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From ECT to Poisson models

Patient . — Measurement
Photon numbers x — g(x) —  Detected numbers y
Probabilistic models
A}’fef)\,
plyilx) = Iy.l . A= gix)
il

m Transmission tomography: gi(x) = bje™ A
m Emission tomography: gi(x) = [Ax]; + r;



Poisson regression: a simplified model

Poisson intensity (simplified version)

mA=el@X =1, n
Unknown

B X=I[x,X,...,Xn]l € R™
Known

A= [35]7:1 c RMxm
my=[)o ...yl €ER"
Likelihood function

plylx) = Hp yilx) = expl(Ax, y) — (€™, 1,) — (In(y1), 1,)]
i=1



Bayesian formulation

Gaussian prior assumption on x

p(x) = N(x; po, Co).

Posterior distribution by Bayes’ formula

plxly) = 5 expl(Ax,y) — (%, 1) — (In(y1), 1,

— 3 (x —10)TCy (X — o),

where Z = Z(y) = [zm p(x, y)dx is the normalising constant and makes
the posterior dlstrlbutlon intractable!



Variational inference: a quick review

O—®

Figure: The hidden variable X and the observable variable Y

By solving a variational problem
q(x) = arg min KL(q(x)[lp(x]y))
geQ

we find
tractable q(x) =~ p(x|y) intractable



KL divergence

q(x)
p(x)

KL(g(0)llp(x)) = Jq(x) log I) g4 (1)

A probabilistic metric
m > 0 (by Jensen’s inequality)
m = 0if and only if g(x) = p(x) almost everywhere

Z in p(x|y) is unknown

q"(x) = argming(x)coKL(q(x)llp(xly)), (@)

still intractable!



ELBO

Key observation

log Z = Jq(x) log p(x'y)dx—i—Jq(x) jog -9y
——

. q(x) p(xly)
fixed!
KL, >0
Evidence Lower BOund (ELBO)
_ p(x, y)
Fla(x).pix. y)) = | qlx)log 27 ax

Equivalent problem

arg ming ) coKL(GUX)IIp(X]y)) = arg maxg(ca F(q(x), p(x, )

finally tractable!



ELBO: as a regularisation

m ELBO
_ p(x,y)
F(q(X),p(x,y))—u q(x) log 0] dx
_ p(ylx)p(x)
- q(x) log de

— [ 400 tog plyix)dx — J 4(x) log. ;’Eﬁdx

model fitting prior penalty

m Tikhonov regularisation

F(x)= o&(f(x),y) + ob(x)
N—— ——
original functional  regulariser



Explicit formula of ELBO

from variation to optimisation

Fla(x). p(x,y)) =y, AX) — (1n, eA”%d‘ag(ACATJ) — (1n,In(y!))
model fitting
— 1 (x—p0)TCy (X — o)

weighted distance ||x— p.ollzcO
— 1 [tr(Cy'C) —In|Cl + In|Co| — m] =: F(x, C).

Bregman divergence D(C,Cp)




Theoretical properties

existence and uniqueness

The lower bound F (x, C) is strictly joint-concave with respect to x € R™
and C € 8.

For any A, y, 1o and Cy, there exists a unique pair of (x, C) solving the
optimisation problem

maxF(x, C) (4)



Optimality system

max F(x, C) (5)
x,C
whose optimality conditions are
oF oF
55 — 0 and 5c =0 (6)

Theorem
The gradients of F(x, C) with respect to x and C are respectively given
by

oF

— Aty_AteAH;diag(ACA') - 00—1 (X — o),

%[_Atdiag(eA)_(+%diag(ACAt) )A _ CO—1 + C_1].

|
3
I



An alternating optimisation scheme

Optimality system

The necessary and sufficient optimality system is given by

Aty . AteA)‘(+%diag(ACAf) . CO—1 (X—19) =0 7)
%[_Atdiag(eA)_(+%diag(ACA'))A . CO—1 + C_1] -0 (8)

To solve the optimal system, we designed an alternating direction
algorithm based on Equation 7 and 8 seperately.



x Step: Newton method

; oF
Consider —3%

G(X) = AteA)'(Jr%diag(ACA‘) + 051 (X — po) _Aty.

Uniform invertibility
dG(X) = Atdiag(eA)"(+1§diag(ACA’))A+ CO—1 > Co_1v

Newton update scheme

G(xM)6x = —G(X), X1 = %K 1 5%,

X

Globally convergent!



C Step: Fixed point method
Based on (3% =0)
C—1 :ATdiag(eA)_H-%diag(ACAT))A+ CO—1
we iterate
ck+1 — (00—1 +A1DKA)—1' with D¥ = diag(eA)_(+1§diag(ACkA’))
Uniformly bounded sequence {CX}$°_,

Amax(CF) = viCKv, < vICyv, < suﬂs VICoV = Amax(Co)
veRm

Sub-sequentially convergent!!

" Another interesting 'monotone’ type of convergence is also discussed in our paper



Computational complexity reduction

Structural assumptions
m C — k sparsity
m Banded matrix with band width k or
m At most k non-zero elements each row

m A-—r sparsity
m Low rank approximation A, =~ A (r < m/\ n)

Table: Computational cost comparisons

Operation General case  Structural assumptions

X step O(m® + m?n) O(m? + kmn)
C step O(m* 4+ m?n)  O(rPn+ r’m+ kmn)




Algorithm 1 Variational Gaussian Approximation Algorithm
1: Input: (A, y), specify the prior (Lo, Cp), and the maximum number K
of iterations
Initialize x = X' and C = C';
SVD: (U, %, V) =rSVD(A);
fork=1,2,..., K do
Update the mean x**' by Newton method;
Update the covariance C**" by fixed point method;
Check the stopping criterion.
end for
Output: (x, C)

© o NSO RO




Hyperparamter choice

In the Gaussian prior p(x), Cg = &~ Co.
(X — 1) Cy 1 (X — po) = a|L(X — po)IIP,
where C, ' = L'L.
m C, encodes smoothness into prior (interactive strucutre)
m « determines the strength of the interaction

How to determine o?



Hierarchical model and joint ELBO

Hyperprior distribuion
m p(«la, b) = Gamma(«x|a, b)
m Noninformative settings: a~ 1and b~ 0

Joint lower bound

-1, —
F(X, C, &) = (y, AX) — (1,, &%+ 2920(ACAY) _ oc(z_1,0)1Co 1 (X — po)

—%tr(éo_10)+%In|C|+%Ino¢—%ln|éol

a

INa)

+(@a=1)Ina—ab+ 3 —(1pIn(y!)) +1In



EM algorithm for joint ELBO optimisation

m E-step: fix &, and maximize F(Xx, C, «) by Algorithm 1.
m M-step: fix (x, C) and update « by

m+2a—1)
(X — UO)IC()_1()_(oc — Mo) +tr(éo_1coc) +2b

x = (10)

An extension of a balancing principle in Tikhonov regularisation

Eq(x) llog p(x)] = al(Xo — HO)taa1 (Xo — 10) + tr(a(;1 Col,



Algorithm 2 Hierarchical variational Gaussian approximation
- Input (A, y), and initialize o'

2. fork=1,2,...do

3:  E-step: Update (x*, C¥) by Algorithm 1:

—_

(x*, CK) = arg __max Fox (X, C);
(x,C)ERMx 8},

M-step: Update « by (10).
Check the stopping criterion;

: end for
: Output: (x, C)




Monotonic convergence

For any initial guess «' > 0, the sequence {«*} generated by Algorithm
2 is monotonically convergent to some «* > 0, and if the limit x* > 0,
then it satisfies the fixed point equation (10).

Remarks

m The uniqueness of the solution o«* to (10) is generally not ensured.

m In practice, it seems to have only two fixed points: one is in the
neighborhood of 4+-co, which is uninteresting, and the other is the
desired one.



Phillips test

an example from package Regutools?

Fredholm integral Eq  Galerkin discretisation linear system
| K(s t)f(t)dt = g(s) — Ax=0>b

0 25 50 75 100
k

Figure: lll-posedness reflexed by singular value decay of A

2www.imm.dtu.dk/ pcha/Regutools/



Empirical Inner Convergence

1 5 10 15

(a) L2-prior (b) H'-prior

Figure: The convergence of the inner iterations of Algorithm 1 for phillips.

18X = Xk1 — X and 6C = Cyy1 — Ck



Empirical Outer Convergence

(a) L? prior (b) H'-prior

Figure: The convergence of outer iterations of Algorithm 1 for phillips.

18X = Xk1 — X and 6C = Cyy1 — Ck



Empirical ELBO Convergence

o x10°

x10*
0
©
S £
o o
21 2.
5] 5]
3 E
4
-2
0 1 2 3 4 5 0 1 2 3 4 5
k k
(a) L2-prior (b) H'-prior

Figure: The convergence of the lower bound F (X, C) for phillips.



Singal reconstructions
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Figure: The Gaussian approximation for phillips.



Hierarchical parameter convergence
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(a) convergence of « (b) joint lower bound

Figure: (a)The convergence of Algorithm 2 initialized with 0.1 and 10, both
convergent to o™ = 0.7778 (b) the joint lower bound versus «, for phillips
with L2-prior.



Hierarchical reconstructions

Figure: The mean X of the Gaussian approximation by the hierarchical
algorithm (Alg2) and the “optimal” solution (opt) for 6 realizations of Poisson
data for phillips with the L2-prior.



A large scale example of Gaussian deblurring
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(c) the error xT — x (d) the variance diag(C)



Main contributions

ELBO

m Explicit expression

m Existence and unigueness
Numerical algorithm

m Alternating direction maximisation algorithm

m Convergence

m Computational complexity reduction strategies
Hyperparameter

m Discuss hierarchical Bayesian modelling

m Monotonical convergence
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