly fully Bayes approach.
Often it is useful to take a step away from an exactly fully Bayes approach.

This can improve robustness to model misspecification & scalability simultaneously.
Generalized Bayes

- Often it is useful to take a step away from an exactly fully Bayes approach.
- This can improve robustness to model misspecification & scalability simultaneously.
- We have found modularization particularly useful.
Often it is useful to take a step away from an exactly fully Bayes approach. This can improve robustness to model misspecification & scalability simultaneously. We have found modularization particularly useful. Allow the posterior for certain model components to only be informed by part of the data.
Often it is useful to take a step away from an exactly fully Bayes approach. This can improve robustness to model misspecification & scalability simultaneously. We have found modularization particularly useful. Allow the posterior for certain model components to only be informed by part of the data.

Example 1: Modular Bayes screening (Chen & Dunson)
Often it is useful to take a step away from an exactly fully Bayes approach. This can improve robustness to model misspecification & scalability simultaneously. We have found modularization particularly useful. Allow the posterior for certain model components to only be informed by part of the data.

Example 1: Modular Bayes screening (Chen & Dunson)

Example 2: Bayesian mosaic (Wang & Dunson)
Hybrid high-dimensional density estimation

\[y_i = (y_{i1}, \ldots, y_{ip})^T \sim f \] with \(p \) large & \(f \) an unknown density
Hybrid high-dimensional density estimation

\[y_i = (y_{i1}, \ldots, y_{ip})^T \sim f \text{ with } p \text{ large & } f \text{ an unknown density} \]

- Potentially use Dirichlet process mixtures of factor models
Hybrid high-dimensional density estimation

\[y_i = (y_{i1}, \ldots, y_{ip})^T \sim f \] with \(p \) large & \(f \) an unknown density

- Potentially use Dirichlet process mixtures of factor models
- Approach doesn’t scale well at all with \(p \)
Hybrid high-dimensional density estimation

\[y_i = (y_{i1}, \ldots, y_{ip})^T \sim f \text{ with } p \text{ large & } f \text{ an unknown density} \]

- Potentially use Dirichlet process mixtures of factor models
- Approach doesn’t scale well at all with \(p \)
- Instead use hybrid of Gibbs sampling & fast multiscale SVD
Hybrid high-dimensional density estimation

$y_i = (y_{i1}, \ldots, y_{ip})^T \sim f$ with p large & f an unknown density

- Potentially use Dirichlet process mixtures of factor models
- Approach doesn’t scale well at all with p
- Instead use hybrid of Gibbs sampling & fast multiscale SVD
- Scalable, excellent mixing & empirical/predictive performance
Discussion

No longer true that MCMC is not scalable
Discussion

- No longer true that MCMC is not scalable
- Often the key computational bottlenecks similar or the same as optimization algorithms
Discussion

- No longer true that MCMC is not scalable
- Often the key computational bottlenecks similar or the same as optimization algorithms
- Vastly smaller community working on innovating MCMC and related sampling algorithms
No longer true that MCMC is not scalable

Often the key computational bottlenecks similar or the same as optimization algorithms

Vastly smaller community working on innovating MCMC and related sampling algorithms

Theory is hard and more work on scaling limits and optimality is needed
Discussion

- No longer true that MCMC is not scalable
- Often the key computational bottlenecks similar or the same as optimization algorithms
- Vastly smaller community working on innovating MCMC and related sampling algorithms
- Theory is hard and more work on scaling limits and optimality is needed
- Certainly MCMC cannot be ruled out & we can can/have applied sampling in huge data problems
Some references