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Density Functional Theory (DFT)

The free energy of a system of interacting particles is F [ρ(r)] =:

kBT

∫
drρ(r)[ln(Λdρ(r))− 1] +

1

2

∫
dr

∫
dr′ρ(r)v(|r − r′|)ρ(r′),

where v(r) is the particle-particle interaction potential. The equilibrium
state minimizes the grand potential functional

Ω[ρ(r)] = F [ρ(r)] +

∫
dr ρ(r)(Φ(r)− µ),

i.e., solves

kBT ln ρ+

∫
dr′v(|r − r′|)ρ(r′) + Φ(r)− µ = 0.

Here µ is the chemical potential and T the temperature. When Φ(r) = 0
the resulting ρ can be uniform (liquid) or nonuniform (solid).
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Dynamical Density Functional Theory (DDFT)
We assume that under nonequilibrium conditions the particles obey
Brownian dynamics

ṙ` = −Γ∇`U(r1, . . . , rN) + ΓX`(t),

where the index ` = 1, ...,N labels the particles. The dynamics of such a
system can be investigated using Dynamical Density Functional Theory
(DDFT):

∂ρ(r, t)

∂t
= Γ∇ ·

[
ρ(r, t)∇δΩ[ρ(r, t)]

δρ(r, t)

]
,

where ρ(r, t) is the time-dependent nonequilibrium one-body density
profile. To derive the DDFT we have used the approximation that the
nonequilibrium fluid two-body correlations are the same as those in the
equilibrium fluid with the same one-body density distribution.

The DDFT model can be simplified further, resulting in the Phase Field
Crystal model (PFC) with order parameter φ(r) ∝ ρ(r)− ρ0, with
φ = const identified with the liquid phase and φ 6= const with the solid or
crystalline phase.
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The Phase Field Crystal model
The Phase Field Crystal (PFC) model is an approximation to DDFT and
takes the form

∂tφ(x, t) = α∇2 δF [φ]

δφ(x, t)
,

where F [φ] denotes the free energy functional

F [φ] ≡
∫

dx

[
φ

2
[r + (q2 +∇2)2]φ+

φ4

4

]
,

φ(x, t) is an order parameter field that corresponds to scaled density and α
is a (constant) mobility coefficient. It follows that the system evolves
according to the equation

∂t φ = α∇2
[
rφ+ (q2 +∇2)2φ+ φ3

]
.

i.e., the conserved Swift-Hohenberg equation (cSHE).
Steady states solve the fourth order PDE

(∇2 + q2)2φ+ rφ+ φ3 = µ.

Question: What types of solutions do PDEs of this form admit?
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Periodic patterns in two dimensions
Square lattice: we select four wavenumbers from the circle of marginally
stable wavenumbers, k1 = ±kc(1, 0), k2 = ±kc(0, 1) and write

φ(x , t) = z1(t) exp ik1 · x + z2(t) exp ik2 · x + c.c.+ h.o.t.

The symmetry group Γ of the lattice is D4+̇T 2 and elements of Γ act on
the amplitudes (z1, z2) as follows:

translation : x→ x + d : (z1, z2)→ (z1 e
ikcd1 , z2 e

ikcd2)

reflection : (z1, z2)→ (z̄1, z2); rotation : (z1, z2)→ (z2, z̄1)

These operations represent the action of Γ on vectors (z1, z2) ∈ C2. The
equations for the evolution of (z1, z2) require that we construct the Hilbert
basis of invariant functions and of equivariant vector fields: all invariant
scalar functions are of the form f (σ1, σ2), where

σ1 = |z1|2 + |z2|2, σ2 = (|z1|2 − |z2|2)2.

Thus

(ż1, ż2) = (f1(σ1, σ2)z1 + f2(σ1, σ2)|z1|2z1, f3(σ1, σ2)z2 + f4(σ1, σ2)|z2|2z2).
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Periodic patterns in two dimensions
Here (f1, . . . , f4) are arbitrary real-valued functions of σ1, σ2 and λ. Thus

ż1 = [λ+ a|z2|2 + b(|z1|2 + |z2|2) + . . . ]z1,

ż2 = [λ+ a|z1|2 + b(|z1|2 + |z2|2) + . . . ]z2,

and if ab 6= 0, a + 2b 6= 0 the coefficients (a, b) completely determine the
small amplitude behavior of the solutions (i.e. near the primary bifurcation
at λ = 0). In terms of (z1, z2) = (r1 exp iφ1, r2 exp iφ2) these equations
become

ṙ1 = [λ+ ar22 + b(r21 + r22 ) + . . . ]r1,

ṙ2 = [λ+ ar21 + b(r21 + r22 ) + . . . ]r2,

together with φ̇1 = φ̇2 = 0. These equations have the solutions

trivial state (0, 0) :

stripes (r , 0) : λ+ ar2 = 0

squares (r , r) : λ+ (a + 2b)r2 = 0.

One can also calculate the stability of stripes wrt squares and vice versa.
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Periodic patterns in two dimensions

Thus near λ = 0 at most one nontrivial state can be stable.

Hexagonal lattice: here we take 6 wavevectors from the circle of marginal
stable wavevectors: k1 = kc(1, 0), k2,3 = kc(−1,±

√
3)/2. In this case

stripes and hexagons bifurcate simultaneously from λ = 0 and all are
unstable:
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Periodic patterns in two dimensions

Note the presence of bistability between the hexagons and the trivial state for

µ < 0; note also that the stripes for µ < 0 are unstable with respect to hexagonal

perturbations. I do not discuss superlattice patterns.
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Periodic patterns in three dimensions: cubic lattices

We can extend the above approach to three dimensions. Here I will only
describe some results for patterns on a cubic lattice. There are three
cases, the simple cubic (SC), the face-centered cubic (FCC), and the
body-centered cubic (BCC) lattice corresponding to the choosing 6, 8 or
12 wavevectors from the sphere of marginally stable wavevectors.
For this purpose it is useful to define the isotropy subgroup Σ(z) of z ∈ CN :

Σ(z) = {γ ∈ Γ | γ · z = z}

and the fixed point subspace Fix(Σ) of Σ:

Fix(Σ) = {z ∈ CN |σ · z = z for all σ ∈ Σ}.

Equivariant Branching Lemma: If dim{Fix(Σ)} = 1 then there is a branch
of Σ-symmetric solutions that bifurcates from z = 0 at λ = 0.
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Periodic patterns in three dimensions: SC lattice
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Periodic patterns in three dimensions: SC lattice
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Periodic patterns in three dimensions: SC lattice
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Periodic patterns in three dimensions: FCC lattice
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Periodic patterns in three dimensions: FCC lattice

Callahan and Knobloch, Nonlinearity 10, 1179–1206 (1997)
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Periodic patterns in three dimensions: FCC lattice

Callahan and Knobloch, Nonlinearity 10, 1179–1206 (1997)
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Periodic patterns in three dimensions: FCC lattice
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Periodic patterns in three dimensions: FCC lattice

Callahan and Knobloch, Nonlinearity 10, 1179–1206 (1997)
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Periodic patterns in three dimensions: FCC lattice
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Periodic patterns in three dimensions: FCC lattice

Here a = h1,σ1/h3, c = p3/h3.
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Periodic patterns in three dimensions: FCC lattice
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Periodic patterns in three dimensions: BCC lattice

with 11 additional equations generated from (5.1) by applying appropriate
elements in Γ.
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Periodic patterns in three dimensions: BCC lattice

Callahan and Knobloch, Nonlinearity 10, 1179–1206 (1997)
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Periodic patterns in three dimensions: BCC lattice

Callahan and Knobloch, Nonlinearity 10, 1179–1206 (1997)
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Periodic patterns in three dimensions: BCC lattice
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Wavelength selection
The observed wavelength is limited by a number of secondary instabilities.
The simplest is the Eckhaus instability. For stripes near onset we have

At = µA + Axx − |A|2A
with steady solution A =

√
µ− Q2 exp iQx . Hence µ > Q2. Perturbations

a(x , t) = [α(t) exp iξx + β(t) exp−iξx ] exp iQx are stable if
µ > 3Q2 − (1/2)ξ2 but unstable otherwise:

In conserved systems the wavenumber k that minimizes the free energy
differs for each state.
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Snaking in two spatial dimensions: SH23

Lloyd et al., SIADS 7, 1049–1100 (2008)

Review: Knobloch, Annu. Rev. Cond. Matter Phys. 6, 325–359 (2015)
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DFT for a GEM-4 fluid in 2D: Equilibrium front

Density profile at the free interface between the coexisting liquid and solid phases

in a GEM-4 model liquid (v(r) = ε exp−(r/R)4) when µ = 17kBT , kBT = 1.
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The Phase Field Crystal model
In one dimension, with α = 1 and q = 1, we have

∂t φ = ∂2x
[
rφ+ (1 + ∂2x )2φ+ φ3

]
.

This equation is reversible in space (i.e., it is invariant under x → −x).

Moreover, it conserves the total “mass” φ0 ≡ L−1
∫ L
0 φ dx , where L is the

size of the system.
Linearizing about φ = φ0 results in the dispersion relation

σ = −k2 [r + (1− k2)2 + 3φ20],

and hence instability for r < −3φ20:
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Neutral stability curves for r > −3φ20 (stable) and r < −3φ20 (unstable)
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Crystallization front at r = −0.9, φ0 = −0.43

Archer et al., PRE 86, 031603 (2012)
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Crystallization fronts: parameter dependence

r = −0.2, φ0 = −0.183 r = −0.5, φ0 = −0.365

Archer et al., PRE 86, 031603 (2012)
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Bond angle and radial correlation function for r = −0.9
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1D crystallization front: r = −0.9, φ0 = −0.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  100  200  300  400  500

φ
(x

)

x

(a)

-25

-20

-15

-10

-5

 0

 0  100  200  300  400  500

lo
g
|φ

(x
)-

φ
0
|

x

(b)

Archer et al., PRE 86, 031603 (2012)

Edgar Knobloch (UC Berkeley) Patterns and quasipatterns 7 June 2018 33 / 75



Speed of the crystallization front
We assume that the speed of the front is determined by the marginal
stability criterion of Dee and Langer, and write the linearized equation in
the form

σ(k) = −αk2[∆ + (q2 − k2)2],

where ∆ = r + 3φ20 < 0. To determine the front speed we go into the
frame of the front moving at speed c , ω(k) = ick + σ(k), and solve

dω

dk
= 0, Re(ω) = 0

for kr , ki and c as functions of ∆. The resulting density profile at the
front is ρ̃front(ξ, t) ∼ exp(−kiξ) sin(krξ + Im(ω)t) relative to the front.
The pattern left behind is periodic in space with wavenumber k∗ given by
conservation of nodes [Ben-Jacob et al, Physica D 14, 348 (1985)]

k∗ =
1

c
Im(ω) = kr +

1

c
Im[σ(k)].

[see also Galenko and Elder, Phys. Rev. B 83, 064113 (2011)]
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Speed of the crystallization front in 1D

 0

 2

 4

 6

 8

 0  0.3  0.6  0.9

c
/α

|∆|

(a)

full theory
Eq. (22)
dx = 0.2
dx = 0.5
dx = 1.0
dx = π/3

 0.9

 1

 1.1

 1.2

 1.3

 0  0.3  0.6  0.9

k
*

|∆|

(d)

k
*

k
r

dx = 0.2
dx = 0.5
dx = 1.0

 0.9

 1

 1.1

 1.2

 0  0.3  0.6  0.9

Archer et al., PRE 86, 031603 (2012)

Edgar Knobloch (UC Berkeley) Patterns and quasipatterns 7 June 2018 35 / 75



Crystallization front in 2D: 1-component GEM-4
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Density profile for a crystallization front advancing from left to right into the

unstable GEM-4 liquid with bulk density ρ0R
2 = 8 and temperature ε = kBT ,

calculated from DDFT. The top figure is the full density profile and below it we

plot the density profile averaged over the y -direction, perpendicular to the front,

ρ(x). At the bottom, we plot ln[(ρ(x)− ρb)R2], which allows one to see the small

amplitude oscillations in the advancing front.
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Speed of crystallization front in 2D: 1-component GEM-4
The 2D case is much more complicated but also more interesting because
of the competition between stripes (first pattern to form) and hexagons
(final pattern to form):
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Fig. 1. The front velocity c as a function of the density parameter ρ0R
2 from

DNS of a GEM-4 fluid with temperature kBT/ε = 1 compared with the

prediction of the marginal stability calculation (red solid line).
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Speed of the crystallization front in 2D
Model equations:

∂Ak

∂t
= γAk +

∂2Ak

∂x2k
+ A∗[k−1]A

∗
[k+1] − (|Ak |2 + λ|A[k−1]|2 + λ|A[k+1]|2)Ak ,

where k = 0, 1, 2. Here Ak are the complex amplitudes of the three
wavevectors n0 ≡ (1, 0)q, n1 ≡ (−1,

√
3)q/2, n2 ≡ (−1,−

√
3)q/2 in the

(x , y) plane, and xk ≡ x · nk [Golubitsky et al., Phys. D 10 249 (1984)].
Here q is the critical wavenumber at onset of the hexagon- forming
instability (γ = 0), and [k ± 1] ≡ (k ± 1)(mod3). These equations
constitute a gradient flow with free energy

F ≡
∫ ∞
−∞

dx

( 2∑
k=0

1

2
|∂Ak

∂xk
|2 − V

)
,

where

V ≡
2∑

k=0

(
1

2
γ|Ak |2 −

1

4
|Ak |4

)
− λ

2

(
|A0|2|A1|2 + |A1|2|A2|2 + |A2|2|A0|2

)
+ A∗

0A
∗
1A

∗
2 .
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Speed of the crystallization front in 2D
We focus on planar fronts perpendicular to n0 ≡ (1, 0)q and thus focus on
solutions independent of the variable y along the front. Symmetry with
respect to y → −y implies the presence of solutions with A1 = A2 ≡ B,
say. Absorbing the wavenumber q in the variable x and writing A0 ≡ A we
obtain the equations

∂A

∂t
=
∂2A

∂x2
+ γA + B2 − A3 − 2λAB2

∂B

∂t
=

1

4

∂2B

∂x2
+ γB + AB − (1 + λ)B3 − λA2B.

In writing these equations we have assumed that A and B are real in order
to focus on the behavior of the amplitudes, thereby setting the phase
Φ ≡ arg(A) + 2arg(B) = 0. This phase distinguishes the so-called
up-hexagons from down-hexagons [Golubitsky et al., Phys. D 10, 249
(1984)]. These equations form the basis for the theory that follows [Hari
& Nepomnyashchyy, PRE 61, 4835 (2000); Doelman et al., Euro. J. Appl.
Math. 14, 85 (2003)].
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Speed of the crystallization front in 2D

These equations have solutions in the form of regular hexagons (A,B) =
(Ah,Ah), stripes (A,B) = (As , 0) and the homogeneous liquid state
(A,B) = (0, 0), where without loss of generality

Ah =
1 +

√
1 + 4γ(1 + 2λ)

2(1 + 2λ)
, As =

√
γ ;

these are critical points of the potential

V (A,B) ≡ 1

2
γ(A2 + 2B2) + AB2 − [

1

4
A4 + λA2B +

1

2
(1 + λ)B4].

The hexagons and the liquid state coexist stably in the subcritical regime,
γsn < γ < 0, where γsn = −[4(1 + 2λ)]−1. For γ > 0 the liquid state
becomes unstable, creating a branch of unstable stripes; stable hexagons
continue to exist.
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The potential V (A,B)
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Speed of the crystallization front in 2D
A front traveling with speed c to the right, connecting the hexagonal state
on the left with the liquid state to the right, takes the form

A(x , t) = Ã(ξ), B(x , t) = B̃(ξ), ξ ≡ x − ct.

Thus
∂2Ã

∂ξ2
+ c

∂Ã

∂ξ
+ γÃ + B̃2 − Ã3 − 2λÃB̃2 = 0,

1

4

∂2B̃

∂ξ2
+ c

∂B̃

∂ξ
+ γB̃ + ÃB̃ − (1 + λ)B̃3 − λÃ2B̃ = 0

with the boundary conditions

Ã = B̃ = Ah as ξ → −∞, Ã = B̃ = 0 as ξ →∞.

The speed c vanishes in the subcritical regime when γ = γM < 0 defined
by the requirement V (Ah,Ah) = V (0, 0) = 0 and is positive for γ > γM
(V (Ah,Ah) < 0) and negative for γ < γM (V (Ah,Ah) > 0).

An elementary calculation gives γM = −2[9(1 + 2λ)]−1 < 0 (Maxwell).
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Energetics: Maxwell point
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Speed of the crystallization front in 2D

The situation is more complicated in the supercritical regime where γ > 0
because this regime contains supercritical (but unstable!) stripes oriented
parallel to the front. As a result one now finds fronts that connect the
hexagonal structure to the stripe pattern and the stripe pattern to the
liquid state, in addition to the front connecting the hexagonal structure
and the (unstable) liquid state.

The marginal stability condition implies that stripes invade the
homogeneous state with speed cs = 2

√
γ, while an analogous calculation

shows that the hexagons invade the unstable stripes with speed
chs = [

√
γ − (λ− 1)γ]1/2. This speed exceeds the speed cs in the interval

0 < γ < (λ+ 3)−2.

It is evident that the speed cs cannot be selected when γ is too close to
threshold since the front speed ch remains positive for all γ > γM
(γM < 0).
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Speed of a crystallization front in 2D: model problem
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The point γ = γ1 is the point of intersection of ch and cs and corresponds
to an orbit flip. The point γ = γ2 is the point chs = cs . The model
predicts that γM ≈ −2.5γ1 for all λ, a result that is not in agreement with
the GEM-8 simulation. This may be because of (i) absence of pinning in
the model equations, (ii) omission of the k = 0 mass mode.
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Quasicrystals

To generate quasicrystals we need an interaction between two spatial
scales, with wavenumbers q = qs and q = q`. Such an interaction occurs,
for example, with the modified GEM-8 potential

V (r) = εe−(r/R)8 + εae−(r/Rs)8 .

We pick βε = 1 and Rs/R = 1.855 so that qs/q` ≈ 2 cos(π/12) = 1.93.
We refer to the large scale (q = q`) crystal as crystal A and the small scale
(q = qs) crystal as crystal B, and focus on the transition between these
two periodic structures.

In two dimensions we solve the DFT equations and corroborate the results
with Brownian dynamics simulations. We also perform DDFT simulations.
In three dimensions there are many more competing structures and such
calculations are more costly. We therefore employ the simpler PFC
approach.
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Quasicrystals in two dimensions

Phase diagram for the two-scale GEM-8 potential V (r) = εe−(r/R)8+
εae−(r/Rs)8 in two dimensions, with βε = 1 and Rs/R = 1.855.
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Quasicrystals in two dimensions

Density profiles at (a) (ρ0R
2, a) = (3.6, 0.5) (typical of the small length

scale crystal B), (b) (3.5, 0.76), (c) (4.0, 0.8) (both near the transition
from crystal A to crystal B) and (d) (2.7, 2) (typical of the large length
scale crystal A). Top: ρ(r)R2; bottom: ln[ρ(r)R2]
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Quasicrystals in two dimensions

2D quasicrystal: (a) ln[ρ(r)R2] in the (x/R, y/R) plane obtained from
DFT for (ρ0R

2, a) = (3.5, 0.8) with random initial conditions. (b) The
corresponding Fourier transform. The latter exhibits 12-fold symmetry,
which is indicative of QC ordering.
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Quasicrystals in two dimensions

2D quasicrystal: (a) ln[ρ(r)R2] in the (x/R, y/R) plane obtained from
DFT for (ρ0R

2, a) = (3.5, 0.8) with initial conditions exhibiting QC
ordering. (b) The corresponding Fourier transform.

Edgar Knobloch (UC Berkeley) Patterns and quasipatterns 7 June 2018 50 / 75



Quasicrystals in 2D: Picard iteration

Figure: Time series of profiles ln[ρ(r)R2] obtained via Picard iteration, for a = 0.8
and ρ0R

2 = 3.5, at t = 30, 32, 35, 40, 50, 200.
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Quasicrystals in 2D: DDFT

Figure: Time series of profiles ln[ρ(r)R2] obtained from DDFT, for a = 1.067 and
ρ0R

2 = 3.5, at t∗ = 1, 2, 5, 10, 20 and 40.
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Quasicrystals in two dimensions

The dispersion relation at state point (a) a = 0.8, ρ0R
2 = 3.5 and (b)

a = 1.067, ρ0R
2 = 3.5. QC form in either case: in (a) the large scale is

triggered nonlinearly.
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Quasicrystals in two dimensions
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Quasicrystals in two dimensions
In this case we have two critical circles of radii qs and q` < qs and
nonlinear three-wave interactions can occur between two waves on the
inner circle and one on the outer, and vice versa. For the special case
qs/q` = 2 cos(π/12) ≈ 1.93 the angle between the two waves on the inner
circle is 30◦ while the angle between the two waves on the outer circle is
150◦. This wavelength ratio therefore allows 12 waves on each circle to
interact through three-wave interactions and form a 12-fold QC, without
the need to invoke additional waves. Any other length ratio potentially
leads to an infinite number of interacting waves. This fact distinguishes
12-fold QC from all others, and may be the reason why 12-fold QC are
commonly found in soft matter systems and Faraday waves.

(a)

kx

ky
k1

k2

q1

θz

(b)

kx

ky
k1

q2

q3
θw
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Quasipatterns in 2D: Ding and Umbanhowar, PRE (2006)
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Quasicrystals in three dimensions
Our PFC model starts with a free energy F :

F [U] =

∫ [
− 1

2
ULU − Q

3
U3 +

1

4
U4
]
dx ,

where the operator L and parameter Q are defined below. The evolution
equation for U follows conserved dynamics and can be obtained from the
free energy as

∂U

∂t
= ∇2

(
δF [U]

δU

)
= −∇2

(
LU + QU2 − U3

)
.

We choose a linear operator L that allows marginal instability at two
wavenumbers k = 1 and k = q < 1, with the growth rates of the two
length scales determined by two independent parameters µ and ν. The
resulting growth rate σ(k) of a mode with wavenumber k is given by the

polynomial σ(k) = k4[µA(k)+νB(k)]
q4(1−q2)3 + σ0k2

q4
(1− k2)2 (q2 − k2)2, where

A(k) = [k2(q2 − 3)− 2q2 + 4](q2 − k2)2q4 and B(k) = [k2(3q2 − 1)
+2q2 − 4q4](1− k2)2.
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Quasicrystals in three dimensions

Growth rate σ(k) as a function of the wavenumber k for the linear
operator L with parameters σ0 = −100, q = 1/τ = 0.6180, µ = 0.1 and
ν = −0.1. The growth rates at k = 1 and k = q are µ and q2ν, as in the
inset.
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Quasicrystals in three dimensions
Density perturbation waves (at one length scale) of the form e ik·x with
wavevectors chosen to be the 30 edge vectors of an icosahedron can take
advantage of three-wave interactions (from the triangular faces) and of
five-wave interactions (from the pentagons surrounding five triangular
faces) to lower the free energy and so encourage the formation of
icosahedral QCs. With two length scales in the golden ratio τ , an
alternative mechanism for reinforcing icosahedral symmetry is possible
using only three-wave interactions. We take five edge vectors of a
pentagon adding up to zero, eg. k16 + k7 + k15 + k2 + k25 = 0, such that
k7 + k15 = q2 and k2 + k25 = q4, resulting in a three-wave interaction
between q2, q4 and k16.

j kj j kj j kj

1 (1, 0, 0) 6 1
2 (1, τ − 1, τ) 11 1

2 (τ − 1, τ,−1)

2 1
2 (τ, 1, τ − 1) 7 1

2 (1, τ − 1,−τ) 12 1
2 (τ − 1,−τ,−1)

3 1
2 (τ, 1, 1− τ) 8 1

2 (1, 1− τ,−τ) 13 1
2 (τ − 1,−τ, 1)

4 1
2 (τ,−1, 1− τ) 9 1

2 (1, 1− τ, τ) 14 (0, 1, 0)

5 1
2 (τ,−1, τ − 1) 10 1

2 (τ − 1, τ, 1) 15 (0, 0, 1)

Table of edge vectors k1, . . . , k15 of an icosahedron with edges of length 1.
The remaining 15 are the negatives: kj+15 = −kj . The 30 vectors on the
other sphere, of radius q = 1

τ , are obtained by setting qj = kj/τ ,
j = 1, . . . , 30.
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Quasicrystals in three dimensions
We now use a weakly nonlinear theory, with U = εU1, with µ and ν
chosen such that L = O(ε3). We also take Q = εQ1. For icosahedral QCs,
we use the vectors from the Table and expand U1 as

U1 =
15∑
j=1

zj e
ikj ·x +

15∑
j=1

wj e
iqj ·x + c.c.+ h.o.t.

Thus the rescaled volume-specific free energy f = F/(V ε4) is

f = − µz1z̄1 − 4Q1

(
w10z4 − w11z5 − w12z2 − w13z3

− w3w5 − w2w4 − z6z8 − z7z9
)
z̄1

− µ

15∑
j=2

|zj |2 − ν
15∑
j=1

|wj |2

− Q1(152 other cubic terms)− (1305 quartic terms).

The evolution of the amplitudes zj , wj is thus governed by the equations

żj = − ∂f
∂z̄j

and ẇj = −q2 ∂f
∂w̄j

.
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Quasicrystals in three dimensions

(a) An icosahedron and (b) an icosidodecahedron showing the five
wavevectors (red) that sum to zero.
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Crystalline phases in three dimensions

(a) Hexagonal columnar phase with wavenumber q (q-hex) at
(µ, ν) = (0.082, 0.056). (b) Body centered cubic crystal with
wavenumber 1 (1-bcc) at (µ, ν) = (−0.1, 0).
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Quasicrystals in three dimensions

-1 0 1

1

0

-1

(a) Icosahedral quasicrystal (QC) at (µ, ν) = (−0.071,−0.071). Each box has

had a slice cut away, chosen to reveal the 5-fold rotation symmetry.

(b) Diffraction pattern taken in a plane normal to the vector (τ,−1, 0) in Fourier

space. The circles of radii 1 and q are indicated. Domain: 16λ× 16λ× 16λ.
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Quasicrystals in three dimensions
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Diffraction patterns obtained from (a) a 26λ× 26λ× 26λ and
(b) a 42λ× 42λ× 42λ calculation.
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Quasicrystals in three dimensions

The big question now is whether the 3D quasicrystals constructed in this
way are stable.

We calculate the minimum free energy f associated with each class of
solutions (both crystal and quasicrystal), at each point (µ, ν) in parameter
space. By minimizing f over all solution classes at a given (µ, ν), we
identify the globally stable solution at that state point. Body-centered
cubic (bcc) crystals cannot be represented in terms of the icosahedral basis
vectors, and we compute their free energy in a separate calculation,
choosing a different set of basis vectors.

The next figure shows the results.
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Quasicrystals in three dimensions

Structures with minimal specific free energy f over a range of parameters
µ and ν, computed from the amplitude equations. PDE calculations are
performed on the dashed circle around the origin with radius 0.1. The
region ‘zero’ indicates that the trivial state U = 0 is globally stable.
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Quasicrystals in three dimensions

Variation of specific free energy f with angle θ on a circle in the (µ, ν) plane of

radius 0.1. Lines track the variation of free energy f of the labeled structures

(solid: locally stable, dashed: locally unstable). The stability of the bcc crystals

cannot be compared directly with that of QCs. Hollow circles show the free

energies of locally stable quasicrystalline asymptotic steady states from PDE

calculations starting from an initial condition of the imprinted QC.

Hollow circles in the inset in Fig. ?? show the free energies of locally
stable quasicrystalline steady states of the PDE (??), started from an
initial condition with the QC imprinted. The fact that the solid line for the
quasicrystalline free energy (from the small ε asymptotics) is close to the
hollow circles (from the PDE), both with respect to the value of the free
energy and the range of linear stability, supports the validity of the
asymptotics.
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Quasicrystals in three dimensions

(a) (b) (c)

Parallel projections of the contour cloud along the high symmetry
directions. (a) 2-fold symmetry observed in a plane perpendicular to
(1, 0, 0). (b) 3-fold symmetry observed in a plane perpendicular to
(−1, 1, 1). (c) 5-fold symmetry observed in a plane perpendicular to
(τ,−1, 0).
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Localized quasicrystals in two dimensions

Thermodynamically stable structures in the (r1, rq) plane, computed as global
minima of the grand potential Ω for the chemical potential µ = 0. Dashed-dotted
lines indicate the axes while the dotted line indicates variation of r1 for the choice
of rq = −0.412 which we explore in detail.
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Localized quasicrystals in two dimensions

(a) Grand potential Ω as a function of the linear growth rate r1 for rq = −0.412,
µ = 0. Blue line: 1-hexagons, green: q-hexagons, red: QC, magenta: LQC.
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Localized quasicrystals in two dimensions

Variation of the scalar density U at different values of r1 and rq at chemical
potential µ = 0. Panels (a− b) show possible symmetry broken versions of the
fully symmetric localized nucleation solution found in ??(g). (a) r1 = −0.2388,
(b) r1 = −0.2937, (c) r1 − 0.6977 (d) r1 = −0.5158, (e) r1 = −0.6452, (f )
r1 = −0.5655. Other system parameters are: rq = −0.412, q = 0.5176, σ = −10
and Q = 2.
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Localized quasicrystals in two dimensions

Grand potential Ω as a function of the linear growth rate r1. Reproduced from
the inset in Fig. ??(a) for same parameters. Blue line indicates 1-hexagons, red
line indicates extended quasicrystal patterns, magenta line indicates the branch of
spatially localized quasicrystalline states with 12-fold symmetry as before.
Additionally, dark grey line indicates branch of localized states with hexagonal
symmetry (see panels (a, d , f ) in Figure ?? for examples) and golden line
indicates branch of localized states with square symmetry (see panel (b, d) in
Figure ?? for examples).
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Localized quasicrystals in three dimensions

Variation of the scalar density U in 3D sliced along the plane (τ, 0, 1) where
τ = 1.618 for (a) an extended icosahedral quasicrystal and (b) a dynamically
stable localized quasicrystal at the same parameters of r1 = −0.51, rq = −0.51,
q = 0.618, Q = 2, σ = −10 and µ = 0.
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Localized quasicrystals in two dimensions

(a) Spatial variation of scalar density U showing a 1D localized state of
quasicrystal in the PFC model at parameters r1 = −0.1152, rq = −0.412,
q = 0.5176, σ = −10 and Q = 2, (b) Spatial variation of density ρ in a DFT
model with pair potential as defined in Barkan et al. (2011) with potential

v(r) = 10 e−0.5∗(0.770746∗r)2 (1.0− 1.09r2 + 0.4397r4 − 0.05r6 + 0.002r8
)

showing 1D localization of a quasicrystalline state similar to (a).
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Conclusions

We have discussed the properties of soft matter systems in 2D and 3D
using simple models for particle-particle interaction exhibiting two scales

In 2D a generalization of the GEM-8 model leads to the formation of
metastable quasicrystals with 12-fold symmetry. These states are
obtained both via Picard iteration and in Brownian dynamics particle
simulations. The two scales may be excited linearly or nonlinearly.

In 3D we used the simpler PFC model with two scales to demonstrate
the existence of an icosahedral quasicrystal that is a global free
energy minimum and hence thermodynamically stable.

Localized quasicrystals bifurcate from the QC branch and may serve
as nuclei in a two-step nucleation process.

A.J. Archer, A.M. Rucklidge and E. Knobloch, Phys. Rev. Lett. 111,
165501 (2013) and Phys. Rev. E 92, 012324 (2015);
P. Subramanian, A.J. Archer, A.M. Rucklidge and E. Knobloch, Phys.
Rev. Lett. 117, 075501 (2016) and paper in preparation
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