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Beta Expansions

I Given β > 1, define πβ : {0, 1}N → Iβ =
[
0, 1

β−1

]
by

πβ(a) =
∞∑
i=1

aiβ
−i .

I Interested in the set Xβ = πβ({0, 1}N) ⊂ Iβ.

I Also interested in the measure νβ := m 1
2
◦ π−1β where m 1

2
is

the (12 ,
1
2) Bernoulli measure on {0, 1}N.

I Xβ and νβ are self similar: νβ satisfies

νβ =
1

2
(νβ ◦ T0 + νβ ◦ T1).

where Ti : R→ R by Ti (x) = βx − i .

I For νβ a.e. x , dimH(νβ) = limr→0
log(νβ(B(x ,r)))

log r .
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Key Questions:

For which β ∈ (1, 2) is νβ absolutely continuous? When does it
have dimension 1?

I (Jessen, Wintner ’35) νβ is always either absolutely
continuous or purely singular.

I (Erdős ’39) νβ is singular if β is a Pisot number. To date
these are the only known examples of singular Bernoulli
Convolutions.

I (Garsia ’50s) In fact dimH(νβ) < 1 when β is Pisot. Gave
countable class of β for which νβ is absolutely continuous.

I (Solomyak ’95) For Leb almost-every β ∈ (1, 2), νβ is
absolutely continuous.

Conjecture: νβ has dimension 1 for all non-algebraic β.

Conjecture: νβ has dimension 1 for all β except Pisot numbers,
and possibly Salem numbers.
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I (Erdős ’39) νβ is singular if β is a Pisot number. To date
these are the only known examples of singular Bernoulli
Convolutions.

I (Garsia ’50s) In fact dimH(νβ) < 1 when β is Pisot. Gave
countable class of β for which νβ is absolutely continuous.

I (Solomyak ’95) For Leb almost-every β ∈ (1, 2), νβ is
absolutely continuous.

Conjecture: νβ has dimension 1 for all non-algebraic β.

Conjecture: νβ has dimension 1 for all β except Pisot numbers,
and possibly Salem numbers.



Key Questions:

For which β ∈ (1, 2) is νβ absolutely continuous? When does it
have dimension 1?

I (Jessen, Wintner ’35) νβ is always either absolutely
continuous or purely singular.
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The non overlapping case

I If β > 2 then we can partition Xβ using the contractions T−1i :

Xβ = T−10 (Xβ) ∪ T−11 (Xβ).

I Define T : Xβ → Xβ by

T (x) =

{
T0(x) x ∈ T−10 (Xβ)

T1(x) x ∈ T−11 (Xβ)

I T also satisfies
T ◦ πβ = πβ ◦ σ

where σ is the left shift on {0, 1}N.

I T preserves measure νβ. Can study both Xβ and νβ using T ,
e.g. Dimension formulae, entropy, Lyapunov exponents...
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The overlapping case
I Question: How does all of this work in the overlapping case
β ∈ (1, 2)?

I Xβ = Iβ = [0, 1
β−1 ] is now trivial.

I The measure νβ, called the Bernoulli convolution, is now very
complicated. νβ self similar

νβ =
1

2
(νβ ◦ T0 + νβ ◦ T1).

I We could try to define T the same way:

0 1
β

1
β(β−1)

1
β−1

1
β−1

Figure : T (
∑∞

i=1 aiβ
−i ) =

∑∞
i=1 ai+1β

−i is ambiguous
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The Random β-transformation

Idea: ‘Flip a coin’ to decide which branch to take when there is
overlap in the dynamical system.

Define Kβ : {0, 1}N × Iβ → {0, 1}N × Iβ by

Kβ(ω, x) =


(ω, βx) x ∈ [0, 1β )

(σ(ω), βx − ω1) x ∈ [ 1β ,
1

β(β−1) ]

(ω, βx − 1) x ∈ [ 1
β(β−1) ,

1
β−1 ]

.

Can ’decode’ (ω, x) and write down an associated sequence a by
iterating Kβ and letting an be 0 or 1 according to whether we
applied βx or βx − 1 to the second coordinate.

This gives some imperfect upper bounds in multifractal analysis of
νβ.
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Option 2: A density based dynamical system.

Our second option only works when νβ is absolutely continuous.

Recall that

νβ =
1

2
(νβ ◦ T0 + νβ ◦ T1) .

This leads to a corresponding self similarity equation for the
density hβ:

hβ(x) =
β

2
(hβ(T0(x)) + hβ(T1(x))) .

We can use this self similarity equation to define a Lebesgue
measure preserving system.
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X = {(x , y) : x ∈ Iβ, 0 ≤ y ≤ hβ(x)}
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X0 = {(x , y) ∈ X : 0 ≤ y ≤ β
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hβ(βx)}

and X1 = X \ X0.
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Properties of (X , φ)

Then define the function φ : X → X by

φ(x , y) =


(
βx , 2yβ

)
(x , y) ∈ X0(

βx − 1, 2β (y − β
2hβ(βx))

)
(x , y) ∈ X1

.

I φ preserves two dimensional Lebesgue measure, which is the
measure of maximal entropy.

I Maps on to measure of maximal entropy for the previous
dynamical system K . Tells us how to slice this measure.

Theorem

The set π−1β (x) has positive finite

(
log 2
log β

log 2

)
-dimensional Hausdorff

measure for almost every x ∈ Iβ if and only if νβ is absolutely
continuous with bounded density.
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Main Goal

I Suppose β ∈ (1, 2) is a solution of a polynomial with
coefficients ∈ {−1, 0, 1}.

I Question: How can we understand coincidences in the set

Xn =

{
n∑

i=1

aiβ
−i : each ai ∈ {0, 1}

}
?

I More precisely, for a ∈ {0, 1}N, let

Nn(a) =

∣∣∣∣∣
{
b1 · · · bn ∈ {0, 1}n :

n∑
i=1

aiβ
−i =

n∑
i=1

biβ
−i

}∣∣∣∣∣ .
I Let Hn(β) := −

∑
a1···an∈{0,1}n

1
2n log

(
Nn(a1···an)

2n

)
.

I The Garsia entropy H(β) := limn→∞
1
nHn(β).
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For β ∈ (1, 2) a solution of a polynomial with coefficients
∈ {−1, 0, 1}, β is

I Pisot if all other Galois conjugates βi have |βi | < 1

I Hyperbolic if all Galois conjugates βi have |βi | 6= 1

I Salem if all other Galois conjugates have βi ≤ 1 with at least
one of absolute value 1.
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I (Hochman ’14) dimH(νβ) < 1 implies either that β is
algebraic or that min distance between different elements of
Xn tends to 0 superexponentially:

Xn := {
n∑

i=1

aiβ
−i : a1 · · · an ∈ {0, 1}n}.

I (Shmerkin ’14) νβ is absolutely continuous for all
β ∈ (1, 2) \ E , where E is an (unknown) set of Hausdorff
dimension zero.

I (Hochman ’14) For β algebraic,

dimH(νβ) = min

{
H(β)

log(β)
, 1

}
.

I (Breuillard, Varju ’18) β ∈ (1, 2) with dimH(νβ) < 1 are
approximated by algebraic β ∈ (1, 2) with dimH(νβ) < 1.

I If Pisot numbers are the only algebraic β ∈ (1, 2) with
dimH(νβ) < 1, then they are the only β ∈ (1, 2) with
dimH(νβ) < 1.
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I Conclusion from last slide: If we can understand H(β) for
algebraic β, then we understand dimH(νβ) for algebraic β,
and possibly understand dimH(νβ) for all β.

I Recall

Nn(a) =

∣∣∣∣∣
{
b1 · · · bn ∈ {0, 1}n :

n∑
i=1

aiβ
−i =

n∑
i=1

biβ
−i

}∣∣∣∣∣ .
H(β) := lim

n→∞

−1

n

∑
a1···an∈{0,1}n

1

2n
log

(
Nn(a1 · · · an)

2n

)

Theorem (Akiyama, Feng, K., Persson)

If β ∈ (1, 2) is algebraic with l conjugates of absolute value 1,
there exists a constant C such that

1

n
Hn(β)− C + l log(n + 1)

n
≤ H(β) ≤ 1

n
Hn(β).
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Corollary

If β ∈ (1, 2) is a hyperbolic, non-Pisot solution of a 0,±1
polynomial of degree ≤ 5 , dimH(νβ) = 1.

(27 such examples)

Very rapid estimation of dimension possible. For the (Pisot) β
satisfying

β4 − β3 − 1 = 0

dimH(νβ) ∈ (0.99999, 1).
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Understanding Coincidences

n∑
i=1

aiβ
−i =

n∑
i=1

biβ
−i

⇐⇒
n∑

i=1

(ai − bi )β
n−i = 0.

ai , bi ∈ {0, 1}, εi := ai − bi ∈ {−1, 0, 1}.
Define Ti = βx + i for i ∈ {−1, 0, 1}.
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n∑
i=1

εiβ
n−i = Tεn ◦ Tεn−1 ◦ · · · ◦ Tε1(0)

Fact 1: If Tεn ◦ Tεn−1 ◦ · · · ◦ Tε1(0) = 0 then, for m < n,

Tεm ◦ Tεn−1 ◦ · · · ◦ Tε1(0) ∈
[
−1

β − 1
,

1

β − 1

]
.

Fact 2: If β is Pisot then the set

V (β) := {Tεn◦Tεn−1◦· · ·◦Tε1(0) : n ∈ N, εi ∈ {−1, 0, 1}}∩
[
−1

β − 1
,

1

β − 1

]
is finite.
So we have a finite graph G with vertex set V (β), edges labelled by
{−1, 0, 1} such that

∑n
i=1 aiβ

−i =
∑n

i=1 biβ
−i if and only if there

is a path from 0 to 0 in G made by following edges labelled ai − bi .
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We can count all pairs a1 · · · an, b1 · · · bn with

n∑
i=1

aiβ
−i =

n∑
i=1

biβ
−i

by counting paths from 0 to 0 under these dynamics.
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We want to fix a and count all b1 · · · bn with

n∑
i=1

aiβ
−i =

n∑
i=1

biβ
−i .

To do this make two subgraphs. ai = 1 =⇒ ai − bi ∈ {0, 1}.
ai = 0 =⇒ ai − bi ∈ {−1, 0}.
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Two Matrices

M0 corresponds to picking an = 0. Matrix indexed by finite set
V (β) = {0 = v1, · · · , vN}

M0(i , j) =

{
1 vj = βvi or βvi − 1
0 otherwise

M1(i , j) =

{
1 vj = βvi or βvi + 1
0 otherwise

Nn(a) = (Man · · ·Ma1)1,1 .

Hn(β) = −
∑
a1···an

1

2n
log

(
(Man · · ·Ma1)1,1

2n

)
.

1
nHn(β) decreases to limit H(β).
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Lower Bounds

Hn(β) = −
∑
a1···an

1

2n
log

(
(Man · · ·Ma1)1,1

2n

)
.

Define

Ln(β) = −
∑
a1···an

1

2n
log

(
||Man · · ·Ma1 ||

2n

)
.

1
nLn(β) ≤ 1

nHn(β) and 1
nLn(β) increasing. So Ln(β) ≤ H(β).

This gives us the rate at which 1
nHn(β) converges to H(β).
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The Hyperbolic Non-Pisot Case
Fact 3: Let β be algebraic and let β2 be conjugate to β. Then

n∑
i=1

εiβ
n−i = 0 ⇐⇒

n∑
i=1

εiβ
n−i
2 = 0.

So we can also look at the dynamics using β2, and disregard orbits
for which

m∑
i=1

εiβ
m−i
2 > | 1

β2 − 1
|.

Fact 4: If β ∈ (1, 2) is hyperbolic, with conjugates β2, · · ·βk larger
than one in modulus, then the set V (β) of forward orbits

Tεn ◦ · · ·Tε1(0)

with the restriction that for each j ∈ {1, · · · , k},
n∑

i=1

εiβ
n−i
j ≤ | 1

βj − 1
|.

is finite. So everything works as in the Pisot case.
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The Non-Hyperbolic Case

The set V (β) and the resulting matrices our now infinite. But we
still get a rate of convergence if we mess around a bit.


