Efficient manifold and subspace approximations with spherelets

Didong Li

Departments of Mathematics
Duke University

didongli@math.duke.edu

July 6, 2018

Joint work with Minerva Mukhopadhyay and David Dunson
Overview

1. Background and Motivation

2. Low dimensional geometric object: spherelets
 - New Dictionary
 - Main Theorem
 - Spherical principal component analysis (SPCA)
 - Convergence Analysis
 - Spherelets Algorithm & Examples

3. Bayesian approach: mixture of spherelets
(Of course) very common to collect high-dimensional data.
(Of course) very common to collect high-dimensional data

- Let $p = \text{ambient dimension of data}$ & $n = \text{sample size}$
(Of course) very common to collect high-dimensional data

Let $p = \text{ambient dimension of data} \& n = \text{sample size}$

If $p \gg n$, we need to exploit lower-dimensional structure in the data
(Of course) very common to collect high-dimensional data

Let \(p = \) ambient dimension of data & \(n = \) sample size

If \(p \gg n \), we need to exploit lower-dimensional structure in the data

Common to suppose data do not live everywhere in \(p \)-dimensional space
(Of course) very common to collect high-dimensional data

Let $p = \text{ambient dimension of data} \& n = \text{sample size}$

If $p \gg n$, we need to exploit lower-dimensional structure in the data

Common to suppose data do not live everywhere in p-dimensional space

May be concentrated near a subspace \mathcal{M} having dimension d with $d \ll p$
Suppose $X_i = (X_{i1}, \ldots, X_{ip})^T \in \mathcal{M} \subset \mathbb{R}^p$, X_i are i.i.d. samples from density ρ, where $\text{supp}(\rho) = \mathcal{M}$, $\text{dim}(\mathcal{M}) = d \ll p$.
Suppose \(X_i = (X_{i1}, \ldots, X_{ip})^T \in \mathcal{M} \subset \mathbb{R}^p \), \(X_i \) are i.i.d. samples from density \(\rho \), where \(\text{supp}(\rho) = \mathcal{M}, \dim(\mathcal{M}) = d \ll p \)

\(\mathcal{M} = \text{unknown} \) support having intrinsic dimension \(d \)
Suppose $X_i = (X_{i1}, \ldots, X_{ip})^T \in \mathcal{M} \subset \mathbb{R}^p$, X_i are i.i.d. samples from density ρ, where $\text{supp}(\rho) = \mathcal{M}$, $\dim(\mathcal{M}) = d \ll p$

$\mathcal{M} = \text{unknown}$ support having intrinsic dimension d

Hence, we have a doubly nasty problem
Suppose $X_i = (X_{i1}, \ldots, X_{ip})^T \in \mathcal{M} \subset \mathbb{R}^p$, X_i are i.i.d. samples from density ρ, where $\text{supp}(\rho) = \mathcal{M}$, $\dim(\mathcal{M}) = d \ll p$

- $\mathcal{M} = \text{unknown}$ support having intrinsic dimension d
- Hence, we have a doubly nasty problem
- We don’t know the density of the data (density estimation in high-dimensions)
Suppose $X_i = (X_{i1}, \ldots, X_{ip})^T \in \mathcal{M} \subset \mathbb{R}^p$, X_i are i.i.d. samples from density ρ, where $\text{supp}(\rho) = \mathcal{M}$, $\text{dim}(\mathcal{M}) = d \ll p$

- $\mathcal{M} = \text{unknown}$ support having intrinsic dimension d
- Hence, we have a doubly nasty problem
- We don’t know the density of the data (*density estimation in high-dimensions*)
- We also don’t know the support of this density (*subspace learning*)
Motivation

Suppose $X_i = (X_{i1}, \ldots, X_{ip})^T \in \mathcal{M} \subset \mathbb{R}^p$, X_i are i.i.d. samples from density ρ, where $\text{supp}(\rho) = \mathcal{M}$, $\text{dim}(\mathcal{M}) = d \ll p$

$\mathcal{M} = \text{unknown}$ support having intrinsic dimension d

Hence, we have a doubly nasty problem

We don’t know the density of the data (density estimation in high-dimensions)

We also don’t know the support of this density (subspace learning)

Many relevant algorithms
Common Approach

- First estimate coordinates on a low-dimensional subspace $X_i \rightarrow \eta_i$
Common Approach

- First estimate coordinates on a low-dimensional subspace $X_i \rightarrow \eta_i$
- Often PCA is applied to estimate η_i
Common Approach

- First estimate coordinates on a low-dimensional subspace $X_i \rightarrow \eta_i$
- Often PCA is applied to estimate η_i
- Then in a second stage one can estimate the density of η_i
Common Approach

First estimate coordinates on a low-dimensional subspace $X_i \rightarrow \eta_i$

Often PCA is applied to estimate η_i

Then in a second stage one can estimate the density of η_i

The first stage is commonly referred to as \textit{manifold learning}
Common Approach

- First estimate coordinates on a low-dimensional subspace $X_i \rightarrow \eta_i$
- Often PCA is applied to estimate η_i
- Then in a second stage one can estimate the density of η_i
- The first stage is commonly referred to as *manifold learning*
- Assume that the subspace is either a smooth manifold or a collection of such manifolds
Machine learning algorithms usually require some sort of dictionary to use in approximating the subspace \mathcal{M}. If \mathcal{M} is linear, then methods such as PCA, SVD, ICA & factor analysis can be used. Of course, linear \mathcal{M} is much too restrictive in many applications, as \mathcal{M} may have substantial curvature, potentially even with the curvature varying over \mathcal{M}. How to approximate arbitrary non-linear subspaces?
Machine learning algorithms usually require some sort of \textit{dictionary} to use in approximating the subspace \mathcal{M}.

If \mathcal{M} is linear, then methods such as PCA, SVD, ICA & factor analysis can be used.
Machine learning algorithms usually require some sort of *dictionary* to use in approximating the subspace \mathcal{M}.

If \mathcal{M} is linear, then methods such as PCA, SVD, ICA & factor analysis can be used.

Of course linear \mathcal{M} is much too restrictive in many applications.
Machine learning algorithms usually require some sort of dictionary to use in approximating the subspace \mathcal{M}.

If \mathcal{M} is linear, then methods such as PCA, SVD, ICA & factor analysis can be used.

Of course linear \mathcal{M} is much too restrictive in many applications.

\mathcal{M} may have substantial curvature, potentially even with the curvature varying over \mathcal{M}.
Machine learning algorithms usually require some sort of dictionary to use in approximating the subspace \mathcal{M}.

If \mathcal{M} is linear, then methods such as PCA, SVD, ICA & factor analysis can be used.

Of course linear \mathcal{M} is much too restrictive in many applications.

\mathcal{M} may have substantial curvature, potentially even with the curvature varying over \mathcal{M}.

How to approximate arbitrary non-linear subspaces?
It is extremely common in this setting to use locally linear approaches.
It is extremely common in this setting to use locally linear approaches.

If \mathcal{M} is a Riemannian manifold, can be motivated by thinking of a collection of tangent plane approximations.
It is extremely common in this setting to use locally linear approaches.

If \mathcal{M} is a Riemannian manifold, can be motivated by thinking of a collection of tangent plane approximations.

Locally linear embeddings (LLE), Diffusion Map, EigenMap, tSNE, etc.
Locally Linear Approaches

- It is extremely common in this setting to use locally linear approaches.
- If \mathcal{M} is a Riemannian manifold, can be motivated by thinking of a collection of tangent plane approximations.
- Locally linear embeddings (LLE), Diffusion Map, EigenMap, tSNE, etc.
- Local PCA, including Multiscale analysis of plane arrangements and Geometric Multi-Resolution Analysis (GMRA).
Locally Linear Approaches

- It is extremely common in this setting to use locally linear approaches.
- If \mathcal{M} is a Riemannian manifold, can be motivated by thinking of a collection of tangent plane approximations.
- Locally linear embeddings (LLE), Diffusion Map, EigenMap, tSNE, etc.
- Local PCA, including Multiscale analysis of plane arrangements and Geometric Multi-Resolution Analysis (GMRA).
Pros and Cons of Current Approaches

Pros

- Use simple linear pieces so conceptually easy
- Can potentially have good computational efficiency

Cons

- Tend to find too many pieces when the manifold has large curvature
Pros and Cons of Current Approaches

Pros
- Use simple linear pieces so conceptually easy
- Can potentially have good computational efficiency

Cons
- Tend to find too many pieces when the manifold has large curvature
Pros and Cons of Current Approaches

Pros
- Use simple linear pieces so conceptually easy
- Can potentially have good computational efficiency

Cons
- Tend to find too many pieces when the manifold has large curvature
New dictionary

- First order \rightarrow second order: $x^\top Hx + f^\top x + c = 0$.

Number of unknown parameters = $p(p+1)/2 + p + 1 = O(p^2)$.

Trades one problem (too many pieces) for another (too many parameters).

An alternative is osculating circles/spheres.
New dictionary

- First order \rightarrow second order: $x^\top Hx + f^\top x + c = 0$.
- Number of unknown parameters $= \frac{p(p+1)}{2} + p + 1 = O(p^2)$.

Trades one problem (too many pieces) for another (too many parameters). An alternative is osculating circles/spheres.
New dictionary

- First order \rightarrow second order: $x^\top Hx + f^\top x + c = 0$.
- Number of unknown parameters $= \frac{p(p+1)}{2} + p + 1 = O(p^2)$.
- Trades one problem (*too many pieces*) for another (*too many parameters*)
New dictionary

- First order \rightarrow second order: $x^\top Hx + f^\top x + c = 0$.
- Number of unknown parameters $= \frac{p(p+1)}{2} + p + 1 = O(p^2)$.
- Trades one problem (*too many pieces*) for another (*too many parameters*).
- An alternative is osculating circles/spheres.
Using spheres to locally approximate subspaces

Why spheres?

- Compactness
- Hyperplane=sphere with infinite radius (compactification)
- Projection to sphere is easy to compute
- Cell complex structure:
 \[S^d = S^{d-1} \cup e^d_1 \cup e^d_2 \]
Using spheres to locally approximate subspaces

Why spheres?
 - Compactness

Hyperplane = sphere with infinite radius (compactification)

Projection to sphere is easy to compute

Cell complex structure:

\[S^d = S^{d-1} \cup e^d_1 \cup e^d_2 \]
Using spheres to locally approximate subspaces

Why spheres?
- Compactness
- Hyperplane = sphere with infinite radius (compactification)
Using spheres to locally approximate subspaces

Why spheres?
- Compactness
- Hyperplane = sphere with infinite radius (compactification)
- Projection to sphere is easy to compute
Using spheres to locally approximate subspaces

Why spheres?

- Compactness
- Hyperplane=sphere with infinite radius (compactification)
- Projection to sphere is easy to compute
- Cell complex structure: $S^d = S^{d-1} \cup e_1^d \cup e_2^d$
Using spheres to locally approximate subspaces

Why spheres?
- Compactness
- Hyperplane=sphere with infinite radius (compactification)
- Projection to sphere is easy to compute
- Cell complex structure: $S^d = S^{d-1} \cup e_1^d \cup e_2^d$
We propose to use pieces of spheres or *spherelets* as a dictionary.
We propose to use pieces of spheres or *spherelets* as a dictionary. Often *many* fewer spheres than planes to obtain the same approximation error.
We propose to use pieces of spheres or *spherelets* as a dictionary.

Often *many* fewer spheres than planes to obtain the same approximation error.

Each sphere has few parameters & they are simple geometric objects that are easy to fit.
We propose to use pieces of spheres or *spherelets* as a dictionary.

Often *many* fewer spheres than planes to obtain the same approximation error.

Each sphere has few parameters & they are simple geometric objects that are easy to fit.

Before considering algorithms for fitting spherelets, we studied their approximation properties.
\mathcal{M} is a compact C^3, d-dimensional orientable manifold embedded in \mathbb{R}^p.

Trivial to extend our results to a collection of such manifolds.

We want to bound \# pieces needed to obtain approximation error ϵ.

$N_H(\epsilon, \mathcal{M}) =$ minimal \# hyperplanes,

$N_S(\epsilon, \mathcal{M}) =$ minimal \# spheres.

$K =$ max curvature,

$T =$ maximum rate of change in curvature,

$V =$ Vol(\mathcal{M}).
Notation and concepts

- \mathcal{M} is a compact C^3, d-dimensional orientable manifold embedded in \mathbb{R}^p
- Trivial to extend our results to a collection of such manifolds
\[M \] is a compact \(C^3 \), \(d \)-dimensional orientable manifold embedded in \(\mathbb{R}^p \).

Trivial to extend our results to a collection of such manifolds.

We want to bound \# pieces needed to obtain approximation error \(\epsilon \)
Notation and concepts

- \mathcal{M} is a compact C^3, d-dimensional orientable manifold embedded in \mathbb{R}^p
- Trivial to extend our results to a collection of such manifolds
- We want to bound # pieces needed to obtain approximation error ϵ
- $N_H(\epsilon, \mathcal{M}) = \text{minimal # hyperplanes}$, $N_S(\epsilon, \mathcal{M}) = \text{minimal # spheres}$
\(\mathcal{M} \) is a compact \(C^3 \), \(d \)-dimensional orientable manifold embedded in \(\mathbb{R}^p \)

Trivial to extend our results to a collection of such manifolds

We want to bound \# pieces needed to obtain approximation error \(\epsilon \)

\(N_H(\epsilon, \mathcal{M}) = \) minimal \# hyperplanes, \(N_S(\epsilon, \mathcal{M}) = \) minimal \# spheres

\(K = \) max curvature, \(T = \) maximum rate of change in curvature, \(V = \text{Vol}(\mathcal{M}) \).
The bound on the hyperplane covering number is

\[N_H(\epsilon, \mathcal{M}) \leq V \left(\frac{2\epsilon}{K} \right)^{-\frac{d}{2}} \]
Main Theorem

Theorem

1. **The bound on the hyperplane covering number is**

 \[N_H(\epsilon, \mathcal{M}) \leq V \left(\frac{2\epsilon}{K} \right)^{-\frac{d}{2}} \]

2. **Let** \(F_\epsilon := \{ p \in \mathcal{M} : |k_1(p) - k_d(p)| \leq \left(\frac{2\epsilon}{K} \right)^{\frac{1}{2}} \} \), **where** \(k_1(p) \) **and** \(k_d(p) \) **are the max & min principal curvature of** \(\mathcal{M} \) **at** \(p \). **Let**

 \[\mathcal{M}_\epsilon := \bigcup_{p \in F_\epsilon} B \left(p, \left(\frac{6\epsilon}{3 + T} \right)^{\frac{1}{3}} \right) \] **and** \(V_\epsilon := \text{Vol}(\mathcal{M}_\epsilon) \), **then**

 \[N_S(\epsilon, \mathcal{M}) \leq V_\epsilon \left(\frac{6\epsilon}{3 + T} \right)^{-\frac{d}{3}} + (V - V_\epsilon) \left(\frac{2\epsilon}{K} \right)^{-\frac{d}{2}} \]
Implications of the Theorem

- Since $\epsilon \approx 0$, $\epsilon^{-d/2}$ is very large showing the *curse of dimensionality*.
Implications of the Theorem

- Since $\epsilon \approx 0$, $\epsilon^{-d/2}$ is very large showing the *curse of dimensionality*
- Even if an oracle could perfectly choose the pieces to best approximate \mathcal{M}, we need *lots* of pieces as d increases for small ϵ
Implications of the Theorem

- Since $\epsilon \approx 0$, $\epsilon^{-d/2}$ is very large showing the *curse of dimensionality*
- Even if an oracle could perfectly choose the pieces to best approximate \mathcal{M}, we need lots of pieces as d increases for small ϵ
- Spherelets can decrease the impact of the curse to $\epsilon^{-d/3}$ IF there aren't too many locations $p \in \mathcal{M}$ having big changes in principal curvature
Implications of the Theorem

- Since $\epsilon \approx 0$, $\epsilon^{-d/2}$ is very large showing the *curse of dimensionality*
- Even if an oracle could perfectly choose the pieces to best approximate \mathcal{M}, we need lots of pieces as d increases for small ϵ
- Spherelets can decrease the impact of the curse to $\epsilon^{-d/3}$ IF
- There aren’t too many locations $p \in \mathcal{M}$ having big changes in principal curvature
Implications of the Theorem

- Since $\epsilon \approx 0$, $\epsilon^{-d/2}$ is very large showing the *curse of dimensionality*.
- Even if an oracle could perfectly choose the pieces to best approximate \mathcal{M}, we need lots of pieces as d increases for small ϵ.
- Spherelets can decrease the impact of the curse to $\epsilon^{-d/3}$ IF
- There aren’t too many locations $p \in \mathcal{M}$ having big changes in principal curvature.
Spherical principal component analysis (SPCA)

Definition

\[X \in \mathbb{R}^{n \times p}, \]

\[
Y_i = \bar{X} + \hat{V} \hat{V}^\top (X_i - \bar{X}),
\]

\[
\hat{V} = (v_1, \cdots, v_{d+1}),
\]

\[
v_i = evec_i \left\{ (X - 1 \bar{X})^\top (X - 1 \bar{X}) \right\},
\]

where \(evec_i \) is the \(i \)th eigenvector of \(S \) in decreasing order.

\[
Z_i = \hat{c} + \hat{r} \|Y_i - \hat{c}\| (Y_i - \hat{c})
\]

is the \(d \)-dimensional spherical component of \(X \), where \(\hat{r} = \frac{1}{n} \sum_{i=1}^{n} \|Y_i - \hat{c}\| \), \(\hat{c} = -\frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^{n} (\bar{Y} - Y_i)(\bar{Y} - Y_i)^\top \right) - \frac{1}{n} \sum_{i=1}^{n} (\|Y_i^\top Y_i\| - \frac{1}{n} \sum_{j=1}^{n} \|Y_j^\top Y_j\|)(\bar{Y} - Y_i). \]

\(d\text{-PSPCA} \) = the projection of \(X \) to the "best" \(d \)-dimensional sphere centered at \(c \) with radius \(r \). Let \((V^\ast, c^\ast, r^\ast)\) denote the values of \((\hat{V}, \hat{c}, \hat{r})\) obtained plugging in exact moments of the population distribution in place of sample values.
Spherical principal component analysis (SPCA)

Definition

\(X \in \mathbb{R}^{n \times p}, \ d \ll p, \)

\[Y_i = \bar{X} + \hat{V} \hat{V}^\top (X_i - \bar{X}), \]

\[\hat{V} = (v_1, \ldots, v_{d+1}), \]

\[v_i = evec_i \{ (X - \bar{X})^\top (X - \bar{X}) \}, \]

where \(evec_i (S) \) is the \(i \)th eigenvector of \(S \) in decreasing order.

\[Z_i = \hat{c} + \hat{r} \| Y_i - \hat{c} \| (Y_i - \hat{c}) \] is the \(d \)-dimensional spherical component of \(X \),

\[\hat{r} = \frac{1}{n} \sum_{i=1}^{n} \| Y_i - \hat{c} \|, \]

\[\hat{c} = -\frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^{n} (\bar{Y} - Y_i)(\bar{Y} - Y_i)^\top \right) - \frac{1}{n} \sum_{i=1}^{n} \left(\| Y_i^\top \| - \frac{1}{n} \sum_{j=1}^{n} \| Y_j^\top \| \right)(\bar{Y} - Y_i). \]

\(d\text{-PSPCA} = \) the projection of \(X \) to the "best" \(d \) dimensional sphere centered at \(c \) with radius \(r \).

Let \((V^*, c^*, r^*)\) denote the values of \((\hat{V}, \hat{c}, \hat{r})\) obtained plugging in exact moments of the population distribution in place of sample values.
Spherical principal component analysis (SPCA)

Definition

\(X \in \mathbb{R}^{n \times p}, \ d \ll p, \ Y_i = \bar{X} + \hat{V} \hat{V}^\top (X_i - \bar{X}), \ \hat{V} = (v_1, \cdots, v_{d+1}),\)

\(v_i = \text{evec}_i \{(X - 1\bar{X}^\top) (X - 1\bar{X}^\top)\}, \) where \(\text{evec}_i(S)\) is the \(i\)th eigenvector of \(S\) in decreasing order.
Spherical principal component analysis (SPCA)

Definition

\[X \in \mathbb{R}^{n \times p}, \; d \ll p, \; Y_i = \bar{X} + \hat{V} \hat{V}^\top (X_i - \bar{X}), \; \hat{V} = (v_1, \ldots, v_{d+1}), \]

\[v_i = \text{evec}_i \{ (X - 1\bar{X}^\top) \hat{V} (X - 1\bar{X}^\top) \}, \]

where \(\text{evec}_i(S) \) is the \(i \)th eigenvector of \(S \) in decreasing order. \(Z_i = \hat{c} + \hat{r} \frac{Y_i - \hat{c}}{\| Y_i - \hat{c} \|} \) is the \(d \)-dimensional spherical component of \(X \),
Spherical principal component analysis (SPCA)

Definition

\[X \in \mathbb{R}^{n \times p}, \ d \ll p, \ Y_i = \bar{X} + \hat{V}\hat{V}^\top (X_i - \bar{X}), \ \hat{V} = (v_1, \ldots, v_{d+1}), \]

\[v_i = \text{evec}_i\{ (X - 1\bar{X}^\top)(X - 1\bar{X}^\top) \}, \] where \(\text{evec}_i(S) \) is the \(i \)th eigenvector of \(S \) in decreasing order.

\[Z_i = \hat{c} + \frac{\hat{r}}{\|Y_i - \hat{c}\|} (Y_i - \hat{c}) \] is the \(d \)-dimensional spherical component of \(X \), where \(\hat{r} = \frac{1}{n} \sum_{i=1}^{n} \|Y_i - \hat{c}\| \),

\[\hat{c} = -\frac{1}{2} \left(\sum_{i=1}^{n} (\bar{Y} - Y_i)(\bar{Y} - Y_i)^\top \right)^{-1} \sum_{i=1}^{n} \left(\|Y_i^\top Y_i\| - \frac{1}{n} \sum_{j=1}^{n} \|Y_j^\top Y_j\| \right) (\bar{Y} - Y_i). \]
Spherical principal component analysis (SPCA)

Definition

\[X \in \mathbb{R}^{n \times p}, \ d \ll p, \ Y_i = \bar{X} + \hat{V} \hat{V}^\top (X_i - \bar{X}), \ \hat{V} = (v_1, \cdots, v_{d+1}), \]

\[v_i = \text{evect}_i\{(X - 1\bar{X}^\top)^\top (X - 1\bar{X}^\top)\}, \text{ where evect}_i(S) \text{ is the } i\text{th eigenvector of } S \text{ in decreasing order.} \]

\[Z_i = \hat{c} + \frac{\hat{r}}{\|Y_i - \hat{c}\|} (Y_i - \hat{c}) \] is the \(d\)-dimensional spherical component of \(X\), where \(\hat{r} = \frac{1}{n} \sum_{i=1}^{n} \|Y_i - \hat{c}\|, \)

\[\hat{c} = -\frac{1}{2} \left(\sum_{i=1}^{n} (\bar{Y} - Y_i)(\bar{Y} - Y_i)^\top \right)^{-1} \sum_{i=1}^{n} \left(\|Y_i^\top Y_i\| - \frac{1}{n} \sum_{j=1}^{n} \|Y_j^\top Y_j\| \right) (\bar{Y} - Y_i). \]

- \(d\)-PSPCA = the projection of \(X\) to the “best” \(d\) dimensional sphere centered at \(c\) with radius \(r\)
Spherical principal component analysis (SPCA)

Definition

\(X \in \mathbb{R}^{n \times p}, \ d \ll p, \ Y_i = \bar{X} + \hat{V} \hat{V}^\top (X_i - \bar{X}), \ \hat{V} = (v_1, \ldots, v_{d+1}), \)

\(v_i = \text{evec}_i\{ (X - 1 \bar{X}^\top)^\top (X - 1 \bar{X}^\top) \}, \) where \(\text{evec}_i(S) \) is the \(i \)th eigenvector of \(S \) in decreasing order. \(Z_i = \hat{c} + \frac{\hat{r}}{\|Y_i - \hat{c}\|} (Y_i - \hat{c}) \) is the \(d \)-dimensional spherical component of \(X \), where \(\hat{r} = \frac{1}{n} \sum_{i=1}^{n} \|Y_i - \hat{c}\|, \)

\[
\hat{c} = -\frac{1}{2} \left(\sum_{i=1}^{n} (\bar{Y} - Y_i)(\bar{Y} - Y_i)^\top \right)^{-1} \sum_{i=1}^{n} \left(\|Y_i^\top Y_i\| - \frac{1}{n} \sum_{j=1}^{n} \|Y_j^\top Y_j\| \right) (\bar{Y} - Y_i).
\]

- **d-PSPCA** = the projection of \(X \) to the “best” \(d \) dimensional sphere centered at \(c \) with radius \(r \)

- Let \((V^*, c^*, r^*)\) denote the values of \((\hat{V}, \hat{c}, \hat{r})\) obtained plugging in exact moments of the population distribution in place of sample values.
SPCA minimizes the loss function

\[
\sum_{i=1}^{n} (X_i^\top X_i + f^\top X_i + b)^2
\]

where \(\hat{f} = -2\hat{c} \) and \(\hat{b} = \|\hat{c}\|^2 - \hat{r}^2 \).
Loss function

- SPCA minimizes the loss function

\[n \sum_{i=1}^{n} (X_i^\top X_i + f^\top X_i + b)^2 \]

where \(\hat{f} = -2\hat{c} \) and \(\hat{b} = \|\hat{c}\|^2 - \hat{r}^2 \).

- PCA minimizes the loss function

\[n \sum_{i=1}^{n} (f^\top X_i + b)^2, \]

where \(\hat{f} \) is the unit normal vector of the best \(d \)-dimensional affine subspace, or the eigenvector of covariance matrix corresponding to the smallest eigenvalue.
SPCA minimizes the loss function

\[
\sum_{i=1}^{n} (X_i^\top X_i + f^\top X_i + b)^2
\]

where \(\hat{f} = -2\hat{c}\) and \(\hat{b} = \|\hat{c}\|^2 - \hat{r}^2\).

PCA minimizes the loss function

\[
\sum_{i=1}^{n} (f^\top X_i + b)^2,
\]

where \(\hat{f}\) is the unit normal vector of the best \(d\)-dimensional affine subspace, or the eigenvector of covariance matrix corresponding to the smallest eigenvalue.
Spherical projection

\[\hat{\text{Proj}}_n(x) := \hat{c} + \frac{\hat{r}}{\|V\hat{V}^T(x - \hat{c})\|} \hat{V}\hat{V}^T(x - \hat{c}) \]

is the spherical projection to \(S_{\hat{V}}(\hat{c}, \hat{r}) \), where \(n \) is the sample size.
Spherical projection

- \(\hat{\text{Proj}}_n(x) := \hat{c} + \frac{\hat{r}}{\|\hat{V}\hat{V}^\top(x - \hat{c})\|}\hat{V}\hat{V}^\top(x - \hat{c}) \) is the spherical projection to \(S_{\hat{V}}(\hat{c}, \hat{r}) \), where \(n \) is the sample size.

- \(\text{Proj}^*(x) := c^* + \frac{r^*}{\|V^*V^*\top(x - c^*)\|} V^*V^\top(x - c^*) \) is the population version.
Spherical projection

\[\hat{\text{Proj}}_n(x) := \hat{c} + \frac{\hat{r}}{\|\hat{V}\hat{V}^\top (x - \hat{c})\|} \hat{V}\hat{V}^\top (x - \hat{c}) \] is the spherical projection to \(S_{\hat{V}}(\hat{c}, \hat{r}) \), where \(n \) is the sample size.

\[\text{Proj}^*(x) := c^* + \frac{r^*}{\|V^*V^{*\top} (x - c^*)\|} V^*V^{*\top} (x - c^*) \] is the population version.

\(\hat{\text{Proj}}_n \) converges to \(\text{Proj}^* \) in probability under some mild conditions.
(A) **Distributional Assumption:** $X = V \Lambda^{1/2} Z$ where $Z = ((z_{i,j}))$ is an $n \times p$ matrix whose elements $z_{i,j}$'s are i.i.d. non-degenerate random variables with $E(z_{i,j}) = 0$, $E(z_{i,j}^2) = 1$ and $E(z_{i,j}^6) < \infty$.
Convergence of empirical SPCA

(A) \textit{Distributional Assumption:} \(X = V \Lambda^{1/2} Z \) where \(Z = ((z_{i,j})) \) is a \(n \times p \) matrix whose elements \(z_{i,j} \)'s are i.i.d. non-degenerate random variables with \(E(z_{i,j}) = 0, \ E(z_{i,j}^2) = 1 \) and \(E(z_{i,j}^6) < \infty \).

(B) \textit{Spike Population Model:} \(\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_p\} \), then \(\exists m > d \) s.t. \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m > \lambda_{m+1} = \ldots = \lambda_p = 1 \).
Convergence of empirical SPCA

(A) **Distributional Assumption:** \(X = V \Lambda^{1/2} Z \) where \(Z = ((z_{i,j})) \) is a \(n \times p \) matrix whose elements \(z_{i,j} \)’s are i.i.d. non-degenerate random variables with \(E(z_{i,j}) = 0, E(z_{i,j}^2) = 1 \) and \(E(z_{i,j}^6) < \infty \).

(B) **Spike Population Model:** \(\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_p\} \), then \(\exists m > d \) s.t. \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m > \lambda_{m+1} = \ldots = \lambda_p = 1 \).

Theorem

Under the assumptions A and B, for any \(x \), we have

\[
\hat{\text{Proj}}_n(x) \overset{p}{\to} \text{Proj}^*(x).
\]
Error bound

Theorem

There exists $\theta > 0$ that depends only on (M, ρ) such that

$$\mathbb{E}_{\rho_U} \| x - \text{Proj}^* (x) \|^2 \leq \theta \alpha^4,$$

where $\alpha = \text{diam}(U) = \sup_{x, y \in U} d(x, y)$ is the diameter of U.
Theorem

There exists $\theta > 0$ that depends only on (M, ρ) such that

$$\mathbb{E}_{\rho_U} \| x - \text{Proj}^*(x) \|_2^2 \leq \theta \alpha^4,$$

where $\alpha = \text{diam}(U) = \sup_{x, y \in U} d(x, y)$ is the diameter of U.

Corollary

Under assumptions A, B, there exists $\theta \in \mathbb{R}$ that depends only on (M, ρ) such that for any x, for any $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}(\| x - \widehat{\text{Proj}}_n(x) \|_2^2 > \theta \alpha^4 + \epsilon) = 0.$$
Theorem

There exists $\theta > 0$ that depends only on (M, ρ) such that

$$\mathbb{E}_{\rho_U} \|x - \text{Proj}^*(x)\|^2 \leq \theta \alpha^4,$$

where $\alpha = \text{diam}(U) = \sup_{x, y \in U} d(x, y)$ is the diameter of U.

Corollary

Under assumptions A, B, there exists $\theta \in \mathbb{R}$ that depends only on (M, ρ) such that for any x, for any $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}(\|x - \widehat{\text{Proj}}_n(x)\|^2 > \theta \alpha^4 + \epsilon) = 0.$$

- In some multi-scale methods, $\alpha = 2^{-j}$ where j is the partition level.
The main theorem suggests that we should see big gains in practical performance.
The main theorem suggests that we should see big gains in practical performance.

Spherelets provide a general dictionary for manifolds and subspaces—Local SPCA vs Local PCA.
The main theorem suggests that we should see big gains in practical performance.

Spherelets provide a general dictionary for manifolds and subspaces—Local SPCA vs Local PCA.

For any (locally) linear algorithm, we can replace PCA by spherical PCA and get the spherical version—denoising & visualization.
Analyzing data using spherelets

- The main theorem suggests that we should see big gains in practical performance
- Spherelets provide a general dictionary for manifolds and subspaces—Local SPCA vs Local PCA
- For any (locally) linear algorithm, we can replace PCA by spherical PCA and get the spherical version—denoising & visualization
- Given new (test) data, we don’t need to retrain the spherelets—allow us to use CV to choose tuning parameters
Analyzing data using spherelets

- The main theorem suggests that we should see big gains in practical performance.
- Spherelets provide a general dictionary for manifolds and subspaces—Local SPCA vs Local PCA.
- For any (locally) linear algorithm, we can replace PCA by spherical PCA and get the spherical version—denoising & visualization.
- Given new (test) data, we don’t need to retrain the spherelets—allow us to use CV to choose tuning parameters.
- We also develop a mixtures of spherelets model for probabilistic inference (Nonparametric Bayes).
Local (S)PCA

Construct a partition \(\{C_k\}_{k=1}^{K} \) where \(\bigcup_{k=1}^{K} C_k = \mathbb{R}^p \)

Perform local (S)PCA on each \(C_k \)

Many partitioning algorithms: cover tree, METIS, kNN, etc.
Local (S)PCA

- Construct a partition \(\{ C_k \}_{k=1}^{K} \) where \(\bigcup_{k=1}^{K} C_k = \mathbb{R}^p \)
- Perform local (S)PCA on each \(C_k \)
Local (S)PCA

- Construct a partition \(\{ C_k \}_{k=1}^{K} \) where \(\bigcup_{k=1}^{K} C_k = \mathbb{R}^p \)
- Perform local (S)PCA on each \(C_k \)
- \(\mathcal{M} \) could be approximated by its projection onto the family of linear subspaces (spherelets) obtained by local (S)PCA
Local (S)PCA

- Construct a partition \(\{C_k\}_{k=1}^{K} \) where \(\bigcup_{k=1}^{K} C_k = \mathbb{R}^p \)
- Perform local (S)PCA on each \(C_k \)
- \(\mathcal{M} \) could be approximated by its projection onto the family of linear subspaces (spherelets) obtained by local (S)PCA
- Many partitioning algorithms: cover tree, METIS, kNN, etc
Local (S)PCA

- Construct a partition \(\{C_k\}_{k=1}^K \) where \(\bigcup_{k=1}^K C_k = \mathbb{R}^p \)
- Perform local (S)PCA on each \(C_k \)
- \(\mathcal{M} \) could be approximated by its projection onto the family of linear subspaces (spherelets) obtained by local (S)PCA
- Many partitioning algorithms: cover tree, METIS, kNN, etc
Some real data apps (‘datasets’ package in R) \[d = 1\]

a. **Iris data**: measurements of sepal length & width + petal length & width, for 50 flowers from each of 3 species of iris.
Some real data apps (‘datasets’ package in R) $[d = 1]$

a. **Iris data**: measurements of sepal length & width + petal length & width, for 50 flowers from each of 3 species of iris.

b. **EuStockMarkets data**: daily closing prices of major European stock indices: Germany DAX (Ibis), Switzerland SMI, France CAC & UK FTSE.
Some real data apps (‘datasets’ package in R) \([d = 1]\)

a. **Iris data**: measurements of sepal length & width + petal length & width, for 50 flowers from each of 3 species of iris.

b. **EuStockMarkets data**: daily closing prices of major European stock indices: Germany DAX (Ibis), Switzerland SMI, France CAC & UK FTSE.
c. **Seals data**: vector field of seal movement from Brillinger et al., 2004 (‘ggplot2’ R package).
c. **Seals data**: vector field of seal movement from Brillinger et al., 2004 ('ggplot2' R package).

d. **Banknote authentication data**: images from genuine & forged banknote-like specimens (UCL ML repository)
c. **Seals data**: vector field of seal movement from Brillinger et al., 2004 (‘ggplot2’ R package).

d. **Banknote authentication data**: images from genuine & forged banknote-like specimens (*UCL ML repository*)
Yet another app (‘datasets’ R package) \([d = 1]\)

e. **Quakes data**: locations of 1000 seismic events of \(MB > 4.0\) occurring in a cube near Fiji since 1964.
e. **Quakes data**: locations of 1000 seismic events of $MB > 4.0$ occurring in a cube near Fiji since 1964.

All datasets are standardized. In each case, we randomly select 1/2 samples as training & remaining as test.
Iris data, d=1: measurements of sepal length & width + petal length & width, for 50 flowers from each of 3 species of iris.
Iris data, $d=1$: measurements of sepal length & width + petal length & width, for 50 flowers from each of 3 species of iris.
Denoising

Manifold Blurring Mean Shift (MBMS) vs SMBMS
We can also take a likelihood-based approach.
We can also take a likelihood-based approach

Mixure of spherelets model
- We can also take a likelihood-based approach
- *Mixture of spherelets* model
- ith data point is generated from the hth sphere with probability π_h
We can also take a likelihood-based approach

Mixture of spherelets model

ith data point is generated from the hth sphere with probability π_h

Data in component h drawn from location-scale mixture of von Mises-Fisher distributions on sphere h
Nonparametric subspace & density estimation

- We can also take a likelihood-based approach
- *Mixture of spherelets* model
- *i*th data point is generated from the *h*th sphere with probability π_h
- Data in component *h* drawn from location-scale mixture of von Mises-Fisher distributions on sphere *h*
- Gaussian noise added to allow data to not fall exactly on a particular sphere
Let \(\{x_i\}_{i=1}^n \) be the observations with

\[x_i = y_i + \epsilon_i, \]

where \(y_i \) is exactly on some sphere & \(\epsilon_i \sim N(0, \sigma^2 I_p) \).
Let \(\{x_i\}_{i=1}^n \) be the observations with

\[
x_i = y_i + \epsilon_i,
\]

where \(y_i \) is exactly on some sphere & \(\epsilon_i \sim N(0, \sigma^2 I_p) \).

\[
f(y_i | \Pi, \Theta) = \sum_{k=1}^{K} \pi_k f(y_i | \Theta_k), \text{ with } \Pi = (\pi_1, \cdots, \pi_K),
\]

\[
f(y | \Theta_k) = \text{density on } k\text{th sphere}, \Theta_k = (\Lambda_k, V_k, c_k, r_k, M_k, T_k).
\]
Mixture of spherelets : Model

Let \(\{x_i\}_{i=1}^n \) be the observations with

\[
x_i = y_i + \epsilon_i,
\]

where \(y_i \) is exactly on some sphere & \(\epsilon_i \sim N(0, \sigma^2 I_p) \).

\[
f(y_i|\Pi, \Theta) = \sum_{k=1}^K \pi_k f(y_i|\Theta_k), \text{ with } \Pi = (\pi_1, \ldots, \pi_K),
\]

\[
f(y|\Theta_k) = \text{density on } k\text{th sphere}, \Theta_k = (\Lambda_k, V_k, c_k, r_k, M_k, T_k).
\]

\[
f \left(\frac{V_k V'(y_i - c_k)}{r_k} \bigg| M_k, T_k, \Lambda_k \right) = \sum_{I_k=1}^L \lambda_{I_k} f_{vMF} \left(\frac{y_i - c_k}{r_k} \bigg| \mu_{I_k}, \tau_{I_k} \right),
\]

where \(f_{vMF}(\cdot|\mu, \tau) = \text{Von-Mises Fisher density} \), and

\(\Lambda_k = (\lambda_{I_1}, \lambda_{I_2}, \ldots, \lambda_{I_k}). \)
Mixture of spherelets: Priors

The priors of different parameters are as follows:

a. $\Pi = (\pi_1, \pi_2, \cdots, \pi_K) \sim \text{Dirichlet}(1/K, \ldots, 1/K)$.

b. $\Lambda_k = (\lambda_{l1}, \cdots, \lambda_{lk}) \sim \text{Dirichlet}(1/L, \ldots, 1/L)$.

c. $c_k \sim \mathcal{N}(\hat{c}_k, \sigma_1^2 I_p)$, $r_k \sim \text{InverseGamma}(a_r, b_r)$, where a_r, b_r and σ_1 are hyper-parameters, \hat{c}_k is the empirical estimate of c_k.

d. $\mu_{lk} \sim \text{vMF}(\left(1/\sqrt{d}, \ldots, 1/\sqrt{d}\right), \kappa)$, and $\tau_{lk} \sim \text{Gamma}(a_\tau, b_\tau)$.

e. $\sigma_2 \sim \text{Inverse-Gamma}(a_\sigma, b_\sigma)$.

f. The matrix V_k is the empirical Bayes estimate.
The priors of different parameters are as follows:

- **a.** $\Pi = (\pi_1, \pi_2, \cdots, \pi_K) \sim \text{Dirichlet}(1/K, \ldots, 1/K)$.

- **b.** $\Lambda_k = (\lambda_{l_1}, \cdots, \lambda_{l_k}) \sim \text{Dirichlet}(1/L, \ldots, 1/L)$.
The priors of different parameters are as follows:

a. $\Pi = (\pi_1, \pi_2, \cdots, \pi_K) \sim \text{Dirichlet}(1/K, \ldots, 1/K)$.

b. $\Lambda_k = (\lambda_{l_1}, \cdots, \lambda_{l_k}) \sim \text{Dirichlet}(1/L, \ldots, 1/L)$.

c. $c_k \sim N\left(\hat{c}_k, \sigma_1^2 I_p\right)$, $r_k \sim \text{Inverse-Gamma}(a_r, b_r)$, where a_r, b_r and σ_1 are hyper-parameters, \hat{c}_k is the empirical estimate of c_k.

The priors of different parameters are as follows:

a. \(\Pi = (\pi_1, \pi_2, \ldots, \pi_K) \sim \text{Dirichlet}(1/K, \ldots, 1/K) \).

b. \(\Lambda_k = (\lambda_{l_1}, \ldots, \lambda_{l_k}) \sim \text{Dirichlet}(1/L, \ldots, 1/L) \).

c. \(\mathbf{c}_k \sim N(\hat{\mathbf{c}}_k, \sigma_1^2 I_p) \), \(r_k \sim \text{Inverse-Gamma}(a_r, b_r) \), where \(a_r, b_r \) and \(\sigma_1 \) are hyper-parameters, \(\hat{\mathbf{c}}_k \) is the empirical estimate of \(\mathbf{c}_k \).

d. \(\mu_{l_k} \sim \text{vMF}((1/\sqrt{d}, \ldots, 1/\sqrt{d}), \kappa) \), and \(\tau_{l_k} \sim \text{Gamma}(a_\tau, b_\tau) \).
The priors of different parameters are as follows:

a. \(\Pi = (\pi_1, \pi_2, \ldots, \pi_K) \sim \text{Dirichlet}(1/K, \ldots, 1/K) \).

b. \(\Lambda_k = (\lambda_{l_1}, \ldots, \lambda_{l_k}) \sim \text{Dirichlet}(1/L, \ldots, 1/L) \).

c. \(\mathbf{c}_k \sim N(\hat{\mathbf{c}}_k, \sigma_1^2 \mathbf{I}_p) \), \(r_k \sim \text{Inverse-Gamma}(a_r, b_r) \), where \(a_r, b_r \) and \(\sigma_1 \) are hyper-parameters, \(\hat{\mathbf{c}}_k \) is the empirical estimate of \(\mathbf{c}_k \).

d. \(\mu_{l_k} \sim \text{vMF}((1/\sqrt{d}, \ldots, 1/\sqrt{d}), \kappa) \), and \(\tau_{l_k} \sim \text{Gamma}(a_\tau, b_\tau) \).

e. \(\sigma^2 \sim \text{Inverse-Gamma}(a_\sigma, b_\sigma) \).
The priors of different parameters are as follows:

a. $\Pi = (\pi_1, \pi_2, \cdots, \pi_K) \sim \text{Dirichlet}(1/K, \ldots, 1/K)$.

b. $\Lambda_k = (\lambda_{l_1}, \cdots, \lambda_{l_k}) \sim \text{Dirichlet}(1/L, \ldots, 1/L)$.

c. $c_k \sim N\left(\hat{c}_k, \sigma_1^2 I_p\right)$, $r_k \sim \text{Inverse-Gamma}(a_r, b_r)$, where a_r, b_r and σ_1 are hyper-parameters, \hat{c}_k is the empirical estimate of c_k.

d. $\mu_{l_k} \sim \text{vMF}\left((1/\sqrt{d}, \ldots, 1/\sqrt{d}), \kappa\right)$, and $\tau_{l_k} \sim \text{Gamma}(a_\tau, b_\tau)$.

e. $\sigma^2 \sim \text{Inverse-Gamma}(a_\sigma, b_\sigma)$.

f. The matrix V_k is the empirical Bayes estimate.
For a finite mixture model, an EM algorithm or MCMC algorithm can be easily implement for computation.
For a finite mixture model, an EM algorithm or MCMC algorithm can be easily implement for computation

We initially take a fully Bayesian approach, using default priors & running MCMC
For a finite mixture model, an EM algorithm or MCMC algorithm can be easily implement for computation.

We initially take a fully Bayesian approach, using default priors & running MCMC.

A simple data augmentation Gibbs sampler can be defined - starting the chain at the output of our initial algorithm.
For a finite mixture model, an EM algorithm or MCMC algorithm can be easily implement for computation.

We initially take a fully Bayesian approach, using default priors & running MCMC.

A simple data augmentation Gibbs sampler can be defined - starting the chain at the output of our initial algorithm.

Over-fitted mixtures (Rousseau & Mengerson 2011) allow uncertainty in # of mixture components/clusters.
Olympic Rings and Spiral-Bayesian version

\[X_{[1]} \]

\[X_{[2]} \]
Based on our theory & initial results, spherelets provide a promising alternative to linear approach (PCA).
Based on our theory & initial results, spherelets provide a promising alternative to linear approach (PCA).

There are a lot of potential applications including manifold learning, denoising, visualization, manifold regression, clustering, etc.
Based on our theory & initial results, spherelets provide a promising alternative to linear approach (PCA)

There are a lot of potential applications including manifold learning, denoising, visualization, manifold regression, clustering, etc

In the Bayesian case, we would like to estimate both \mathcal{M} & $f(y)$ - obtaining minimax optimal posterior concentration rates
Based on our theory & initial results, spherelets provide a promising alternative to linear approach (PCA)

There are a lot of potential applications including manifold learning, denoising, visualization, manifold regression, clustering, etc

In the Bayesian case, we would like to estimate both $\mathcal{M} \& f(y)$ - obtaining minimax optimal posterior concentration rates

Using the model-based approach straightforward to extend the approach to broad & complex data structures
Based on our theory & initial results, spherelets provide a promising alternative to linear approach (PCA).

There are a lot of potential applications including manifold learning, denoising, visualization, manifold regression, clustering, etc.

In the Bayesian case, we would like to estimate both \mathcal{M} & $f(y)$ - obtaining minimax optimal posterior concentration rates.

Using the model-based approach straightforward to extend the approach to broad & complex data structures.
Acknowledgments & References

