On The Hausdorff Dimension of Bernoulli Convolutions.

T. Kempton, joint with S. Akiyama, D.J. Feng, T. Persson

University of Manchester

June 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• Given
$$\beta > 1$$
, define $\pi_{\beta} : \{0,1\}^{\mathbb{N}} \to I_{\beta} = \left[0, \frac{1}{\beta-1}\right]$ by

$$\pi_{\beta}(\underline{a}) = \sum_{i=1}^{\infty} a_i \beta^{-i}.$$

• Given
$$\beta > 1$$
, define $\pi_{\beta} : \{0,1\}^{\mathbb{N}} \to I_{\beta} = \left[0, \frac{1}{\beta-1}\right]$ by

$$\pi_{\beta}(\underline{a}) = \sum_{i=1}^{\infty} a_i \beta^{-i}.$$

• Interested in the set $X_{\beta} = \pi_{\beta}(\{0,1\}^{\mathbb{N}}) \subset I_{\beta}$.

• Given
$$\beta > 1$$
, define $\pi_{\beta} : \{0,1\}^{\mathbb{N}} \to I_{\beta} = \left[0, \frac{1}{\beta-1}\right]$ by

$$\pi_{\beta}(\underline{a}) = \sum_{i=1}^{\infty} a_i \beta^{-i}$$

• Interested in the set $X_{\beta} = \pi_{\beta}(\{0,1\}^{\mathbb{N}}) \subset I_{\beta}$.

Also interested in the measure ν_β := m_{1/2} ∘ π_β⁻¹ where m_{1/2} is the (1/2, 1/2) Bernoulli measure on {0,1}^N.

• Given
$$\beta > 1$$
, define $\pi_{\beta} : \{0,1\}^{\mathbb{N}} \to I_{\beta} = \left[0, \frac{1}{\beta-1}\right]$ by

$$\pi_{\beta}(\underline{a}) = \sum_{i=1}^{\infty} a_i \beta^{-i}$$

• Interested in the set $X_{\beta} = \pi_{\beta}(\{0,1\}^{\mathbb{N}}) \subset I_{\beta}$.

- Also interested in the measure ν_β := m_{1/2} ∘ π_β⁻¹ where m_{1/2} is the (1/2, 1/2) Bernoulli measure on {0,1}^N.
- X_{β} and ν_{β} are self similar: ν_{β} satisfies

$$\nu_{\beta} = \frac{1}{2}(\nu_{\beta} \circ T_0 + \nu_{\beta} \circ T_1).$$

where $T_i : \mathbb{R} \to \mathbb{R}$ by $T_i(x) = \beta x - i$.

・ロト・日本・モート モー うへぐ

• Given
$$\beta > 1$$
, define $\pi_{\beta} : \{0,1\}^{\mathbb{N}} \to I_{\beta} = \left[0, \frac{1}{\beta-1}\right]$ by

$$\pi_{\beta}(\underline{a}) = \sum_{i=1}^{\infty} a_i \beta^{-i}$$

• Interested in the set $X_{\beta} = \pi_{\beta}(\{0,1\}^{\mathbb{N}}) \subset I_{\beta}$.

- Also interested in the measure ν_β := m_{1/2} ∘ π_β⁻¹ where m_{1/2} is the (1/2, 1/2) Bernoulli measure on {0,1}^N.
- X_{β} and ν_{β} are self similar: ν_{β} satisfies

$$\nu_{\beta} = \frac{1}{2} (\nu_{\beta} \circ T_0 + \nu_{\beta} \circ T_1).$$

where $T_i : \mathbb{R} \to \mathbb{R}$ by $T_i(x) = \beta x - i$. For ν_β a.e. x, $\dim_H(\nu_\beta) = \lim_{r \to 0} \frac{\log(\nu_\beta(B(x,r)))}{\log r}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For which $\beta \in (1,2)$ is ν_{β} absolutely continuous? When does it have dimension 1?

For which $\beta \in (1,2)$ is ν_{β} absolutely continuous? When does it have dimension 1?

 (Jessen, Wintner '35) ν_β is always either absolutely continuous or purely singular.

For which $\beta \in (1,2)$ is ν_{β} absolutely continuous? When does it have dimension 1?

- (Jessen, Wintner '35) ν_β is always either absolutely continuous or purely singular.
- (Erdős '39) ν_β is singular if β is a Pisot number. To date these are the only known examples of singular Bernoulli Convolutions.

For which $\beta \in (1,2)$ is ν_{β} absolutely continuous? When does it have dimension 1?

- (Jessen, Wintner '35) ν_β is always either absolutely continuous or purely singular.
- (Erdős '39) ν_β is singular if β is a Pisot number. To date these are the only known examples of singular Bernoulli Convolutions.
- ► (Garsia '50s) In fact dim_H(ν_β) < 1 when β is Pisot. Gave countable class of β for which ν_β is absolutely continuous.

For which $\beta \in (1,2)$ is ν_{β} absolutely continuous? When does it have dimension 1?

- (Jessen, Wintner '35) ν_β is always either absolutely continuous or purely singular.
- (Erdős '39) ν_β is singular if β is a Pisot number. To date these are the only known examples of singular Bernoulli Convolutions.
- ► (Garsia '50s) In fact dim_H(ν_β) < 1 when β is Pisot. Gave countable class of β for which ν_β is absolutely continuous.

► (Solomyak '95) For Leb almost-every $\beta \in (1, 2)$, ν_{β} is absolutely continuous.

For which $\beta \in (1,2)$ is ν_{β} absolutely continuous? When does it have dimension 1?

- (Jessen, Wintner '35) ν_β is always either absolutely continuous or purely singular.
- (Erdős '39) ν_β is singular if β is a Pisot number. To date these are the only known examples of singular Bernoulli Convolutions.
- ► (Garsia '50s) In fact dim_H(ν_β) < 1 when β is Pisot. Gave countable class of β for which ν_β is absolutely continuous.

► (Solomyak '95) For Leb almost-every β ∈ (1,2), ν_β is absolutely continuous.

Conjecture: ν_{β} has dimension 1 for all non-algebraic β .

For which $\beta \in (1,2)$ is ν_{β} absolutely continuous? When does it have dimension 1?

- (Jessen, Wintner '35) ν_β is always either absolutely continuous or purely singular.
- (Erdős '39) ν_β is singular if β is a Pisot number. To date these are the only known examples of singular Bernoulli Convolutions.
- ► (Garsia '50s) In fact dim_H(ν_β) < 1 when β is Pisot. Gave countable class of β for which ν_β is absolutely continuous.
- ► (Solomyak '95) For Leb almost-every β ∈ (1,2), ν_β is absolutely continuous.

Conjecture: ν_{β} has dimension 1 for all non-algebraic β .

Conjecture: ν_{β} has dimension 1 for all β except Pisot numbers, and possibly Salem numbers.

• If $\beta > 2$ then we can partition X_{β} using the contractions T_i^{-1} :

$$X_{\beta}=T_0^{-1}(X_{\beta})\cup T_1^{-1}(X_{\beta}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• If $\beta > 2$ then we can partition X_{β} using the contractions T_i^{-1} :

$$X_{\beta} = T_0^{-1}(X_{\beta}) \cup T_1^{-1}(X_{\beta}).$$

• Define $T: X_{\beta} \to X_{\beta}$ by

$$T(x) = \left\{ egin{array}{cc} T_0(x) & x \in T_0^{-1}(X_eta) \ T_1(x) & x \in T_1^{-1}(X_eta) \end{array}
ight.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• If $\beta > 2$ then we can partition X_{β} using the contractions T_i^{-1} :

$$X_{\beta} = T_0^{-1}(X_{\beta}) \cup T_1^{-1}(X_{\beta}).$$

• Define $T: X_{\beta} \rightarrow X_{\beta}$ by

$$T(x) = \begin{cases} T_0(x) & x \in T_0^{-1}(X_\beta) \\ T_1(x) & x \in T_1^{-1}(X_\beta) \end{cases}$$

T also satisfies

$$T \circ \pi_{\beta} = \pi_{\beta} \circ \sigma$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where σ is the left shift on $\{0,1\}^{\mathbb{N}}$.

• If $\beta > 2$ then we can partition X_{β} using the contractions T_i^{-1} :

$$X_{\beta}=T_0^{-1}(X_{\beta})\cup T_1^{-1}(X_{\beta}).$$

• Define $T: X_{\beta} \rightarrow X_{\beta}$ by

$$T(x) = \begin{cases} T_0(x) & x \in T_0^{-1}(X_\beta) \\ T_1(x) & x \in T_1^{-1}(X_\beta) \end{cases}$$

T also satisfies

$$T \circ \pi_{\beta} = \pi_{\beta} \circ \sigma$$

where σ is the left shift on $\{0,1\}^{\mathbb{N}}$.

T preserves measure ν_β. Can study both X_β and ν_β using T, e.g. Dimension formulae, entropy, Lyapunov exponents...

• Question: How does all of this work in the overlapping case $\beta \in (1,2)$?

(ロ)、(型)、(E)、(E)、 E) の(の)

• Question: How does all of this work in the overlapping case $\beta \in (1,2)$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•
$$X_{\beta} = I_{\beta} = [0, \frac{1}{\beta-1}]$$
 is now trivial.

- Question: How does all of this work in the overlapping case $\beta \in (1,2)$?
- $X_{\beta} = I_{\beta} = [0, \frac{1}{\beta-1}]$ is now trivial.
- ► The measure ν_{β} , called the Bernoulli convolution, is now very complicated. ν_{β} self similar

$$u_{\beta} = \frac{1}{2}(\nu_{\beta} \circ T_0 + \nu_{\beta} \circ T_1).$$

- Question: How does all of this work in the overlapping case $\beta \in (1,2)$?
- $X_{\beta} = I_{\beta} = [0, \frac{1}{\beta-1}]$ is now trivial.
- The measure ν_{β} , called the Bernoulli convolution, is now very complicated. ν_{β} self similar

$$u_{eta} = rac{1}{2}(
u_{eta} \circ T_0 +
u_{eta} \circ T_1).$$

• We could try to define T the same way:

Figure : $T(\sum_{i=1}^{\infty} a_i \beta^{-i}) = \sum_{i=1}^{\infty} a_{i+1} \beta^{-i}$ is ambiguous

Idea: 'Flip a coin' to decide which branch to take when there is overlap in the dynamical system.

(ロ)、(型)、(E)、(E)、 E) の(の)

Idea: 'Flip a coin' to decide which branch to take when there is overlap in the dynamical system.

Define $\mathcal{K}_{eta}: \{0,1\}^{\mathbb{N}} imes \mathcal{I}_{eta} o \{0,1\}^{\mathbb{N}} imes \mathcal{I}_{eta}$ by

Idea: 'Flip a coin' to decide which branch to take when there is overlap in the dynamical system.

Define $\mathcal{K}_eta:\{0,1\}^{\mathbb{N}} imes \mathcal{I}_eta o \{0,1\}^{\mathbb{N}} imes \mathcal{I}_eta$ by

$$\mathcal{K}_{\beta}(\omega, x) = \begin{cases} (\omega, \beta x) & x \in [0, \frac{1}{\beta}) \\ (\sigma(\omega), \beta x - \omega_1) & x \in [\frac{1}{\beta}, \frac{1}{\beta(\beta-1)}] \\ (\omega, \beta x - 1) & x \in [\frac{1}{\beta(\beta-1)}, \frac{1}{\beta-1}] \end{cases}$$

.

Idea: 'Flip a coin' to decide which branch to take when there is overlap in the dynamical system.

Define $\mathcal{K}_{\beta}: \{0,1\}^{\mathbb{N}} imes \mathcal{I}_{\beta} o \{0,1\}^{\mathbb{N}} imes \mathcal{I}_{\beta}$ by

$$\mathcal{K}_{eta}(\omega,x) = \left\{egin{array}{ccc} (\omega,eta x) & x\in [0,rac{1}{eta})\ (\sigma(\omega),eta x-\omega_1) & x\in [rac{1}{eta},rac{1}{eta(eta-1)}]\ (\omega,eta x-1) & x\in [rac{1}{eta(eta-1)},rac{1}{eta-1}] \end{array}
ight.$$

Can 'decode' (ω, x) and write down an associated sequence <u>a</u> by iterating K_{β} and letting a_n be 0 or 1 according to whether we applied βx or $\beta x - 1$ to the second coordinate.

Idea: 'Flip a coin' to decide which branch to take when there is overlap in the dynamical system.

Define $\mathcal{K}_{\beta}: \{0,1\}^{\mathbb{N}} imes \mathcal{I}_{\beta} o \{0,1\}^{\mathbb{N}} imes \mathcal{I}_{\beta}$ by

$$\mathcal{K}_{\beta}(\omega, x) = \begin{cases} (\omega, \beta x) & x \in [0, \frac{1}{\beta}) \\ (\sigma(\omega), \beta x - \omega_1) & x \in [\frac{1}{\beta}, \frac{1}{\beta(\beta-1)}] \\ (\omega, \beta x - 1) & x \in [\frac{1}{\beta(\beta-1)}, \frac{1}{\beta-1}] \end{cases}$$

Can 'decode' (ω, x) and write down an associated sequence <u>a</u> by iterating K_{β} and letting a_n be 0 or 1 according to whether we applied βx or $\beta x - 1$ to the second coordinate.

This gives some imperfect upper bounds in multifractal analysis of ν_{β} .

Our second option only works when u_{eta} is absolutely continuous.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Our second option only works when ν_β is absolutely continuous. Recall that

$$\nu_{\beta} = \frac{1}{2} \left(\nu_{\beta} \circ T_0 + \nu_{\beta} \circ T_1 \right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our second option only works when ν_β is absolutely continuous. Recall that

$$\nu_{\beta} = \frac{1}{2} \left(\nu_{\beta} \circ T_0 + \nu_{\beta} \circ T_1 \right).$$

This leads to a corresponding self similarity equation for the density h_{β} :

$$h_{\beta}(x) = \frac{\beta}{2} \left(h_{\beta}(T_0(x)) + h_{\beta}(T_1(x)) \right).$$

Our second option only works when ν_β is absolutely continuous. Recall that

$$\nu_{\beta} = \frac{1}{2} \left(\nu_{\beta} \circ T_0 + \nu_{\beta} \circ T_1 \right).$$

This leads to a corresponding self similarity equation for the density h_{β} :

$$h_{\beta}(x) = \frac{\beta}{2} \left(h_{\beta}(T_0(x)) + h_{\beta}(T_1(x)) \right).$$

We can use this self similarity equation to define a Lebesgue measure preserving system.

$$h_{eta}(x)=rac{eta}{2}\left(h_{eta}(T_0(x))+h_{eta}(T_1(x))
ight).$$

Let

$$X = \{(x, y) : x \in I_{\beta}, 0 \le y \le h_{\beta}(x)\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

$$h_{eta}(x)=rac{eta}{2}\left(h_{eta}(T_0(x))+h_{eta}(T_1(x))
ight).$$

Let

$$X = \{(x, y) : x \in I_{\beta}, 0 \le y \le h_{\beta}(x)\}$$

Partition the space by defining

$$X_0 = \{(x, y) \in X : 0 \le y \le \frac{\beta}{2}h_\beta(\beta x)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and $X_1 = \overline{X \setminus X_0}$.

$$h_{eta}(x)=rac{eta}{2}\left(h_{eta}(T_0(x))+h_{eta}(T_1(x))
ight).$$

Let

$$X = \{(x, y) : x \in I_{\beta}, 0 \le y \le h_{\beta}(x)\}$$

Partition the space by defining

$$X_0 = \{(x, y) \in X : 0 \le y \le \frac{\beta}{2}h_\beta(\beta x)\}$$

and $X_1 = \overline{X \setminus X_0}$.

(日)、

э

Properties of (X, ϕ)

Then define the function $\phi: X \to X$ by

$$\phi(x,y) = \begin{cases} \left(\beta x, \frac{2y}{\beta}\right) & (x,y) \in X_0\\ \left(\beta x - 1, \frac{2}{\beta}(y - \frac{\beta}{2}h_\beta(\beta x))\right) & (x,y) \in X_1 \end{cases}$$

٠

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Properties of (X, ϕ)

Then define the function $\phi: X \to X$ by

$$\phi(x,y) = \begin{cases} \left(\beta x, \frac{2y}{\beta}\right) & (x,y) \in X_0\\ \left(\beta x - 1, \frac{2}{\beta}(y - \frac{\beta}{2}h_\beta(\beta x))\right) & (x,y) \in X_1 \end{cases}$$

٠

Properties of (X, ϕ)

Then define the function $\phi: X \to X$ by

$$\phi(x,y) = \begin{cases} \left(\beta x, \frac{2y}{\beta}\right) & (x,y) \in X_0\\ \left(\beta x - 1, \frac{2}{\beta}(y - \frac{\beta}{2}h_{\beta}(\beta x))\right) & (x,y) \in X_1 \end{cases}$$

▶ Maps on to measure of maximal entropy for the previous dynamical system *K*. Tells us how to slice this measure.
Properties of (X, ϕ)

Then define the function $\phi: X \to X$ by

$$\phi(x,y) = \begin{cases} \left(\beta x, \frac{2y}{\beta}\right) & (x,y) \in X_0\\ \left(\beta x - 1, \frac{2}{\beta}(y - \frac{\beta}{2}h_\beta(\beta x))\right) & (x,y) \in X_1 \end{cases}$$

- ▶ Maps on to measure of maximal entropy for the previous dynamical system *K*. Tells us how to slice this measure.

Theorem

The set $\pi_{\beta}^{-1}(x)$ has positive finite $\begin{pmatrix} \log 2 \\ \log \beta \\ \log 2 \end{pmatrix}$ -dimensional Hausdorff measure for almost every $x \in I_{\beta}$ if and only if ν_{β} is absolutely continuous with bounded density.

Suppose β ∈ (1,2) is a solution of a polynomial with coefficients ∈ {−1,0,1}.

- Suppose β ∈ (1,2) is a solution of a polynomial with coefficients ∈ {−1,0,1}.
- Question: How can we understand coincidences in the set

$$X_n = \left\{\sum_{i=1}^n a_i \beta^{-i}: ext{ each } a_i \in \{0,1\}
ight\}$$
?

- Suppose β ∈ (1,2) is a solution of a polynomial with coefficients ∈ {−1,0,1}.
- Question: How can we understand coincidences in the set

$$X_n = \left\{ \sum_{i=1}^n a_i \beta^{-i} : \text{ each } a_i \in \{0,1\} \right\}$$
?

• More precisely, for $\underline{a} \in \{0,1\}^{\mathbb{N}}$, let

$$\mathcal{N}_n(\underline{a}) = \left| \left\{ b_1 \cdots b_n \in \{0,1\}^n : \sum_{i=1}^n a_i \beta^{-i} = \sum_{i=1}^n b_i \beta^{-i} \right\} \right|.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Suppose β ∈ (1,2) is a solution of a polynomial with coefficients ∈ {−1,0,1}.
- Question: How can we understand coincidences in the set

$$X_n = \left\{ \sum_{i=1}^n a_i \beta^{-i} : \text{ each } a_i \in \{0,1\} \right\}$$
?

• More precisely, for $\underline{a} \in \{0,1\}^{\mathbb{N}}$, let

$$\mathcal{N}_n(\underline{a}) = \left| \left\{ b_1 \cdots b_n \in \{0,1\}^n : \sum_{i=1}^n a_i \beta^{-i} = \sum_{i=1}^n b_i \beta^{-i} \right\} \right|.$$

• Let
$$H_n(\beta) := -\sum_{a_1\cdots a_n \in \{0,1\}^n} \frac{1}{2^n} \log\left(\frac{\mathcal{N}_n(a_1\cdots a_n)}{2^n}\right)$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- Suppose β ∈ (1,2) is a solution of a polynomial with coefficients ∈ {−1,0,1}.
- Question: How can we understand coincidences in the set

$$X_n = \left\{ \sum_{i=1}^n a_i \beta^{-i} : \text{ each } a_i \in \{0,1\} \right\}$$
?

• More precisely, for $\underline{a} \in \{0,1\}^{\mathbb{N}}$, let

$$\mathcal{N}_n(\underline{a}) = \left| \left\{ b_1 \cdots b_n \in \{0,1\}^n : \sum_{i=1}^n a_i \beta^{-i} = \sum_{i=1}^n b_i \beta^{-i} \right\} \right|.$$

• Let
$$H_n(\beta) := -\sum_{a_1\cdots a_n \in \{0,1\}^n} \frac{1}{2^n} \log\left(\frac{\mathcal{N}_n(a_1\cdots a_n)}{2^n}\right)$$
.

• The Garsia entropy $H(\beta) := \lim_{n \to \infty} \frac{1}{n} H_n(\beta)$.

For $\beta \in (1,2)$ a solution of a polynomial with coefficients $\in \{-1,0,1\}$, β is

• Pisot if all other Galois conjugates β_i have $|\beta_i| < 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For $\beta \in (1,2)$ a solution of a polynomial with coefficients $\in \{-1,0,1\}$, β is

- ▶ Pisot if all other Galois conjugates β_i have $|\beta_i| < 1$
- Hyperbolic if all Galois conjugates β_i have $|\beta_i| \neq 1$

For $\beta \in (1,2)$ a solution of a polynomial with coefficients $\in \{-1,0,1\}$, β is

- ▶ Pisot if all other Galois conjugates β_i have $|\beta_i| < 1$
- Hyperbolic if all Galois conjugates β_i have $|\beta_i| \neq 1$
- Salem if all other Galois conjugates have β_i ≤ 1 with at least one of absolute value 1.

$$X_n := \{\sum_{i=1}^n a_i \beta^{-i} : a_1 \cdots a_n \in \{0,1\}^n\}.$$

$$X_n := \{\sum_{i=1}^n a_i \beta^{-i} : a_1 \cdots a_n \in \{0,1\}^n\}.$$

 (Shmerkin '14) ν_β is absolutely continuous for all β ∈ (1,2) \ E, where E is an (unknown) set of Hausdorff dimension zero.

(Hochman '14) For β algebraic,

$$\dim_H(
u_eta) = \min\left\{rac{H(eta)}{\log(eta)},1
ight\}$$
 .

$$X_n := \{\sum_{i=1}^n a_i \beta^{-i} : a_1 \cdots a_n \in \{0,1\}^n\}.$$

 (Shmerkin '14) ν_β is absolutely continuous for all β ∈ (1,2) \ E, where E is an (unknown) set of Hausdorff dimension zero.

$$\dim_{H}(
u_{eta}) = \min\left\{rac{H(eta)}{\log(eta)},1
ight\}.$$

(Breuillard, Varju '18) β ∈ (1,2) with dim_H(ν_β) < 1 are approximated by algebraic β ∈ (1,2) with dim_H(ν_β) < 1.</p>

$$X_n := \{\sum_{i=1}^n a_i \beta^{-i} : a_1 \cdots a_n \in \{0,1\}^n\}.$$

 (Shmerkin '14) ν_β is absolutely continuous for all β ∈ (1,2) \ E, where E is an (unknown) set of Hausdorff dimension zero.

$$\dim_{H}(
u_{eta}) = \min\left\{rac{H(eta)}{\log(eta)}, 1
ight\}.$$

- (Breuillard, Varju '18) β ∈ (1, 2) with dim_H(ν_β) < 1 are approximated by algebraic β ∈ (1, 2) with dim_H(ν_β) < 1.</p>
- If Pisot numbers are the only algebraic β ∈ (1,2) with dim_H(ν_β) < 1, then they are the only β ∈ (1,2) with dim_H(ν_β) < 1.</p>

Conclusion from last slide: If we can understand H(β) for algebraic β, then we understand dim_H(ν_β) for algebraic β, and possibly understand dim_H(ν_β) for all β.

・ロト・日本・モート モー うへぐ

Conclusion from last slide: If we can understand H(β) for algebraic β, then we understand dim_H(ν_β) for algebraic β, and possibly understand dim_H(ν_β) for all β.

Recall

$$\mathcal{N}_n(\underline{a}) = \left| \left\{ b_1 \cdots b_n \in \{0, 1\}^n : \sum_{i=1}^n a_i \beta^{-i} = \sum_{i=1}^n b_i \beta^{-i} \right\} \right|.$$
$$H(\beta) := \lim_{n \to \infty} \frac{-1}{n} \sum_{a_1 \cdots a_n \in \{0, 1\}^n} \frac{1}{2^n} \log \left(\frac{\mathcal{N}_n(a_1 \cdots a_n)}{2^n} \right)$$

Conclusion from last slide: If we can understand H(β) for algebraic β, then we understand dim_H(ν_β) for algebraic β, and possibly understand dim_H(ν_β) for all β.

Recall

$$\mathcal{N}_n(\underline{a}) = \left| \left\{ b_1 \cdots b_n \in \{0,1\}^n : \sum_{i=1}^n a_i \beta^{-i} = \sum_{i=1}^n b_i \beta^{-i} \right\} \right|.$$
$$H(\beta) := \lim_{n \to \infty} \frac{-1}{n} \sum_{a_1 \cdots a_n \in \{0,1\}^n} \frac{1}{2^n} \log \left(\frac{\mathcal{N}_n(a_1 \cdots a_n)}{2^n} \right)$$

Theorem (Akiyama, Feng, K., Persson) If $\beta \in (1,2)$ is algebraic with I conjugates of absolute value 1, there exists a constant C such that

$$\frac{1}{n}H_n(\beta)-\frac{C+l\log(n+1)}{n}\leq H(\beta)\leq \frac{1}{n}H_n(\beta).$$

Corollary

If $\beta \in (1,2)$ is a hyperbolic, non-Pisot solution of a $0, \pm 1$ polynomial of degree ≤ 5 , dim_H(ν_{β}) = 1. (27 such examples)

Corollary

If $\beta \in (1,2)$ is a hyperbolic, non-Pisot solution of a $0, \pm 1$ polynomial of degree ≤ 5 , dim_H(ν_{β}) = 1.

(27 such examples)

Very rapid estimation of dimension possible. For the (Pisot) β satisfying

$$\beta^4 - \beta^3 - 1 = 0$$

 $\dim_{H}(\nu_{\beta}) \in (0.99999, 1).$

Understanding Coincidences

Understanding Coincidences

$$\sum_{i=1}^{n} a_i \beta^{-i} = \sum_{i=1}^{n} b_i \beta^{-i}$$
$$\iff \sum_{i=1}^{n} (a_i - b_i) \beta^{n-i} = 0.$$

$$a_i, b_i \in \{0, 1\}, \ \epsilon_i := a_i - b_i \in \{-1, 0, 1\}.$$

Define $T_i = \beta x + i$ for $i \in \{-1, 0, 1\}.$

Understanding Coincidences

$$\sum_{i=1}^{n} a_i \beta^{-i} = \sum_{i=1}^{n} b_i \beta^{-i}$$
$$\iff \sum_{i=1}^{n} (a_i - b_i) \beta^{n-i} = 0.$$

$$a_i, b_i \in \{0, 1\}, \epsilon_i := a_i - b_i \in \{-1, 0, 1\}.$$

Define $T_i = \beta x + i$ for $i \in \{-1, 0, 1\}.$

$$\sum_{i=1}^{n} \epsilon_{i} \beta^{n-i} = T_{\epsilon_{n}} \circ T_{\epsilon_{n-1}} \circ \cdots \circ T_{\epsilon_{1}}(0)$$

$$\sum_{i=1}^{n} \epsilon_{i} \beta^{n-i} = T_{\epsilon_{n}} \circ T_{\epsilon_{n-1}} \circ \cdots \circ T_{\epsilon_{1}}(0)$$

Fact 1: If $T_{\epsilon_n} \circ T_{\epsilon_{n-1}} \circ \cdots \circ T_{\epsilon_1}(0) = 0$ then, for m < n,

$$T_{\epsilon_m} \circ T_{\epsilon_{n-1}} \circ \cdots \circ T_{\epsilon_1}(0) \in \left[rac{-1}{eta-1}, rac{1}{eta-1}
ight].$$

$$\sum_{i=1}^{n} \epsilon_{i} \beta^{n-i} = T_{\epsilon_{n}} \circ T_{\epsilon_{n-1}} \circ \cdots \circ T_{\epsilon_{1}}(0)$$

Fact 1: If $T_{\epsilon_n} \circ T_{\epsilon_{n-1}} \circ \cdots \circ T_{\epsilon_1}(0) = 0$ then, for m < n,

$$\mathcal{T}_{\epsilon_m} \circ \mathcal{T}_{\epsilon_{n-1}} \circ \cdots \circ \mathcal{T}_{\epsilon_1}(0) \in \left[rac{-1}{eta-1}, rac{1}{eta-1}
ight].$$

Fact 2: If β is Pisot then the set

$$V(\beta) := \{T_{\epsilon_n} \circ T_{\epsilon_{n-1}} \circ \cdots \circ T_{\epsilon_1}(0) : n \in \mathbb{N}, \epsilon_i \in \{-1, 0, 1\}\} \cap \left[\frac{-1}{\beta - 1}, \frac{1}{\beta - 1}\right]$$

is finite.

$$\sum_{i=1}^{n} \epsilon_{i} \beta^{n-i} = T_{\epsilon_{n}} \circ T_{\epsilon_{n-1}} \circ \cdots \circ T_{\epsilon_{1}}(0)$$

Fact 1: If $T_{\epsilon_n} \circ T_{\epsilon_{n-1}} \circ \cdots \circ T_{\epsilon_1}(0) = 0$ then, for m < n,

$$\mathcal{T}_{\epsilon_m} \circ \mathcal{T}_{\epsilon_{n-1}} \circ \cdots \circ \mathcal{T}_{\epsilon_1}(0) \in \left[rac{-1}{eta-1}, rac{1}{eta-1}
ight].$$

Fact 2: If β is Pisot then the set

$$V(\beta) := \{ T_{\epsilon_n} \circ T_{\epsilon_{n-1}} \circ \cdots \circ T_{\epsilon_1}(0) : n \in \mathbb{N}, \epsilon_i \in \{-1, 0, 1\} \} \cap \left[\frac{-1}{\beta - 1}, \frac{1}{\beta - 1} \right]$$

is finite.

So we have a finite graph \mathcal{G} with vertex set $V(\beta)$, edges labelled by $\{-1,0,1\}$ such that $\sum_{i=1}^{n} a_i \beta^{-i} = \sum_{i=1}^{n} b_i \beta^{-i}$ if and only if there is a path from 0 to 0 in \mathcal{G} made by following edges labelled $a_i - b_i$.

・ロト ・御 と ・ ヨト ・ ヨト

æ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

We can count all pairs $a_1 \cdots a_n, b_1 \cdots b_n$ with

$$\sum_{i=1}^{n} a_i \beta^{-i} = \sum_{i=1}^{n} b_i \beta^{-i}$$

by counting paths from 0 to 0 under these dynamics.

We want to fix \underline{a} and count all $b_1 \cdots b_n$ with

$$\sum_{i=1}^n a_i \beta^{-i} = \sum_{i=1}^n b_i \beta^{-i}.$$

We want to fix \underline{a} and count all $b_1 \cdots b_n$ with

$$\sum_{i=1}^n a_i \beta^{-i} = \sum_{i=1}^n b_i \beta^{-i}.$$

To do this make two subgraphs. $a_i = 1 \implies a_i - b_i \in \{0, 1\}.$ $a_i = 0 \implies a_i - b_i \in \{-1, 0\}.$

 M_0 corresponds to picking $a_n = 0$. Matrix indexed by finite set $V(\beta) = \{0 = v_1, \cdots, v_N\}$

 M_0 corresponds to picking $a_n = 0$. Matrix indexed by finite set $V(\beta) = \{0 = v_1, \cdots, v_N\}$

$$M_0(i,j) = \begin{cases} 1 & v_j = \beta v_i \text{ or } \beta v_i - 1 \\ 0 & \text{otherwise} \end{cases}$$

 M_0 corresponds to picking $a_n = 0$. Matrix indexed by finite set $V(\beta) = \{0 = v_1, \cdots, v_N\}$

$$M_0(i,j) = \begin{cases} 1 & v_j = \beta v_i \text{ or } \beta v_i - 1 \\ 0 & \text{otherwise} \end{cases}$$

$$M_1(i,j) = \begin{cases} 1 & v_j = \beta v_i \text{ or } \beta v_i + 1 \\ 0 & \text{otherwise} \end{cases}$$

 M_0 corresponds to picking $a_n = 0$. Matrix indexed by finite set $V(\beta) = \{0 = v_1, \cdots, v_N\}$

$$M_0(i,j) = \begin{cases} 1 & v_j = \beta v_i \text{ or } \beta v_i - 1 \\ 0 & \text{otherwise} \end{cases}$$

$$M_1(i,j) = \begin{cases} 1 & v_j = \beta v_i \text{ or } \beta v_i + 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{N}_n(\underline{a}) = (M_{a_n} \cdots M_{a_1})_{1,1}$$

 M_0 corresponds to picking $a_n = 0$. Matrix indexed by finite set $V(\beta) = \{0 = v_1, \cdots, v_N\}$

$$M_0(i,j) = \begin{cases} 1 & v_j = \beta v_i \text{ or } \beta v_i - 1 \\ 0 & \text{otherwise} \end{cases}$$

$$M_1(i,j) = \left\{ egin{array}{ccc} 1 & v_j = eta v_i ext{ or } eta v_i + 1 \ 0 & ext{ otherwise} \end{array}
ight.$$

$$\mathcal{N}_n(\underline{a}) = (M_{a_n} \cdots M_{a_1})_{1,1}$$

$$H_n(\beta) = -\sum_{a_1\cdots a_n} \frac{1}{2^n} \log\left(\frac{(M_{a_n}\cdots M_{a_1})_{1,1}}{2^n}\right).$$
Two Matrices

 M_0 corresponds to picking $a_n = 0$. Matrix indexed by finite set $V(\beta) = \{0 = v_1, \cdots, v_N\}$

$$M_0(i,j) = \begin{cases} 1 & v_j = \beta v_i \text{ or } \beta v_i - 1 \\ 0 & \text{otherwise} \end{cases}$$

$$M_1(i,j) = \begin{cases} 1 & v_j = \beta v_i \text{ or } \beta v_i + 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{N}_n(\underline{a}) = (M_{a_n} \cdots M_{a_1})_{1,1}$$

$$H_n(\beta) = -\sum_{a_1\cdots a_n} \frac{1}{2^n} \log\left(\frac{(M_{a_n}\cdots M_{a_1})_{1,1}}{2^n}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\frac{1}{n}H_n(\beta)$ decreases to limit $H(\beta)$.

$$H_n(\beta) = -\sum_{a_1\cdots a_n} \frac{1}{2^n} \log\left(\frac{(M_{a_n}\cdots M_{a_1})_{1,1}}{2^n}\right).$$

<□ > < @ > < E > < E > E のQ @

$$H_n(\beta) = -\sum_{a_1\cdots a_n} \frac{1}{2^n} \log\left(\frac{(M_{a_n}\cdots M_{a_1})_{1,1}}{2^n}\right).$$

Define

$$L_n(\beta) = -\sum_{a_1\cdots a_n} \frac{1}{2^n} \log\left(\frac{||M_{a_n}\cdots M_{a_1}||}{2^n}\right).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$H_n(\beta) = -\sum_{a_1\cdots a_n} \frac{1}{2^n} \log\left(\frac{(M_{a_n}\cdots M_{a_1})_{1,1}}{2^n}\right).$$

Define

$$L_n(\beta) = -\sum_{a_1\cdots a_n} \frac{1}{2^n} \log\left(\frac{||M_{a_n}\cdots M_{a_1}||}{2^n}\right).$$

 $\frac{1}{n}L_n(\beta) \leq \frac{1}{n}H_n(\beta)$ and $\frac{1}{n}L_n(\beta)$ increasing. So $L_n(\beta) \leq H(\beta)$.

$$H_n(\beta) = -\sum_{a_1\cdots a_n} \frac{1}{2^n} \log\left(\frac{(M_{a_n}\cdots M_{a_1})_{1,1}}{2^n}\right).$$

Define

$$L_n(\beta) = -\sum_{a_1\cdots a_n} \frac{1}{2^n} \log\left(\frac{||M_{a_n}\cdots M_{a_1}||}{2^n}\right).$$

 $\frac{1}{n}L_n(\beta) \leq \frac{1}{n}H_n(\beta)$ and $\frac{1}{n}L_n(\beta)$ increasing. So $L_n(\beta) \leq H(\beta)$.

This gives us the rate at which $\frac{1}{n}H_n(\beta)$ converges to $H(\beta)$.

The Hyperbolic Non-Pisot Case

Fact 3: Let β be algebraic and let β_2 be conjugate to β . Then

$$\sum_{i=1}^{n} \epsilon_i \beta^{n-i} = 0 \iff \sum_{i=1}^{n} \epsilon_i \beta_2^{n-i} = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Hyperbolic Non-Pisot Case

Fact 3: Let β be algebraic and let β_2 be conjugate to β . Then

$$\sum_{i=1}^{n} \epsilon_i \beta^{n-i} = 0 \iff \sum_{i=1}^{n} \epsilon_i \beta_2^{n-i} = 0.$$

So we can also look at the dynamics using $\beta_{\rm 2},$ and disregard orbits for which

$$\sum_{i=1}^{m} \epsilon_i \beta_2^{m-i} > |\frac{1}{\beta_2 - 1}|.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Hyperbolic Non-Pisot Case

Fact 3: Let β be algebraic and let β_2 be conjugate to β . Then

$$\sum_{i=1}^{n} \epsilon_i \beta^{n-i} = 0 \iff \sum_{i=1}^{n} \epsilon_i \beta_2^{n-i} = 0.$$

So we can also look at the dynamics using β_2 , and disregard orbits for which

$$\sum_{i=1}^m \epsilon_i \beta_2^{m-i} > |\frac{1}{\beta_2 - 1}|.$$

Fact 4: If $\beta \in (1,2)$ is hyperbolic, with conjugates β_2, \dots, β_k larger than one in modulus, then the set $V(\beta)$ of forward orbits

$$T_{\epsilon_n} \circ \cdots T_{\epsilon_1}(0)$$

with the restriction that for each $j \in \{1, \cdots, k\}$,

$$\sum_{i=1}^n \epsilon_i \beta_j^{n-i} \le |\frac{1}{\beta_j - 1}|.$$

The Non-Hyperbolic Case

The set $V(\beta)$ and the resulting matrices our now infinite. But we still get a rate of convergence if we mess around a bit.

(ロ)、(型)、(E)、(E)、 E) の(の)