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Beta Expansions

> Given B > 1, define 75 : {0,1}N — /5 = [0, ﬁ} by

ma(a) = ais.
i=1

v

Interested in the set X5 = m5({0, 1}Y) C Is.

Also interested in the measure vg := my ow/gl where m1 is
2 2

v

the (3, 3) Bernoulli measure on {0, 1},

Xg and vg are self similar: vg satisfies

v

1
vg = 5(1//3 o To + vg o Tl).

where T; : R — R by Tj(x) = Bx — .

log(vs (B(x.r)))

» For vg a.e. x, dimy(vg) = lim,_o logr
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Key Questions:

For which € (1,2) is vg absolutely continuous? When does it
have dimension 17
> (Jessen, Wintner '35) v is always either absolutely
continuous or purely singular.

» (Erdés '39) vg is singular if 5 is a Pisot number. To date
these are the only known examples of singular Bernoulli
Convolutions.

» (Garsia '50s) In fact dimy(v3) < 1 when 3 is Pisot. Gave
countable class of 3 for which v is absolutely continuous.

> (Solomyak '95) For Leb almost-every § € (1,2), vg is
absolutely continuous.
Conjecture: vz has dimension 1 for all non-algebraic f.

Conjecture: vg has dimension 1 for all 3 except Pisot numbers,
and possibly Salem numbers.
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The non overlapping case

v

. . . -1,
If 3> 2 then we can partition X3 using the contractions T, ":

Xz = Tg M (Xs) U T1 H(Xg).

v

Define T : X3 — X3 by

T also satisfies

v

Tonmg=mgoo
where ¢ is the left shift on {0, 1},

T preserves measure vg. Can study both X3 and vg using T,
e.g. Dimension formulae, entropy, Lyapunov exponents...

v
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The overlapping case

» Question: How does all of this work in the overlapping case
B e(1,2)?

» Xz = Iz =0, ﬁ] is now trivial.

» The measure vg, called the Bernoulli convolution, is now very
complicated. vg self similar

1
vg = 5(1/5 oTy+ vg o Tl).

» We could try to define T the same way:

1

B—1

Figure : T(X.2, ai87") = 3.2, ai+18~" is ambiguous
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The Random [-transformation

Idea: ‘Flip a coin’ to decide which branch to take when there is
overlap in the dynamical system.

Define Kg : {0, 1} x I3 — {0, 1} x I5 by
(w, Bx) x €0, };)
Ks(w,x) =< (0(w), Bx —w1)  x €[5, 53 12]
(w,Bx —1) Xe[ﬁﬁ 1)51
Can 'decode’ (w, x) and write down an associated sequence a by

iterating K and letting a, be 0 or 1 according to whether we
applied 8x or Sx — 1 to the second coordinate.

This gives some imperfect upper bounds in multifractal analysis of
vg.
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Option 2: A density based dynamical system.

Our second option only works when v is absolutely continuous.
Recall that 1
I/@ZE(VﬂO To—l—Vﬁo Tl).

This leads to a corresponding self similarity equation for the
density hg:

ho() = 2 (hs(To()) + ha(Ti())).

We can use this self similarity equation to define a Lebesgue
measure preserving system.
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Let
X = {(va) PGS 1,370 <y< h,B(X)}

Partition the space by defining
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Properties of (X, ¢)

Then define the function ¢ : X — X by

ol O3
(x,y) = (5)(_17%(}/_%/76(/3)())) (x,y) € X1

> ¢ preserves two dimensional Lebesgue measure, which is the
measure of maximal entropy.

» Maps on to measure of maximal entropy for the previous
dynamical system K. Tells us how to slice this measure.

Theorem
log 2

The set Fﬁ_l(X) has positive finite | &5 |-dimensional Hausdorff

measure for almost every x € Iz if and only if vg is absolutely
continuous with bounded density.
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Main Goal

» Suppose € (1,2) is a solution of a polynomial with
coefficients € {—1,0,1}.

Question: How can we understand coincidences in the set

X, = {Z a;~": each a; € {0, 1}}?
i=1

» More precisely, for a € {0,1}V, let

{bl <o bp € {O, l}n : iaiﬂfi = i b,',@i}‘ .
i=1 i=1

Nﬂ a '..an
Let Hn(B) == = 2_,,.aef013n 3 log (%)
The Garsia entropy H(3) := limp_,c 2 Ha(B).

v

Nn(a) =

v

v
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For 8 € (1,2) a solution of a polynomial with coefficients
€{-1,0,1}, Bis
» Pisot if all other Galois conjugates 3; have |5;] < 1
» Hyperbolic if all Galois conjugates /3; have |3;| # 1

» Salem if all other Galois conjugates have 8; < 1 with at least
one of absolute value 1.
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» (Hochman '14) dimy(vg) < 1 implies either that 3 is
algebraic or that min distance between different elements of
Xy, tends to 0 superexponentially:

Xop={)_aif " a1--a,€{0,1}"}.
i=1

> (Shmerkin '14) v is absolutely continuous for all
B €(1,2)\ E, where E is an (unknown) set of Hausdorff
dimension zero.

» (Hochman '14) For (3 algebraic,

dimy () = min {I(’j;(ﬂﬁ)),l}.

» (Breuillard, Varju '18) g € (1,2) with dimy(vg) < 1 are
approximated by algebraic 5 € (1,2) with dimy(v3) < 1.

» If Pisot numbers are the only algebraic 5 € (1,2) with
dimy(v3) < 1, then they are the only 5 € (1,2) with
dimH(l/ﬁ) < 1.
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» Conclusion from last slide: If we can understand H(/3) for
algebraic /3, then we understand dimy(v3) for algebraic (3,
and possibly understand dimy(v3) for all .

» Recall

Nn(é) =

{bl"'bn €{0,1}":> ap 7 = Zb,ﬂ"}‘ .
i=1 i=1

HB) = lim — 3 21|og(N(al2"’)>

ar---an€{0,1}"

Theorem (Akiyama, Feng, K., Persson)
If B € (1,2) is algebraic with | conjugates of absolute value 1,
there exists a constant C such that

_C—i—/log(n—i—l)S oL
n n

= H(5)
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Corollary
If B € (1,2) is a hyperbolic, non-Pisot solution of a 0, +1
polynomial of degree <5, dimy(v3) = 1.
(27 such examples)
Very rapid estimation of dimension possible. For the (Pisot)
satisfying

Bt—p-1=0

dimy(vs) € (0.99999,1).
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N B =T, 0T, 00T, (0)
i=1
Fact 1: If T, 0o T,, ,0---0Tg(0) =0 then, for m < n,

T

€m

-1 1
oTe, ,0---0Tq(0) € [5_1’5_1] :

Fact 2: If 3 is Pisot then the set
-1 1
V(ﬁ) = {T OTGn 19 OT€1(O) “he N,E,’ S {_1,0,1}}0 ﬁ’ﬂ

is finite.

So we have a finite graph G with vertex set V(ﬂ) edges labelled by
{-1,0,1} such that 327, ;87" =7, b;3~" if and only if there
is a path from 0 to 0 in G made by following edges labelled a; — b;.
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We can count all pairs a; - - - a,, by - - - b, with

n n
dap = bip
i=1 i=1

by counting paths from 0 to 0 under these dynamics.
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We want to fix a and count all by - - - b, with
Za,ﬁ— Zbﬁ /
i=1

To do this make two subgraphs. a; =1 = a; — b; € {0, 1}.
a;=0 = a;—b; € {—1,0}.
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Two Matrices

My corresponds to picking a, = 0. Matrix indexed by finite set

V(B):{O:VL-“,VN}

.y J 1 vi=pviorfBvi—1
Mo(ij) = { 0 otherwise

.y J 1 vi=pviorfBvi+1
My (i.j) = { 0 otherwise

Na(a) = (M, -+ Mal)l,l :

Ma, -~ May), 4
Ha(B) = — 3 ;nlog<( - ! )

aj--an

1 H,(8) decreases to limit H(B).
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Lower Bounds

M,, -+ Ma,
Hnm:—z;log(( - )“>.

Define

Ma ...Mal
L(B) =~ Y o log <‘2”>

a1-an

11,(8) < Hn(B) and LL,(B) increasing. So L(8) < H(B).

This gives us the rate at which 1H,(3) converges to H(j3).



The Hyperbolic Non-Pisot Case
Fact 3: Let 3 be algebraic and let 5> be conjugate to 5. Then

n

Ze,ﬂn*i =0 <— zn:ﬁ,ﬂg_i =0.
i=1

i=1



The Hyperbolic Non-Pisot Case
Fact 3: Let 3 be algebraic and let 5> be conjugate to 5. Then
n n
d e =0 = Y €85 =0.
i=1 i=1
So we can also look at the dynamics using 32, and disregard orbits
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The Hyperbolic Non-Pisot Case
Fact 3: Let 3 be algebraic and let 5> be conjugate to 5. Then
n n
d e =0 = Y €85 =0.
i=1 i=1
So we can also look at the dynamics using 32, and disregard orbits

for which .

- 1
BT > .
Z 52 ‘52 _ 1’
i=1
Fact 4: If 5 € (1,2) is hyperbolic, with conjugates f32, - - - B larger
than one in modulus, then the set V/(53) of forward orbits

Tﬁn O Tﬁl(o)

with the restriction that for each j € {1,--- | k},

n

_; 1
Zﬁiﬁf <
j

i=1

is finite. So everything works as in the Pisot case.



The Non-Hyperbolic Case

The set V/(3) and the resulting matrices our now infinite. But we
still get a rate of convergence if we mess around a bit.



