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Three key questions

For every mathematical concept:

What is it?

How do you compute it?

Why in blazes should you care?
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Puzzle 1: Mass transport

Lorenzo Sadun Tiling Cohomology



Motivation
Tiling spaces
Inverse limits

Pattern-Equivariant Cohomology
Shape changes

Topological conjugacies
Top cohomology, transport, and ergodic averages

Musical chairs

Lorenzo Sadun Tiling Cohomology



Motivation
Tiling spaces
Inverse limits

Pattern-Equivariant Cohomology
Shape changes

Topological conjugacies
Top cohomology, transport, and ergodic averages

Three different mass distributions

f1 puts 2 kg on every tile that sits in the standard L
configuration, i.e. missing the northeast corner, and no mass
on the other three kinds of tiles.

f2 puts 1 kg on every tile that is missing a NE or SW corner,
and none on tiles that are missing NW or SE corners.

f3 puts 1 kg on every tile that is missing a NW or SE corner,
and non on tiles that are missing NE or SW corners.

All three distributions have overall density 0.5 kg/tile. Which
are related by bounded/wPE/sPE transport?
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1 kg on the NW and SE chairs
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Puzzle 2: Fibonacci shape changes

A A A A AB B B

B B BA A A A A

How are these tilings related? How do their diffraction patterns
compare?
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Puzzle 3: Penrose shape changes
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Rational Penrose

180 Tiles
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Squared off Penrose

180 Tiles
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Puzzle 4: Ergodic averages

Thue-Morse tiling: A→ AB, B → BA,

. . .ABBABAABBAABABBAABBABAABBAABABBABAABABBA . . .

What are the maximum/minimum number of times that the
pattern ABA appears in a sub-word of length N? How does the
variation scale with N?
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FLC tiling metric

Idea for FLC tilings: Two tilings with the same set of tile
types are ε close if they agree on B1/ε, up to an ε translation.

If you want to allow rotations, shears, or an infinite variety of
tile types, it’s a little more complicated.

(We won’t go there)
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Continuous Hulls

Simplest way to build a tiling space:

Start with an FLC tiling T .

Consider the set {T − x} of translates of T .

ΩT = {T − x}. T ′ ∈ ΩT iff every patch of T ′ appears
somewhere in T .

Orbit closure of T = Tiling space of T = Continuous hull of
T .
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Hulls of periodic tilings

What is ΩT ?

A torus!
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Hulls of periodic tilings

What is ΩT ?

A torus!
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A non-periodic example

T = . . .AAAA.BBBB . . . “=” A∞.B∞.

What is ΩT ?

Orbit of T is copy of R.

As x → −∞, T − x approaches periodic . . .AAAAA . . . tiling.
Limiting circle.

As x →∞, T − x approaches periodic . . .BBBBB . . . tiling.
Limiting circle.

Hull = slinky! Connected but not path-connected.
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Local topology

If T is a tiling, what does an ε-neighborhood of T in ΩT look like?

Restrict T to B1/ε.

Move T by up to ε: continuous degrees of freedom.

Fill out near ∞. Discrete choices.

Neighborhood ∼ Bε × C .
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Inverse limits in general

If X0,X1, . . . are spaces and ρn : Xn → Xn−1 are continuous maps,

X = lim←−Xi := {(x0, x1, . . .) ∈
∏

Xn|ρn(xn) = xn−1∀n}.

Xn is called n-th approximant to X , since xn determines
(x0, . . . , xn).

X has the product topology. (x0, x1, . . .) is close to (y0, y1, . . .) if
xi ≈ yi for all i ≤ N. I.e. if xN ≈ yN .
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Dyadic Solenoid

Example of inverse limit space. Take

Xn = R/(2nZ) ' S1.

ρn induced by identity on R. Winds Xn twice around Xn−1.
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Tiling spaces are inverse limits

CW complex Γn describes tiling out to distance that grows
with n.

ρn is forgetful map.

Many different schemes: different details, (mostly) same
strategy.

lim←− Γn = consistent instructions for tiling bigger and bigger
regions, i.e. instructions for a complete tiling.

So how do instructions for partial tilings turn into a CW
complex?!
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Anderson-Putnam Complex

To place a tile at the origin, need:

Choice of tile type ti .

Choice of point in ti to associate with origin.

What if origin is on boundary of 2 (or more tiles)? Identify!

Γ0 =
∐

ti/ ∼ is the Anderson-Putnam complex.
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Collared tiles

Start with a tiling T .

Equivalent tiles have same label and same pattern of
immediate neighbors.

Equivalence classes are called collared tiles.

Relabeling tiling with collared tiles is local operation. Does
not change space.

Can be repeated to get n-times collared tiles.
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Collared Fibonacci

Fibonacci sequence in 1D contains

. . . abaababaabaababaababa . . .

Only one “b” collared tile: B = (a)b(a).

Three “a” collared tiles: A1 = (b)a(b), A2 = (a)a(b),
A3 = (b)a(a).

Sequence becomes

. . .BA3A2BA1BA3A2BA3A2BA1BA3A2BA1B . . .

Collared tiles have same size as regular tiles, but carry more
info.
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Gähler’s construction

Let Γn be the Anderson-Putnam complex of n-collared tiles.

Point in Γn describes tile at origin plus nth nearest neighbors.

Edge identification can reduce that to n − 1. No sweat.

Ω = lim←− Γn.

Conceptually very powerful idea. Great for proving theorems.

Calculationally not so much, since Γn’s are all different.
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Substitution tilings

1-dimensional example (Fibonacci) : a→ ab, b → a.

a
ab
ab.a
ab.a.ab
ab.a.ab.ab.a
ab.a.ab.ab.a.ab.a.ab

A word is legal if it sits inside one of these patterns.
A bi-infinite word is legal if every sub-word is legal.
Make into self-similar tilings by assigning length (1 +

√
5)/2 to a

tile and 1 to b tile.
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Anderson-Putnam inverse limits

Applies to substitutions that “force the border”.

Let Γn be Anderson-Putnam complex of n-supertiles. A point
in Γn describes the n-supertile containing the origin.

All Γn’s are the same, up to scale.

Ω = lim←−(Γ, σ). One approximant. One expansive map.

To get border forcing, collar once (if necessary).
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Other techniques

Various tricks to collar as little as possible.

Barge-Diamond-Hunton-Sadun. Don’t collar tiles. Collar
points.

Bellissard-Benedetti-Gambaudo. Aggregate collared tiles into
large patches.

(Forest-Hunton-Kellendonk have a different sort of inverse
limit construction for cut-and-project tilings)

Can express tilings with infinite local complexity as inverse
limits, too. Details depend on setting.
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Pattern-equivariant functions and forms

Given a tiling T , a function f (x) on Rn is strongly
pattern-equivariant (sPE) if ∃R > 0 s.t. x depends only on
tiling on BR(x). (Think: finite range potentials)

That is, if T − x and T − y agree on BR(0), then f (x) = f (y).

Weakly PE functions are uniform limits of sPE functions. For
each ε > 0 there is an Rε s.t. f (x) is determined to within ε
by T on BRε(x).

Strongly/weakly PE forms are strongly/weakly PE functions
times dx i ∧ dx j ∧ · · · .
If α is a PE form, so is dα.

Hk
PE (T ) = closed sPE k-forms / d(sPE k − 1 forms).
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Pattern-equivariant cochains

A tiling T gives a decomposition of Rn into vertices, edges,
2-cells, 3-cells, etc. Tiles are n-cells. Orient the cells
arbitrarily.

A (real-valued) k-cochain assigns a real number to each
oriented k-cell. A mass distribution is just an n-cochain.

k-cochains can be sPE or wPE.

Coboundaries: If α is a k-cochain, and c is a (k + 1)-cell,
then (δα)(c) := α(∂c).

If α is wPE/sPE, so is δα.

Let Ωk
w and Ωk

s denote the weakly and strongly PE k-cochains
on T .
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Strong PE cohomology

A strongly PE cochain α is said to be

Closed is δα = 0,

Exact if α = δβ for some sPE cochain β,

Weakly exact if α = δγ for some wPE cochain γ.

Hk
PE (T ) =

Closed k-cochains

Exact k-cochains
(Same answer as with forms!)

A cohomology class is asymptotically negligible (AN) if it can
be respresented by a weakly exact cochain/form.
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A topological invariant

Theorem (Kellendonk-Putnam, S)

If T is a repetitive tiling, then Hk
PE is canonically isomorphic to the

k-th real-valued Čech cohomology Ȟk(ΩT ), where ΩT is the
continuous hull of T . In particular, all tilings in ΩT have the same
PE cohomology.
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What the heck is Čech cohomology?!

Complicated definition involving combinatorics of open covers.

TMI! Just need 2 key properties:

If X is a CW complex, Ȟ∗(X ) = H∗(X ).
If X = lim←−Xi , Ȟ

∗(X ) = lim−→ Ȟ∗(Xi ).

Strategy: Write tiling space Ω as inverse limit of CW
complexes Γi . Then

Ȟ∗(Ω) = lim−→ Ȟ∗(Γi ) = lim−→H∗(Γi ).

But we already did that!

Lorenzo Sadun Tiling Cohomology



Motivation
Tiling spaces
Inverse limits

Pattern-Equivariant Cohomology
Shape changes

Topological conjugacies
Top cohomology, transport, and ergodic averages

What the heck is Čech cohomology?!
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Ȟ∗(Ω) = lim−→ Ȟ∗(Γi ) = lim−→H∗(Γi ).

But we already did that!

Lorenzo Sadun Tiling Cohomology



Motivation
Tiling spaces
Inverse limits

Pattern-Equivariant Cohomology
Shape changes

Topological conjugacies
Top cohomology, transport, and ergodic averages

What the heck is Čech cohomology?!
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Fibonacci

H1(Γn) = Z2; H1(Ω) = lim(Z2, ( 1 1
1 0 )) = Z2.
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Chair

Approximant has H1(Γ) = Z2, H2(Γ) = Z3.

Substitution acts as ×2 on H1, as matrix with eigenvalues
4, 2, 2 on H2.

H1(Ω) = Z[1/2]2, H2(Ω) =
1

3
Z[1/4]⊕ Z[1/2]2.
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Penrose

Approximant has H1(Γ) = Z5, H2(Γ) = Z8.

Substitution acts by invertible matrices on both H1 and H2.

H1(Ω) = Z5, H2(Ω) = Z8.
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1D shape changes

a b a a b a b a

Combinatorics of T1 and T2 are identical.

Dynamics may be different.

Some (but not all!) shape changes are topological
conjugacies.
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Shapes in 2 or more dimensions (Clark-S)

The shape of an n-gon is determined by the n vectors that describe
the edges.
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Parametrizing shape

The shapes of all the tiles are given by:

A vector for each edge of each species of tile, such that

The vectors around a closed loop must add up to 0.
If two tiles share an edge, their edge vectors must match.

But that’s the same as a closed vector-valued 1-cochain on
the Anderson-Putnam complex!
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More generality with PE

We are looking for results mod MLD.

Can collar before assigning edge vectors, so different collared
tiles can have different shape.

Consider closed vector-valued cochains on AP complex of any
tiling obtained by repeatedly collaring T .

But that’s the same as a closed sPE cochain on T .
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Modding out by MLD

x

y

x+F(x)

y+F(y)

e

MLD equivalence moves each vertex x by F (x), where
F : Rn → Rn is an sPE function.

This changes vector of edge e by F (y)− F (x) = δF (e).

MLD changes induced by adding exact 1-cochains to shape.

Shape changes

MLD
=

Closed sPE 1-cochains

δ(sPE 0-cochains)

= H1
PE (T ,Rn) = Ȟ1(ΩT ,Rn).
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Asymptotically negligible classes

Some sPE 1-cochains are not δ of sPE 0-cochains (functions), but
are still δ of weakly PE 0-cochains. These cochains are called
asymptotically negligible (AN).

Generate subspace H1
AN of H1.

Moving points by wPE amounts induces topological
conjugacies, so H1

AN describes shape changes that are
topological conjugacies but not MLD.

Theorem (Gottschalk-Hedlund, Kellendonk-S): A closed sPE
1-cochain is AN if and only if its integral is bounded.
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Fibonacci is rigid

Fibonacci tiling has φ = (1 +
√

5)/2 “a” tiles for every “b”
tile.

If α(a) = 1 and α(b) = −φ, α is AN.

H1(ΩFib,R) = R2 = H1
AN ⊕ R.

All shape changes for Fibonacci are a combination of
topological conjugacy and overall rescaling.

Dynamical properties of Fibonacci (e.g. pure point spectrum)
unchanged by shape changes.
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AN classes for substitutions

Setting: Ω is a substitution tiling space with a substitution map
σ : Ω→ Ω.

Ȟ1(Ω,R) = Ȟ1(Ω)⊗ R is a vector space.

σ∗ maps Ȟ1(Ω,R) (or H1
PE (T ,R)) to itself.

H1
AN(Ω,R) is contracting subspace of Ȟ1(Ω,R).

H1
AN(Ω,Rn) = H1

AN(Ω,R)⊗ Rn.
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H1
AN(Ω,Rn) = H1

AN(Ω,R)⊗ Rn.

Lorenzo Sadun Tiling Cohomology



Motivation
Tiling spaces
Inverse limits

Pattern-Equivariant Cohomology
Shape changes

Topological conjugacies
Top cohomology, transport, and ergodic averages

Penrose is almost rigid

H1(Ωpen) = Z5, so H1(Ωpen,R) = R5.

Eigenvalues of σ∗ : H1 → H1 are φ, φ, 1− φ, 1− φ, and -1.

Shape changes parametrized by H1(Ω,R2) = R10.

4-dimensional family, corresponding to e-val φ, that are rigid
linear transformations.
4-dimensional family, corresponding to e-val 1− φ, that are
topological conjugacies.
2-dimensional family, corresponding to e-val −1. These break
180-degree rotational symmetry.

All shape changes that preserve 180 degree rotational
symmetry are combinations of rigid linear transformations and
topological conjugacies, and preserve dynamics.
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Rational Penrose

180 Tiles
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AN classes for cut-and-project

Theorem (Kellendonk-S)

If T is a cut-and-project tiling of dimension n and codimension k,
and if the “window” is a finite union of polyhedra, then
H1
AN(ΩT ,R) = Rk .

Roughly speaking, shape conjugacies come from phasons and
nothing else.

Theorem (Kellendonk-S)

Shape conjugacies of cut-and-project sets with polygonal windows
are MLD to “reprojections”. Same total space, lattice, same
window, different projection to Rn.
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Cohomology and ergodic averages

Counting a patch P is the same thing as integrating a cochain
(or bump form) that gives 1 every time P appears.

All n cochains are closed, so this defines a cohomology class
[P].

If Hn(Ω,R) = Rk , there are k patches P1, . . . ,Pk such that
{[Pi ]} generate Hn.

For any other patch P, [P] =
∑

cj [Pj ].

iP =
∑

cj iPj
+ δα.

#(P’s in a region R) =
∑

cj #(Pj ’s in R) + boundary
correction
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Frequency of aba in Thue-Morse

H1(ΩTM ,R) = R2. Substitution acts with eigenvalues 2 and
−1. H1

AN is trivial.

[iaba] is a nontrivial linear combination of the two eigenvectors.

[iaba]− c1dx is not AN.

Deviations in count of aba are unbounded. (Actually grow as
ln(N).)

Nothing special about aba. Same thing applies to almost any
pattern. (Just not a or b).
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Cohomological answers to transport questions

If f1 and f2 are mass distributions on T , then f1 and f2 are closed
and define cohomology classes [f1] and [f2]. Then

Theorem: There is a bounded transport from f1 to f2 if and

only if [f1 − f2] is well-balanced. (I.e.

∥∥∥∥∫
R
f1 − f2

∥∥∥∥ ≤ c‖∂R‖.)

There is a wPE transport from f1 to f2 if and only if f1 − f2 is
weakly exact.

There is a sPE transport from f1 to f2 if and only if f1 − f2 is
exact, i.e. if and only if [f1] = [f2].
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1 kg on the NE and SW chairs
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1 kg on the NW and SE chairs
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Chair answers

For the chair tiling, H2
AN is trivial and H2(ΩT ,R) = R3.

One generator counts all tiles equally. Not well-balanced.

NE + SW - SE - SW is cohomologically trivial. Every
1-supertile has exactly two (NE or SW) and two (NW + SE).
To get sPE transport, just move mass within each 1-supertile.

One generator counts NE minus SW. This is f1 − f2. Not
weakly exact, so there is no wPE transport.

(Last generator counts NW minus SE.)

Remaining question: Is f1 − f2 well-balanced?
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Scaling properties

Under substitution, f1 − f2 doubles at each stage:

1
−1

0
0

2 0

4

−2 0
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N log N

On triangle of side length N = 2m, f1 − f2 goes as m2m.

8
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2
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2

2

2
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1
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Summary

Tiling spaces are inverse limits.

From inverse limit structure you can compute cohomology.

H1(Ω,Rn) parametrizes shape changes. H1
AN parametrizes

shape conjugacies.

Counting patches is the same as evaluating a top-cochain. Up
to boundary terms, the answer only depends on the
cohomology class. If you understand the cohomology, you
know how all ergodic averages behave.

Mass distributions define classes in Hn. Bounded/wPE/sPE
transport correspond to properties of [f1 − f2].

Lots of other applications of cohomology, but we’re out of
time (and sliced bread).
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Thank You!
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