Tiling Cohomology and Quasiperiodic Baked Goods

Lorenzo Sadun

University of Texas

June 8, 2018

< A > <

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology, transport, and ergodic averages

Table of Contents

1 Motivation

- 2 Tiling spaces
- Inverse limits
- 4 Pattern-Equivariant Cohomology
- 5 Shape changes
- 6 Topological conjugacies
- 🕜 Top cohomology, transport, and ergodic averages

Three key questions

For every mathematical concept:

• What is it?

Lorenzo Sadun Tiling Cohomology

Three key questions

For every mathematical concept:

- What is it?
- How do you compute it?

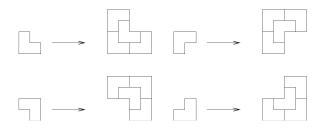
Three key questions

For every mathematical concept:

- What is it?
- How do you compute it?
- Why in blazes should you care?

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology, transport, and ergodic averages

Puzzle 1: Mass transport

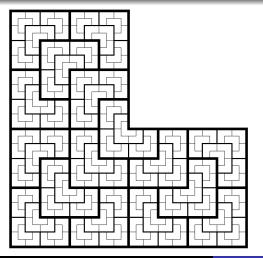


< □ > < 同 > < 回 >

э

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology, transport, and ergodic averages

Musical chairs



Lorenzo Sadun

æ

Three different mass distributions

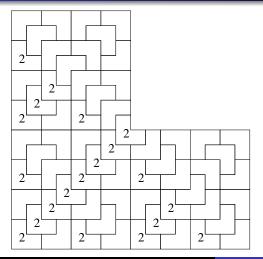
- f₁ puts 2 kg on every tile that sits in the standard L configuration, i.e. missing the northeast corner, and no mass on the other three kinds of tiles.
- *f*₂ puts 1 kg on every tile that is missing a NE or SW corner, and none on tiles that are missing NW or SE corners.
- f₃ puts 1 kg on every tile that is missing a NW or SE corner, and non on tiles that are missing NE or SW corners.

Three different mass distributions

- f₁ puts 2 kg on every tile that sits in the standard L configuration, i.e. missing the northeast corner, and no mass on the other three kinds of tiles.
- *f*₂ puts 1 kg on every tile that is missing a NE or SW corner, and none on tiles that are missing NW or SE corners.
- f₃ puts 1 kg on every tile that is missing a NW or SE corner, and non on tiles that are missing NE or SW corners.
- All three distributions have overall density 0.5 kg/tile. Which are related by bounded/wPE/sPE transport?

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology, transport, and ergodic averages

2 kg on the NE chairs

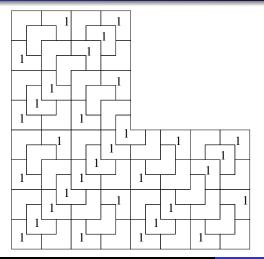


Lorenzo Sadun

æ

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology, transport, and ergodic averages

1 kg on the NE and SW chairs



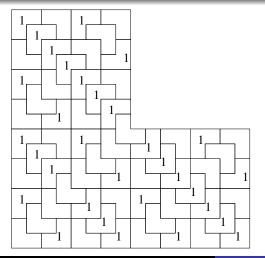
Lorenzo Sadun

イロト イポト イヨト イヨト

æ

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology, transport, and ergodic averages

1 kg on the NW and SE chairs



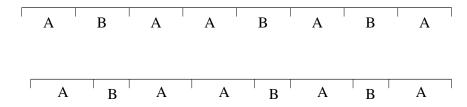
Lorenzo Sadun

イロト イボト イヨト イヨト

э

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology, transport, and ergodic averages

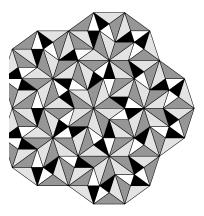
Puzzle 2: Fibonacci shape changes



How are these tilings related? How do their diffraction patterns compare?

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology, transport, and ergodic averages

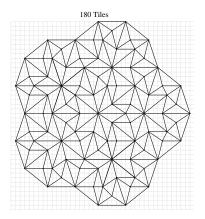
Puzzle 3: Penrose shape changes



< D > < A > < B > < B >

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology, transport, and ergodic averages

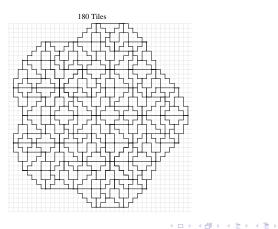
Rational Penrose



æ

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology, transport, and ergodic averages

Squared off Penrose



æ

Puzzle 4: Ergodic averages

Thue-Morse tiling: $A \rightarrow AB$, $B \rightarrow BA$,

What are the maximum/minimum number of times that the pattern ABA appears in a sub-word of length N? How does the variation scale with N?

Table of Contents

Motivation

- 2 Tiling spaces
- Inverse limits
- Pattern-Equivariant Cohomology
- 5 Shape changes
- 6 Topological conjugacies
- 🕜 Top cohomology, transport, and ergodic averages

FLC tiling metric

 Idea for FLC tilings: Two tilings with the same set of tile types are ε close if they agree on B_{1/ε}, up to an ε translation.

FLC tiling metric

- Idea for FLC tilings: Two tilings with the same set of tile types are ε close if they agree on B_{1/ε}, up to an ε translation.
- If you want to allow rotations, shears, or an infinite variety of tile types, it's a little more complicated.

Motivation Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Topological conjugacies Topological conjugacies

FLC tiling metric

- Idea for FLC tilings: Two tilings with the same set of tile types are ε close if they agree on B_{1/ε}, up to an ε translation.
- If you want to allow rotations, shears, or an infinite variety of tile types, it's a little more complicated.
- (We won't go there)

Continuous Hulls

Simplest way to build a tiling space:

• Start with an FLC tiling T.

Continuous Hulls

Simplest way to build a tiling space:

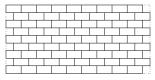
- Start with an FLC tiling T.
- Consider the set $\{T x\}$ of translates of T.

Continuous Hulls

Simplest way to build a tiling space:

- Start with an FLC tiling T.
- Consider the set $\{T x\}$ of translates of T.
- $\Omega_T = \overline{\{T x\}}$. $T' \in \Omega_T$ iff every patch of T' appears somewhere in T.
- Orbit closure of T = Tiling space of T = Continuous hull of T.

Hulls of periodic tilings

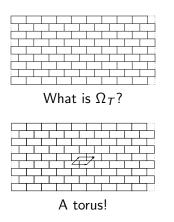


What is Ω_T ?

æ

< 17 ► <

Hulls of periodic tilings



æ

< □ > < 同 > < 回 >

A non-periodic example

 $T = \ldots AAAA.BBBB \ldots$ "=" $A^{\infty}.B^{\infty}$.

What is Ω_T ?

Lorenzo Sadun Tiling Cohomology

< □ > < 同 > < 回 >

э

A non-periodic example

$$T = \ldots AAAA.BBBB \ldots$$
 "=" $A^{\infty}.B^{\infty}$.

What is Ω_T ?

• Orbit of T is copy of \mathbb{R} .

A non-periodic example

$$T = \dots AAAA.BBBB \dots "=" A^{\infty}.B^{\infty}.$$

What is Ω_T ?

- Orbit of T is copy of \mathbb{R} .
- As x → -∞, T x approaches periodic ... AAAAA... tiling. Limiting circle.

▲ 同 ▶ ▲ 三

A non-periodic example

$$T = \dots AAAA.BBBB \dots "=" A^{\infty}.B^{\infty}.$$

What is Ω_T ?

- Orbit of T is copy of \mathbb{R} .
- As x → -∞, T x approaches periodic ... AAAAA... tiling. Limiting circle.
- As x → ∞, T − x approaches periodic ... BBBBB ... tiling. Limiting circle.

• 同 • < 三 •</p>

A non-periodic example

$$T = \dots AAAA.BBBB \dots "=" A^{\infty}.B^{\infty}.$$

What is Ω_T ?

- Orbit of T is copy of \mathbb{R} .
- As x → -∞, T x approaches periodic ... AAAAA... tiling. Limiting circle.
- As x → ∞, T − x approaches periodic ... BBBBB ... tiling. Limiting circle.
- Hull = slinky! Connected but not path-connected.

▲□► < □►</p>

Local topology

If ${\mathcal T}$ is a tiling, what does an $\epsilon\text{-neighborhood}$ of ${\mathcal T}$ in $\Omega_{{\mathcal T}}$ look like?

< □ > < 同 > < 回 >

Local topology

If T is a tiling, what does an ϵ -neighborhood of T in Ω_T look like?

- Restrict T to $B_{1/\epsilon}$.
- Move T by up to ϵ : continuous degrees of freedom.
- Fill out near ∞ . Discrete choices.
- Neighborhood $\sim B_{\epsilon} \times C$.

• 同 • < 三 •</p>

Table of Contents

Motivation

- 2 Tiling spaces
- Inverse limits
- Pattern-Equivariant Cohomology
- 5 Shape changes
- 6 Topological conjugacies
- 🕜 Top cohomology, transport, and ergodic averages

Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps,

$$X = \varprojlim X_i := \{(x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \forall n \}.$$

< □ > < 同 > < 回 > <</p>

Inverse limits in general

If X_0, X_1, \ldots are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps,

$$X = \varprojlim X_i := \{(x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \forall n \}.$$

 X_n is called *n*-th approximant to X, since x_n determines (x_0, \ldots, x_n) .

< □ > < 同 > < 回 >

Inverse limits in general

If
$$X_0, X_1, \ldots$$
 are spaces and $\rho_n : X_n \to X_{n-1}$ are continuous maps,

$$X = \varprojlim X_i := \{(x_0, x_1, \ldots) \in \prod X_n | \rho_n(x_n) = x_{n-1} \forall n \}.$$

 X_n is called *n*-th approximant to X, since x_n determines (x_0, \ldots, x_n) .

X has the product topology. $(x_0, x_1, ...)$ is close to $(y_0, y_1, ...)$ if $x_i \approx y_i$ for all $i \leq N$. I.e. if $x_N \approx y_N$.

< 同 × I = >

Dyadic Solenoid

Example of inverse limit space. Take

•
$$X_n = \mathbb{R}/(2^n\mathbb{Z}) \simeq S^1$$
.

< □ > <

Dyadic Solenoid

Example of inverse limit space. Take

•
$$X_n = \mathbb{R}/(2^n\mathbb{Z}) \simeq S^1$$
.

• ρ_n induced by identity on \mathbb{R} . Winds X_n twice around X_{n-1} .

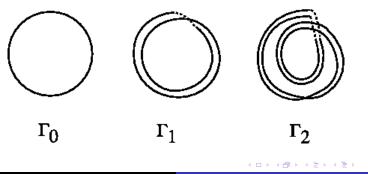
< A > <

Dyadic Solenoid

Example of inverse limit space. Take

•
$$X_n = \mathbb{R}/(2^n\mathbb{Z}) \simeq S^1$$
.

• ρ_n induced by identity on \mathbb{R} . Winds X_n twice around X_{n-1} .



Tiling spaces are inverse limits

• CW complex Γ_n describes tiling out to distance that grows with n.

< A > <

Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.

▲ 同 ▶ → 三 ▶

Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, (mostly) same strategy.

< A > <

Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, (mostly) same strategy.
- $\lim_{n \to \infty} \Gamma_n = \text{consistent instructions for tiling bigger and bigger regions, i.e. instructions for a complete tiling.$

Motivation Tiling spaces **Inverse limits** Pattern-Equivariant Cohomology Shape changes Topological conjugacies Topological conjugacies

Tiling spaces are inverse limits

- CW complex Γ_n describes tiling out to distance that grows with n.
- ρ_n is forgetful map.
- Many different schemes: different details, (mostly) same strategy.
- $\varprojlim \Gamma_n = \text{consistent instructions for tiling bigger and bigger regions, i.e. instructions for a complete tiling.$
- So how do instructions for partial tilings turn into a CW complex?!

< /₽ > < E >

Anderson-Putnam Complex

Anderson-Putnam Complex

To place a tile at the origin, need:

• Choice of tile type t_i .

Anderson-Putnam Complex

- Choice of tile type t_i .
- Choice of point in t_i to associate with origin.

Anderson-Putnam Complex

- Choice of tile type t_i .
- Choice of point in t_i to associate with origin.
- What if origin is on boundary of 2 (or more tiles)? Identify!

Anderson-Putnam Complex

- Choice of tile type t_i.
- Choice of point in t_i to associate with origin.
- What if origin is on boundary of 2 (or more tiles)? Identify!
- $\Gamma_0 = \prod t_i / \sim$ is the Anderson-Putnam complex.

Motivation Tiling spaces **Inverse limits** Pattern-Equivariant Cohomology Shape changes Topological conjugacies Topological conjugacies Topologica verages

Collared tiles

- Start with a tiling T.
- Equivalent tiles have same label and same pattern of immediate neighbors.

< A > <

Motivation Tiling spaces **Inverse limits** Pattern-Equivariant Cohomology Shape changes Topological conjugacies Topological conjugacies Topological conjugacies

Collared tiles

- Start with a tiling T.
- Equivalent tiles have same label and same pattern of immediate neighbors.
- Equivalence classes are called collared tiles.

Collared tiles

- Start with a tiling T.
- Equivalent tiles have same label and same pattern of immediate neighbors.
- Equivalence classes are called collared tiles.
- Relabeling tiling with collared tiles is local operation. Does not change space.

Collared tiles

- Start with a tiling T.
- Equivalent tiles have same label and same pattern of immediate neighbors.
- Equivalence classes are called collared tiles.
- Relabeling tiling with collared tiles is local operation. Does not change space.
- Can be repeated to get *n*-times collared tiles.

Collared Fibonacci

Fibonacci sequence in 1D contains

... abaababaabaababaababa ...

Motivation Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Topologica verages

Collared Fibonacci

Fibonacci sequence in 1D contains

... abaababaabaababaababa ...

• Only one "b" collared tile: B = (a)b(a).

Collared Fibonacci

Fibonacci sequence in 1D contains

... abaababaabaababaababa ...

- Only one "b" collared tile: B = (a)b(a).
- Three "a" collared tiles: $A_1 = (b)a(b)$, $A_2 = (a)a(b)$, $A_3 = (b)a(a)$.

Collared Fibonacci

Fibonacci sequence in 1D contains

... abaababaabaababaababa ...

- Only one "b" collared tile: B = (a)b(a).
- Three "a" collared tiles: $A_1 = (b)a(b)$, $A_2 = (a)a(b)$, $A_3 = (b)a(a)$.
- Sequence becomes

 $\dots BA_3A_2BA_1BA_3A_2BA_3A_2BA_1BA_3A_2BA_1B\dots$

Collared Fibonacci

Fibonacci sequence in 1D contains

... abaababaabaababaababa ...

- Only one "b" collared tile: B = (a)b(a).
- Three "a" collared tiles: $A_1 = (b)a(b)$, $A_2 = (a)a(b)$, $A_3 = (b)a(a)$.
- Sequence becomes

 $\dots BA_3A_2BA_1BA_3A_2BA_3A_2BA_1BA_3A_2BA_1B\dots$

• Collared tiles have same size as regular tiles, but carry more info.

Gähler's construction

• Let Γ^n be the Anderson-Putnam complex of *n*-collared tiles.

< A > <

- Let Γ^n be the Anderson-Putnam complex of *n*-collared tiles.
- Point in Γ^n describes tile at origin plus *n*th nearest neighbors.

- Let Γ^n be the Anderson-Putnam complex of *n*-collared tiles.
- Point in Γ^n describes tile at origin plus *n*th nearest neighbors.
- Edge identification can reduce that to n-1. No sweat.

- Let Γ^n be the Anderson-Putnam complex of *n*-collared tiles.
- Point in Γ^n describes tile at origin plus *n*th nearest neighbors.
- Edge identification can reduce that to n-1. No sweat.
- $\Omega = \varprojlim \Gamma^n$.

- Let Γ^n be the Anderson-Putnam complex of *n*-collared tiles.
- Point in Γ^n describes tile at origin plus *n*th nearest neighbors.
- Edge identification can reduce that to n-1. No sweat.
- $\Omega = \varprojlim \Gamma^n$.
- Conceptually very powerful idea. Great for proving theorems.

- Let Γ^n be the Anderson-Putnam complex of *n*-collared tiles.
- Point in Γ^n describes tile at origin plus *n*th nearest neighbors.
- Edge identification can reduce that to n-1. No sweat.
- $\Omega = \varprojlim \Gamma^n$.
- Conceptually very powerful idea. Great for proving theorems.
- Calculationally not so much, since Γ^n 's are all different.

Substitution tilings

1-dimensional example (Fibonacci) : $a \rightarrow ab$, $b \rightarrow a$.

< □ > < 同 > < 回 >

э

Motivation
Tiling spaces
Inverse limits
Pattern-Equivariant Cohomology
Shape changes
Topological conjugacies
Top cohomology, transport, and ergodic averages

Substitution tilings

```
1-dimensional example (Fibonacci) : a \rightarrow ab, b \rightarrow a.

a

ab

ab

ab.a

ab.a.ab

ab.a.ab.a.ab.a.ab

ab.a.ab
```

```
Motivation
Tiling spaces
Inverse limits
Pattern-Equivariant Cohomology
Shape changes
Topological conjugacies
Top cohomology, transport, and ergodic averages
```

Substitution tilings

```
1-dimensional example (Fibonacci) : a \rightarrow ab, b \rightarrow a.

a

ab

ab

ab.

ab.a

ab.a.ab

ab.a.ab.ab.a

ab.a.ab.a.ab.a.ab.

A word is legal if it sits inside one of these patterns.
```

A word is legal if it sits inside one of these patterns. A bi-infinite word is legal if every sub-word is legal. Make into self-similar tilings by assigning length $(1 + \sqrt{5})/2$ to a tile and 1 to b tile.

Anderson-Putnam inverse limits

• Applies to substitutions that "force the border".

▲ 同 ▶ ▲ 三

Anderson-Putnam inverse limits

- Applies to substitutions that "force the border".
- Let Γⁿ be Anderson-Putnam complex of n-supertiles. A point in Γⁿ describes the n-supertile containing the origin.

Anderson-Putnam inverse limits

- Applies to substitutions that "force the border".
- Let Γⁿ be Anderson-Putnam complex of n-supertiles. A point in Γⁿ describes the n-supertile containing the origin.
- All Γ^n 's are the same, up to scale.
- $\Omega = \varprojlim(\Gamma, \sigma)$. One approximant. One expansive map.

Anderson-Putnam inverse limits

- Applies to substitutions that "force the border".
- Let Γⁿ be Anderson-Putnam complex of n-supertiles. A point in Γⁿ describes the n-supertile containing the origin.
- All Γ^{n} 's are the same, up to scale.
- $\Omega = \underline{\lim}(\Gamma, \sigma)$. One approximant. One expansive map.
- To get border forcing, collar once (if necessary).

- Various tricks to collar as little as possible.
- Barge-Diamond-Hunton-Sadun. Don't collar tiles. Collar points.

- Various tricks to collar as little as possible.
- Barge-Diamond-Hunton-Sadun. Don't collar tiles. Collar points.
- Bellissard-Benedetti-Gambaudo. Aggregate collared tiles into large patches.

- Various tricks to collar as little as possible.
- Barge-Diamond-Hunton-Sadun. Don't collar tiles. Collar points.
- Bellissard-Benedetti-Gambaudo. Aggregate collared tiles into large patches.
- (Forest-Hunton-Kellendonk have a different sort of inverse limit construction for cut-and-project tilings)

- Various tricks to collar as little as possible.
- Barge-Diamond-Hunton-Sadun. Don't collar tiles. Collar points.
- Bellissard-Benedetti-Gambaudo. Aggregate collared tiles into large patches.
- (Forest-Hunton-Kellendonk have a different sort of inverse limit construction for cut-and-project tilings)
- Can express tilings with infinite local complexity as inverse limits, too. Details depend on setting.

Table of Contents

- Motivation
- 2 Tiling spaces
- Inverse limits
- Pattern-Equivariant Cohomology
- 5 Shape changes
- 6 Topological conjugacies
- 🕜 Top cohomology, transport, and ergodic averages

Pattern-equivariant functions and forms

- Given a tiling *T*, a function *f*(*x*) on ℝⁿ is strongly pattern-equivariant (sPE) if ∃*R* > 0 s.t. *x* depends only on tiling on B_R(*x*). (Think: finite range potentials)
- That is, if T x and T y agree on $B_R(0)$, then f(x) = f(y).

Pattern-equivariant functions and forms

- Given a tiling *T*, a function *f*(*x*) on ℝⁿ is strongly pattern-equivariant (sPE) if ∃*R* > 0 s.t. *x* depends only on tiling on B_R(*x*). (Think: finite range potentials)
- That is, if T x and T y agree on $B_R(0)$, then f(x) = f(y).
- Weakly PE functions are uniform limits of sPE functions. For each ε > 0 there is an R_ε s.t. f(x) is determined to within ε by T on B_{R_ε}(x).

▲ 同 ▶ ▲ 三 ▶ ▲

Pattern-equivariant functions and forms

- Given a tiling *T*, a function *f*(*x*) on ℝⁿ is strongly pattern-equivariant (sPE) if ∃*R* > 0 s.t. *x* depends only on tiling on B_R(*x*). (Think: finite range potentials)
- That is, if T x and T y agree on $B_R(0)$, then f(x) = f(y).
- Weakly PE functions are uniform limits of sPE functions. For each ε > 0 there is an R_ε s.t. f(x) is determined to within ε by T on B_{R_ε}(x).
- Strongly/weakly PE forms are strongly/weakly PE functions times dxⁱ ∧ dx^j ∧ · · · .

< ロ > < 同 > < 三 > < 三 >

Pattern-equivariant functions and forms

- Given a tiling *T*, a function *f*(*x*) on ℝⁿ is strongly pattern-equivariant (sPE) if ∃*R* > 0 s.t. *x* depends only on tiling on B_R(*x*). (Think: finite range potentials)
- That is, if T x and T y agree on $B_R(0)$, then f(x) = f(y).
- Weakly PE functions are uniform limits of sPE functions. For each ε > 0 there is an R_ε s.t. f(x) is determined to within ε by T on B_{R_ε}(x).
- Strongly/weakly PE forms are strongly/weakly PE functions times dxⁱ ∧ dx^j ∧ · · · .
- If α is a PE form, so is $d\alpha$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Pattern-equivariant functions and forms

- Given a tiling *T*, a function *f*(*x*) on ℝⁿ is strongly pattern-equivariant (sPE) if ∃*R* > 0 s.t. *x* depends only on tiling on *B_R*(*x*). (Think: finite range potentials)
- That is, if T x and T y agree on $B_R(0)$, then f(x) = f(y).
- Weakly PE functions are uniform limits of sPE functions. For each ε > 0 there is an R_ε s.t. f(x) is determined to within ε by T on B_{R_ε}(x).
- Strongly/weakly PE forms are strongly/weakly PE functions times $dx^i \wedge dx^j \wedge \cdots$.
- If α is a PE form, so is $d\alpha$.
- $H_{PE}^{k}(T) = \text{closed sPE } k \text{-forms } / d(\text{sPE } k 1 \text{ forms}).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Pattern-equivariant cochains

- A tiling *T* gives a decomposition of ℝⁿ into vertices, edges, 2-cells, 3-cells, etc. Tiles are *n*-cells. Orient the cells arbitrarily.
- A (real-valued) *k*-cochain assigns a real number to each oriented *k*-cell. A mass distribution is just an *n*-cochain.
- k-cochains can be sPE or wPE.
- Coboundaries: If α is a k-cochain, and c is a (k + 1)-cell, then (δα)(c) := α(∂c).
- If α is wPE/sPE, so is $\delta \alpha$.
- Let Ω_w^k and Ω_s^k denote the weakly and strongly PE k-cochains on T.

・ 一 マ ト ・ 日 ト ・

Strong PE cohomology

A strongly PE cochain α is said to be

• Closed is $\delta \alpha = 0$,

< □ > < 同 > < 回 >

Strong PE cohomology

A strongly PE cochain α is said to be

- Closed is $\delta \alpha = 0$,
- Exact if $\alpha = \delta\beta$ for some sPE cochain β ,

Strong PE cohomology

A strongly PE cochain α is said to be

- Closed is $\delta \alpha = 0$,
- Exact if $\alpha = \delta\beta$ for some sPE cochain β ,
- Weakly exact if $\alpha = \delta \gamma$ for some wPE cochain γ .

Strong PE cohomology

A strongly PE cochain α is said to be

• Closed is
$$\delta \alpha = 0$$
,

- Exact if $\alpha = \delta \beta$ for some sPE cochain β ,
- Weakly exact if $\alpha = \delta \gamma$ for some wPE cochain γ .

• $H_{PE}^{k}(T) = \frac{\text{Closed } k\text{-cochains}}{\text{Exact } k\text{-cochains}}$ (Same answer as with forms!)

Strong PE cohomology

A strongly PE cochain α is said to be

- Closed is $\delta \alpha = 0$,
- Exact if $\alpha = \delta\beta$ for some sPE cochain β ,
- Weakly exact if $\alpha = \delta \gamma$ for some wPE cochain γ .
- $H_{PE}^{k}(T) = \frac{\text{Closed } k\text{-cochains}}{\text{Exact } k\text{-cochains}}$ (Same answer as with forms!)
- A cohomology class is *asymptotically negligible (AN)* if it can be respresented by a weakly exact cochain/form.

A topological invariant

Theorem (Kellendonk-Putnam, S)

If T is a repetitive tiling, then H_{PE}^k is canonically isomorphic to the k-th real-valued Čech cohomology $\check{H}^k(\Omega_T)$, where Ω_T is the continuous hull of T. In particular, all tilings in Ω_T have the same PE cohomology.

What the heck is Čech cohomology?!

• Complicated definition involving combinatorics of open covers.

What the heck is Čech cohomology?!

- Complicated definition involving combinatorics of open covers.
- TMI! Just need 2 key properties:

What the heck is Čech cohomology?!

- Complicated definition involving combinatorics of open covers.
- TMI! Just need 2 key properties:
 - If X is a CW complex, $\check{H}^*(X) = H^*(X)$.
 - If $X = \varprojlim X_i$, $\check{H}^*(X) = \varinjlim \check{H}^*(X_i)$.

What the heck is Čech cohomology?!

- Complicated definition involving combinatorics of open covers.
- TMI! Just need 2 key properties:
 - If X is a CW complex, $\check{H}^*(X) = H^*(X)$.
 - If $X = \varprojlim X_i$, $\check{H}^*(X) = \varinjlim \check{H}^*(X_i)$.
- Strategy: Write tiling space Ω as inverse limit of CW complexes Γ_i. Then

What the heck is Čech cohomology?!

- Complicated definition involving combinatorics of open covers.
- TMI! Just need 2 key properties:
 - If X is a CW complex, $\check{H}^*(X) = H^*(X)$.

• If
$$X = \varprojlim X_i$$
, $\check{H}^*(X) = \varinjlim \check{H}^*(X_i)$.

Strategy: Write tiling space Ω as inverse limit of CW complexes Γ_i. Then

$$\check{H}^*(\Omega) = \varinjlim \check{H}^*(\Gamma_i) = \varinjlim H^*(\Gamma_i).$$

What the heck is Čech cohomology?!

- Complicated definition involving combinatorics of open covers.
- TMI! Just need 2 key properties:
 - If X is a CW complex, $\check{H}^*(X) = H^*(X)$.

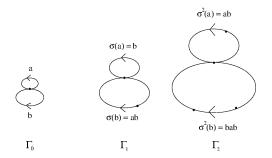
• If
$$X = \varprojlim X_i$$
, $\check{H}^*(X) = \varinjlim \check{H}^*(X_i)$.

Strategy: Write tiling space Ω as inverse limit of CW complexes Γ_i. Then

$$\check{H}^*(\Omega) = \varinjlim \check{H}^*(\Gamma_i) = \varinjlim H^*(\Gamma_i).$$

But we already did that!

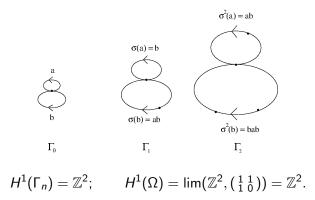
Fibonacci



< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Fibonacci



イロト イヨト イヨト

æ

Chair

• Approximant has $H^1(\Gamma) = \mathbb{Z}^2$, $H^2(\Gamma) = \mathbb{Z}^3$.

э

(日)

Chair

- Approximant has $H^1(\Gamma) = \mathbb{Z}^2$, $H^2(\Gamma) = \mathbb{Z}^3$.
- Substitution acts as $\times 2$ on H^1 , as matrix with eigenvalues 4, 2, 2 on H^2 .

< A > <

Chair

- Approximant has $H^1(\Gamma) = \mathbb{Z}^2$, $H^2(\Gamma) = \mathbb{Z}^3$.
- Substitution acts as $\times 2$ on H^1 , as matrix with eigenvalues 4,2,2 on H^2 .
- $H^1(\Omega) = \mathbb{Z}[1/2]^2$, $H^2(\Omega) = \frac{1}{3}\mathbb{Z}[1/4] \oplus \mathbb{Z}[1/2]^2$.

< 🗇 🕨 < 🖃 🕨

Penrose

• Approximant has $H^1(\Gamma) = \mathbb{Z}^5$, $H^2(\Gamma) = \mathbb{Z}^8$.

э

< □ > < 同 > < 回 >

Penrose

- Approximant has $H^1(\Gamma) = \mathbb{Z}^5$, $H^2(\Gamma) = \mathbb{Z}^8$.
- Substitution acts by invertible matrices on both H^1 and H^2 .

< A ▶

Penrose

- Approximant has $H^1(\Gamma) = \mathbb{Z}^5$, $H^2(\Gamma) = \mathbb{Z}^8$.
- Substitution acts by invertible matrices on both H^1 and H^2 .

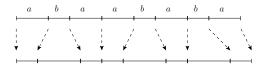
•
$$H^1(\Omega) = \mathbb{Z}^5$$
, $H^2(\Omega) = \mathbb{Z}^8$.

< A ▶

Table of Contents

- Motivation
- 2 Tiling spaces
- Inverse limits
- 4 Pattern-Equivariant Cohomology
- 5 Shape changes
- 6 Topological conjugacies
- 🕜 Top cohomology, transport, and ergodic averages

1D shape changes

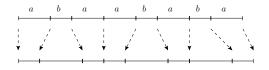


・ロト ・ 一下・ ・ ヨト

æ

э

1D shape changes

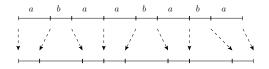


• Combinatorics of T_1 and T_2 are identical.

< A > <

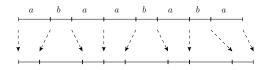
э

1D shape changes



- Combinatorics of T_1 and T_2 are identical.
- Dynamics may be different.

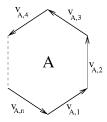
1D shape changes



- Combinatorics of T_1 and T_2 are identical.
- Dynamics may be different.
- Some (but not all!) shape changes are topological conjugacies.

< A > <

Shapes in 2 or more dimensions (Clark-S)



The shape of an n-gon is determined by the n vectors that describe the edges.

Parametrizing shape

The shapes of all the tiles are given by:

• A vector for each edge of each species of tile, such that

Parametrizing shape

The shapes of all the tiles are given by:

- A vector for each edge of each species of tile, such that
 - The vectors around a closed loop must add up to 0.
 - If two tiles share an edge, their edge vectors must match.

Parametrizing shape

The shapes of all the tiles are given by:

- A vector for each edge of each species of tile, such that
 - The vectors around a closed loop must add up to 0.
 - If two tiles share an edge, their edge vectors must match.
- But that's the same as a closed vector-valued 1-cochain on the Anderson-Putnam complex!

More generality with PE

We are looking for results mod MLD.

• Can collar before assigning edge vectors, so different collared tiles can have different shape.

More generality with PE

We are looking for results mod MLD.

- Can collar before assigning edge vectors, so different collared tiles can have different shape.
- Consider closed vector-valued cochains on AP complex of any tiling obtained by repeatedly collaring *T*.

More generality with PE

We are looking for results mod MLD.

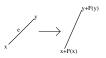
- Can collar before assigning edge vectors, so different collared tiles can have different shape.
- Consider closed vector-valued cochains on AP complex of any tiling obtained by repeatedly collaring *T*.
- But that's the same as a closed sPE cochain on T.

Modding out by MLD

• MLD equivalence moves each vertex x by F(x), where $F : \mathbb{R}^n \to \mathbb{R}^n$ is an sPE function.

< □ > < 同 > < 回 > <</p>

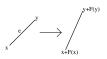
Modding out by MLD



- MLD equivalence moves each vertex x by F(x), where $F : \mathbb{R}^n \to \mathbb{R}^n$ is an sPE function.
- This changes vector of edge e by $F(y) F(x) = \delta F(e)$.
- MLD changes induced by adding exact 1-cochains to shape.

< 一 一 一 ト 、 、 三 ト

Modding out by MLD



- MLD equivalence moves each vertex x by F(x), where $F : \mathbb{R}^n \to \mathbb{R}^n$ is an sPE function.
- This changes vector of edge e by $F(y) F(x) = \delta F(e)$.
- MLD changes induced by adding exact 1-cochains to shape.

$$\frac{\text{Shape changes}}{\text{MLD}} = \frac{\text{Closed sPE 1-cochains}}{\delta(\text{sPE 0-cochains})}$$
$$= H^{1}_{PE}(T, \mathbb{R}^{n}) = \check{H}^{1}(\Omega_{T}, \mathbb{R}^{n}).$$

Table of Contents

- Motivation
- 2 Tiling spaces
- Inverse limits
- 4 Pattern-Equivariant Cohomology
- 5 Shape changes
- 6 Topological conjugacies
- 🕜 Top cohomology, transport, and ergodic averages

Asymptotically negligible classes

Some sPE 1-cochains are not δ of sPE 0-cochains (functions), but are still δ of weakly PE 0-cochains. These cochains are called asymptotically negligible (AN).

• 同 • < 三 •</p>

Asymptotically negligible classes

Some sPE 1-cochains are not δ of sPE 0-cochains (functions), but are still δ of weakly PE 0-cochains. These cochains are called asymptotically negligible (AN).

• Generate subspace H_{AN}^1 of H^1 .

Asymptotically negligible classes

Some sPE 1-cochains are not δ of sPE 0-cochains (functions), but are still δ of weakly PE 0-cochains. These cochains are called asymptotically negligible (AN).

- Generate subspace H_{AN}^1 of H^1 .
- Moving points by wPE amounts induces topological conjugacies, so H_{AN}^1 describes shape changes that are topological conjugacies but not MLD.

Asymptotically negligible classes

Some sPE 1-cochains are not δ of sPE 0-cochains (functions), but are still δ of weakly PE 0-cochains. These cochains are called asymptotically negligible (AN).

- Generate subspace H_{AN}^1 of H^1 .
- Moving points by wPE amounts induces topological conjugacies, so H_{AN}^1 describes shape changes that are topological conjugacies but not MLD.
- Theorem (Gottschalk-Hedlund, Kellendonk-S): A closed sPE 1-cochain is AN if and only if its integral is bounded.

Image: A image: A

Fibonacci is rigid

- Fibonacci tiling has $\phi = (1 + \sqrt{5})/2$ "a" tiles for every "b" tile.
- If $\alpha(a) = 1$ and $\alpha(b) = -\phi$, α is AN.
- $H^1(\Omega_{Fib},\mathbb{R})=\mathbb{R}^2=H^1_{AN}\oplus\mathbb{R}.$
- All shape changes for Fibonacci are a combination of topological conjugacy and overall rescaling.
- Dynamical properties of Fibonacci (e.g. pure point spectrum) unchanged by shape changes.

< ロ > < 同 > < 三 > < 三 >

AN classes for substitutions

Setting: Ω is a substitution tiling space with a substitution map $\sigma:\Omega\to\Omega.$

• $\check{H}^1(\Omega,\mathbb{R})=\check{H}^1(\Omega)\otimes\mathbb{R}$ is a vector space.

AN classes for substitutions

Setting: Ω is a substitution tiling space with a substitution map $\sigma:\Omega\to\Omega.$

- $\check{H}^1(\Omega,\mathbb{R})=\check{H}^1(\Omega)\otimes\mathbb{R}$ is a vector space.
- σ^* maps $\check{H}^1(\Omega, \mathbb{R})$ (or $H^1_{PE}(T, \mathbb{R})$) to itself.

AN classes for substitutions

Setting: Ω is a substitution tiling space with a substitution map $\sigma:\Omega\to\Omega.$

- $\check{H}^1(\Omega,\mathbb{R})=\check{H}^1(\Omega)\otimes\mathbb{R}$ is a vector space.
- σ^* maps $\check{H}^1(\Omega, \mathbb{R})$ (or $H^1_{PE}(T, \mathbb{R})$) to itself.
- $H^1_{AN}(\Omega, \mathbb{R})$ is contracting subspace of $\check{H}^1(\Omega, \mathbb{R})$.

AN classes for substitutions

Setting: Ω is a substitution tiling space with a substitution map $\sigma:\Omega\to\Omega.$

- $\check{H}^1(\Omega,\mathbb{R})=\check{H}^1(\Omega)\otimes\mathbb{R}$ is a vector space.
- σ^* maps $\check{H}^1(\Omega, \mathbb{R})$ (or $H^1_{PE}(T, \mathbb{R})$) to itself.
- $H^1_{AN}(\Omega, \mathbb{R})$ is contracting subspace of $\check{H}^1(\Omega, \mathbb{R})$.
- $H^1_{AN}(\Omega, \mathbb{R}^n) = H^1_{AN}(\Omega, \mathbb{R}) \otimes \mathbb{R}^n$.

Penrose is almost rigid

•
$$H^1(\Omega_{pen}) = \mathbb{Z}^5$$
, so $H^1(\Omega_{pen}, \mathbb{R}) = \mathbb{R}^5$.

æ

.⊒ →

(日)

Penrose is almost rigid

- $H^1(\Omega_{pen}) = \mathbb{Z}^5$, so $H^1(\Omega_{pen}, \mathbb{R}) = \mathbb{R}^5$.
- Eigenvalues of $\sigma^*: H^1 \to H^1$ are ϕ , ϕ , 1ϕ , 1ϕ , and -1.

Penrose is almost rigid

•
$$H^1(\Omega_{pen}) = \mathbb{Z}^5$$
, so $H^1(\Omega_{pen}, \mathbb{R}) = \mathbb{R}^5$.

- Eigenvalues of $\sigma^*: H^1 \to H^1$ are ϕ , ϕ , 1ϕ , 1ϕ , and -1.
- Shape changes parametrized by $H^1(\Omega, \mathbb{R}^2) = \mathbb{R}^{10}$.

Penrose is almost rigid

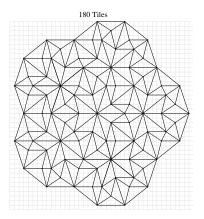
- $H^1(\Omega_{pen}) = \mathbb{Z}^5$, so $H^1(\Omega_{pen}, \mathbb{R}) = \mathbb{R}^5$.
- Eigenvalues of $\sigma^*: H^1 \to H^1$ are ϕ , ϕ , 1ϕ , 1ϕ , and -1.
- Shape changes parametrized by $H^1(\Omega, \mathbb{R}^2) = \mathbb{R}^{10}$.
 - 4-dimensional family, corresponding to e-val ϕ , that are rigid linear transformations.
 - 4-dimensional family, corresponding to e-val $1-\phi,$ that are topological conjugacies.
 - 2-dimensional family, corresponding to e-val -1. These break 180-degree rotational symmetry.

Penrose is almost rigid

- $H^1(\Omega_{pen}) = \mathbb{Z}^5$, so $H^1(\Omega_{pen}, \mathbb{R}) = \mathbb{R}^5$.
- Eigenvalues of $\sigma^*: H^1 \to H^1$ are ϕ , ϕ , 1ϕ , 1ϕ , and -1.
- Shape changes parametrized by $H^1(\Omega, \mathbb{R}^2) = \mathbb{R}^{10}$.
 - 4-dimensional family, corresponding to e-val ϕ , that are rigid linear transformations.
 - 4-dimensional family, corresponding to e-val $1-\phi,$ that are topological conjugacies.
 - 2-dimensional family, corresponding to e-val -1. These break 180-degree rotational symmetry.
- All shape changes that preserve 180 degree rotational symmetry are combinations of rigid linear transformations and topological conjugacies, and preserve dynamics.

ロト (行) () () () ()

Rational Penrose



・ロト ・四ト ・ヨト ・ヨト

æ

AN classes for cut-and-project

Theorem (Kellendonk-S)

If T is a cut-and-project tiling of dimension n and codimension k, and if the "window" is a finite union of polyhedra, then $H^1_{AN}(\Omega_T, \mathbb{R}) = \mathbb{R}^k$.

AN classes for cut-and-project

Theorem (Kellendonk-S)

If T is a cut-and-project tiling of dimension n and codimension k, and if the "window" is a finite union of polyhedra, then $H^1_{AN}(\Omega_T, \mathbb{R}) = \mathbb{R}^k$.

Roughly speaking, shape conjugacies come from phasons and nothing else.

AN classes for cut-and-project

Theorem (Kellendonk-S)

If T is a cut-and-project tiling of dimension n and codimension k, and if the "window" is a finite union of polyhedra, then $H^1_{AN}(\Omega_T, \mathbb{R}) = \mathbb{R}^k$.

Roughly speaking, shape conjugacies come from phasons and nothing else.

Theorem (Kellendonk-S)

Shape conjugacies of cut-and-project sets with polygonal windows are MLD to "reprojections". Same total space, lattice, same window, different projection to \mathbb{R}^n .

Table of Contents

- Motivation
- 2 Tiling spaces
- Inverse limits
- 4 Pattern-Equivariant Cohomology
- 5 Shape changes
- 6 Topological conjugacies
- Top cohomology, transport, and ergodic averages

Cohomology and ergodic averages

- Counting a patch *P* is the same thing as integrating a cochain (or bump form) that gives 1 every time *P* appears.
- All *n* cochains are closed, so this defines a cohomology class [*P*].

Cohomology and ergodic averages

- Counting a patch *P* is the same thing as integrating a cochain (or bump form) that gives 1 every time *P* appears.
- All *n* cochains are closed, so this defines a cohomology class [*P*].
- If $H^n(\Omega, \mathbb{R}) = \mathbb{R}^k$, there are k patches P_1, \ldots, P_k such that $\{[P_i]\}$ generate H^n .

Cohomology and ergodic averages

- Counting a patch *P* is the same thing as integrating a cochain (or bump form) that gives 1 every time *P* appears.
- All *n* cochains are closed, so this defines a cohomology class [*P*].
- If $H^n(\Omega, \mathbb{R}) = \mathbb{R}^k$, there are k patches P_1, \ldots, P_k such that $\{[P_i]\}$ generate H^n .
- For any other patch P, $[P] = \sum c_j [P_j]$.

•
$$i_P = \sum c_j i_{P_j} + \delta \alpha.$$

Cohomology and ergodic averages

- Counting a patch *P* is the same thing as integrating a cochain (or bump form) that gives 1 every time *P* appears.
- All *n* cochains are closed, so this defines a cohomology class [*P*].
- If $H^n(\Omega, \mathbb{R}) = \mathbb{R}^k$, there are k patches P_1, \ldots, P_k such that $\{[P_i]\}$ generate H^n .
- For any other patch P, $[P] = \sum c_j[P_j]$.
- $i_P = \sum c_j i_{P_j} + \delta \alpha$. #(P's in a region R) = $\sum c_j \#(P_j$'s in R) + boundary correction

・ 同 ト ・ ヨ ト ・ ヨ ト

Frequency of aba in Thue-Morse

• $H^1(\Omega_{TM}, \mathbb{R}) = \mathbb{R}^2$. Substitution acts with eigenvalues 2 and -1. H^1_{AN} is trivial.

Motivation Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Topological conjugacies

Frequency of aba in Thue-Morse

- $H^1(\Omega_{TM}, \mathbb{R}) = \mathbb{R}^2$. Substitution acts with eigenvalues 2 and -1. H^1_{AN} is trivial.
- $[i_{aba}]$ is a nontrivial linear combination of the two eigenvectors.

Motivation Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Topological conjugacies

Frequency of aba in Thue-Morse

- $H^1(\Omega_{TM}, \mathbb{R}) = \mathbb{R}^2$. Substitution acts with eigenvalues 2 and -1. H^1_{AN} is trivial.
- $[i_{aba}]$ is a nontrivial linear combination of the two eigenvectors.
- $[i_{aba}] c_1 dx$ is not AN.
- Deviations in count of *aba* are unbounded. (Actually grow as $\ln(N)$.)

Frequency of *aba* in Thue-Morse

- $H^1(\Omega_{TM}, \mathbb{R}) = \mathbb{R}^2$. Substitution acts with eigenvalues 2 and -1. H^1_{AN} is trivial.
- $[i_{aba}]$ is a nontrivial linear combination of the two eigenvectors.
- $[i_{aba}] c_1 dx$ is not AN.
- Deviations in count of *aba* are unbounded. (Actually grow as $\ln(N)$.)
- Nothing special about *aba*. Same thing applies to almost any pattern. (Just not *a* or *b*).

| 4 同 ト 4 ヨ ト 4 ヨ ト

Cohomological answers to transport questions

If f_1 and f_2 are mass distributions on T, then f_1 and f_2 are closed and define cohomology classes $[f_1]$ and $[f_2]$. Then

• Theorem: There is a bounded transport from f_1 to f_2 if and only if $[f_1 - f_2]$ is well-balanced. (I.e. $\left\| \int_R f_1 - f_2 \right\| \le c \|\partial R\|$.)

| 4 同 ト 4 三 ト 4

Cohomological answers to transport questions

If f_1 and f_2 are mass distributions on T, then f_1 and f_2 are closed and define cohomology classes $[f_1]$ and $[f_2]$. Then

- Theorem: There is a bounded transport from f_1 to f_2 if and only if $[f_1 f_2]$ is well-balanced. (I.e. $\left\| \int_{R} f_1 f_2 \right\| \le c \|\partial R\|$.)
- There is a wPE transport from f_1 to f_2 if and only if $f_1 f_2$ is weakly exact.

Cohomological answers to transport questions

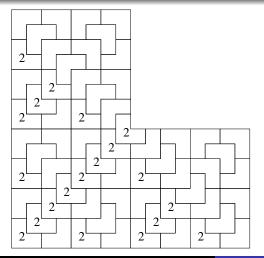
If f_1 and f_2 are mass distributions on T, then f_1 and f_2 are closed and define cohomology classes $[f_1]$ and $[f_2]$. Then

- Theorem: There is a bounded transport from f_1 to f_2 if and only if $[f_1 f_2]$ is well-balanced. (I.e. $\left\| \int_{R} f_1 f_2 \right\| \le c \|\partial R\|$.)
- There is a wPE transport from f_1 to f_2 if and only if $f_1 f_2$ is weakly exact.
- There is a sPE transport from f_1 to f_2 if and only if $f_1 f_2$ is exact, i.e. if and only if $[f_1] = [f_2]$.

< ロ > < 同 > < 三 > < 三 >

Motivation Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Shape changes Topological conjugacies Topological conjugacies Topological conjugacies

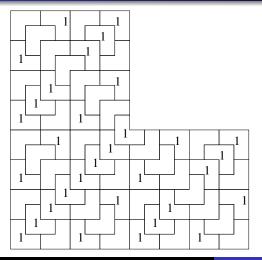
2 kg on the NE chairs



Lorenzo Sadun

æ

1 kg on the NE and SW chairs

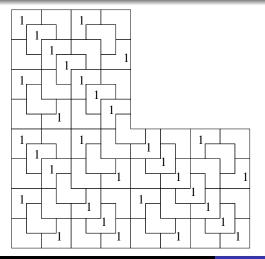


Lorenzo Sadun

イロト イボト イヨト イヨト

æ

1 kg on the NW and SE chairs



Lorenzo Sadun

・ロト ・四ト ・ヨト ・ヨト

э

Chair answers

- For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.
- One generator counts all tiles equally. Not well-balanced.

Chair answers

- For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.
- One generator counts all tiles equally. Not well-balanced.
- NE + SW SE SW is cohomologically trivial. Every 1-supertile has exactly two (NE or SW) and two (NW + SE). To get sPE transport, just move mass within each 1-supertile.

Chair answers

- For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.
- One generator counts all tiles equally. Not well-balanced.
- NE + SW SE SW is cohomologically trivial. Every 1-supertile has exactly two (NE or SW) and two (NW + SE). To get sPE transport, just move mass within each 1-supertile.
- One generator counts NE minus SW. This is f₁ f₂. Not weakly exact, so there is no wPE transport.
- (Last generator counts NW minus SE.)

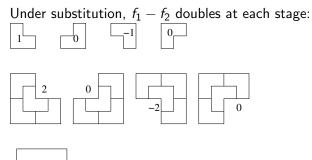
< /i>
< /i>
< /i>
< /i>
< /i>
< /i>

Chair answers

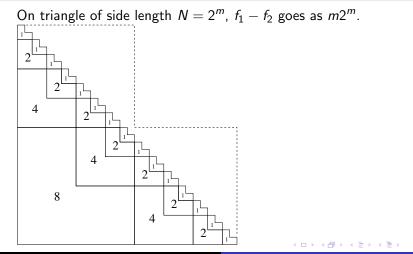
- For the chair tiling, H^2_{AN} is trivial and $H^2(\Omega_T, \mathbb{R}) = \mathbb{R}^3$.
- One generator counts all tiles equally. Not well-balanced.
- NE + SW SE SW is cohomologically trivial. Every 1-supertile has exactly two (NE or SW) and two (NW + SE). To get sPE transport, just move mass within each 1-supertile.
- One generator counts NE minus SW. This is f₁ f₂. Not weakly exact, so there is no wPE transport.
- (Last generator counts NW minus SE.)
- Remaining question: Is $f_1 f_2$ well-balanced?

- 4 同 ト 4 ヨ ト 4 ヨ ト

Scaling properties



N log N



Summary

• Tiling spaces are inverse limits.

э

э

▲ 同 ▶ ▲ 三

Motivation	
Tiling spaces	
Inverse limits	
Pattern-Equivariant Cohomology	
Shape changes	
Topological conjugacies	
Top cohomology, transport, and ergodic averages	
Summary	

- Tiling spaces are inverse limits.
- From inverse limit structure you can compute cohomology.

Motivation	
Tiling spaces	
Inverse limits	
Pattern-Equivariant Cohomology	
Shape changes	
Topological conjugacies	
Top cohomology, transport, and ergodic averages	
Summary	

- Tiling spaces are inverse limits.
- From inverse limit structure you can compute cohomology.
- *H*¹(Ω, ℝⁿ) parametrizes shape changes. *H*¹_{AN} parametrizes shape conjugacies.

Motivation	
Tiling spaces	
Inverse limits	
Pattern-Equivariant Cohomology	
Shape changes	
Topological conjugacies	
Top cohomology, transport, and ergodic averages	
Summary	

- Tiling spaces are inverse limits.
- From inverse limit structure you can compute cohomology.
- *H*¹(Ω, ℝⁿ) parametrizes shape changes. *H*¹_{AN} parametrizes shape conjugacies.
- Counting patches is the same as evaluating a top-cochain. Up to boundary terms, the answer only depends on the cohomology class. If you understand the cohomology, you know how all ergodic averages behave.

Motivation	
Tiling spaces	
Inverse limits	
Pattern-Equivariant Cohomology	
Shape changes	
Topological conjugacies	
Top cohomology, transport, and ergodic averages	
Summary	

- Tiling spaces are inverse limits.
- From inverse limit structure you can compute cohomology.
- *H*¹(Ω, ℝⁿ) parametrizes shape changes. *H*¹_{AN} parametrizes shape conjugacies.
- Counting patches is the same as evaluating a top-cochain. Up to boundary terms, the answer only depends on the cohomology class. If you understand the cohomology, you know how all ergodic averages behave.
- Mass distributions define classes in Hⁿ. Bounded/wPE/sPE transport correspond to properties of [f₁ - f₂].

Motivation	
Tiling spaces	
Inverse limits	
Pattern-Equivariant Cohomology	
Shape changes	
Topological conjugacies	
Top cohomology, transport, and ergodic averages	
Summary	

- Tiling spaces are inverse limits.
- From inverse limit structure you can compute cohomology.
- *H*¹(Ω, ℝⁿ) parametrizes shape changes. *H*¹_{AN} parametrizes shape conjugacies.
- Counting patches is the same as evaluating a top-cochain. Up to boundary terms, the answer only depends on the cohomology class. If you understand the cohomology, you know how all ergodic averages behave.
- Mass distributions define classes in Hⁿ. Bounded/wPE/sPE transport correspond to properties of [f₁ - f₂].
- Lots of other applications of cohomology, but we're out of time (and sliced bread).

Tiling spaces Inverse limits Pattern-Equivariant Cohomology Shape changes Topological conjugacies Top cohomology transport and ergodic averages	Motivation	
Pattern-Equivariant Cohomology Shape changes Topological conjugacies	Tiling spaces	
Shape changes Topological conjugacies	Inverse limits	
Topological conjugacies	Pattern-Equivariant Cohomology	
	Shape changes	
Top cohomology transport and ergodic averages	Topological conjugacies	
Top cononology, transport, and ergodic averages	Top cohomology, transport, and ergodic averages	

Thank You!

æ

э

イロト イヨト イヨト イ