

Growth and characterization of two-dimensional poly(quasi)crystals

Petri Hirvonen petri.hirvonen@aalto.fi

Multiscale statistical and quantum physics (**MSP**) group Department of Applied Physics, **Aalto** University School of Science

- Motivation
- Method for characterizing (quasicrystal) microstructures
- Phase field crystal (PFC) for model system density fields
- Assessment of characterization method
- Analysis of different microstructures
- Conclusions

^a Hirvonen et al., Grain extraction and microstructural analysis method for two-dimensional poly and quasicrystalline solids, submitted to Phys. Rev. Materials (June 2018), <u>arXiv:1806.00700</u>

Motivation

- Quasicrystals have many potential applications due to their interesting properties
 - Low μ , resistance to oxidation^a, etc.^{b, c}
- Microstructure \rightarrow material properties
 - What are the connections?
 - Modeling microstructures very difficult
- Quasicrystals' aperiodic nature
 - Characterization difficult

^a Thiel, Annu. Rev. Phys. Chem. **59** (2008)
 ^b McGrath et al., J. Phys. Condens. Matt. **14** (2002)
 ^c Smerdon et al., J. Phys. Condens. Matt **20** (2008)

Bindi et al., Sci. Rep. **5** (2015)

Grain extraction method

- A new highly generalizable method for grain extraction
 - $\circ~$ Find grains \rightarrow study microstructural properties and their distributions
 - Works for many lattice types --- also for quasicrystals!
- Four-step algorithm for grain extraction from atomic density maps
 - 1. Generate orientation field
 - 2. Generate deformation field
 - 3. Grow subdomains in deformation field
 - 4. Merge subdomains

Grain extraction method Step 1: Orientation field $\phi = \{ [(\psi - \min(\psi)) * K] [\psi - \min(\psi)] \} * G$ $K(\mathbf{k}) = \exp \left[-(|\mathbf{k}| - q)^2 / (2\sigma^2) + i m \arg(\mathbf{k}) \right]$

 $K\left(\boldsymbol{k}\right),m=6$

Grain extraction method Step 2: Deformation field $\sum_{n=0}^{2^{n}a < \min(W,H)/2} \frac{\left|\nabla\phi\right|^{p} * \exp\left[-\left|r\right|^{2} / \left(2 \cdot 2^{2n}a^{2}\right)\right]}{\max\left\{\left|\nabla\phi\right|^{p} * \exp\left[-\left|r\right|^{2} / \left(2 \cdot 2^{2n}a^{2}\right)\right]\right\}}$ $\chi =$ $\left|\nabla\phi\right| = \sqrt{\Re\left(\phi_x\right)^2 + \Im\left(\phi_x\right)^2 + \Re\left(\phi_y\right)^2 + \Im\left(\phi_y\right)^2}$ $\chi(\mathbf{r})$ $\phi(\mathbf{r})$

Grain extraction method Step 3: Subdomain growth

MSP Group

scale bar 40 lattice constants

Grain extraction method Step 4: Subdomain merging

PFC model systems Basics of PFC^a

- PFC very well suited for generating realistic microstructures^b
- Simple density functional approach to crystalline materials
- Main advantage access to long, diffusional time scales
- Can handle mesoscopic systems with atomic resolution
- Two main components
 - \circ Smooth classical density field ψ
 - Governing free energy functional $F(\psi)$

$$F = \int d\boldsymbol{r} \left(\frac{\psi}{2} \left(R + \left(1 + \nabla^2\right)^2\right)\psi + \frac{\psi^4}{4}\right)$$

^a Elder et al., Phys. Rev. Lett. **88** (2002); Elder et al., Phys. Rev. E **70** (2004)

^b Hirvonen et al., Phys. Rev. B **94** (2016); Hirvonen et al., Sci. Rep. **7** (2017); Fan et al., Nano Lett. **17** (2017); Azizi et al., Carbon **125** (2017)

PFC model systems Two-mode PFC model^{a, b}

- Two competing length scales $\lambda_n \sim 1/q_n$ • More lattices: square, hexagonal, 10-fold and 12-fold
- This and other PFC models used previously in studies $F = \int d\boldsymbol{r} \left(\frac{\psi}{2} \left(\hat{\boldsymbol{R}} + \prod_{n=1}^{2} \left(q_n^2 + \nabla^2 \right)^2 \right) \psi + \frac{\psi^4}{4} \right)$ related to quasicrystals
 - Growth modes^b
 - Interfaces^c
 - Monolayers on quasicrystalline surfaces^d
 - Three-dimensional quasicrystals^e

^a Wu et al., Phys. Rev. E 81 (2010) ^b Achim et al., Phys. Rev. Lett. 112 (2014) ^c Schmiedeberg et al., Phys. Rev. E 96 (2017) ^d Rottler et al., J. Phys. Condens. Matt. 24 (2012) ^e Subramanian et al., Phys. Rev. Lett. 117 (2016)

Assessment of grain extraction method Subdomain network

scale bar 40 lattice constants 11

Assessment of grain extraction method Subdomain merging

^a Boissonière et al., Model. Simul. Mater. Sci. Eng. 26 (2018))

Assessment of grain extraction method Subdomain merging

Analysis of different microstructures Evolution of average grain size

• Power-law growth expected^{a, b, c}

$$\langle d(t) \rangle = \alpha \left(t + t_0 \right)^{\beta}$$

- All lattice types demonstrate perfect power-law growth $\beta = 0.21 0.24$
- Hexagonal: good agreement with Backofen et al.^d

^a Burke, Trans. Metall. Soc. AIME **180** (1949)
 ^b Burke and Turnbull, Prog. Metal. Phys. **3** (1952)
 ^c Krzanowski et al., Acta Metall. **34** (1986)
 ^d Backofen et al., Acta Mater. **64** (2014)

Analysis of different microstructures Normalized grain size distributions

- Log-normal distributions both expected^{a, b, c} and observed
- All lattice types demonstrate identical behavior

- ^a Backofen et al., Acta Mater. **64** (2014)
- ^b La Boissonière et al., Model. Simul. Mater. Sci. Eng. **26** (2018)
- ^c Barmak et al., Prog. Mater. Sci. **58** (2013)

Analysis of different microstructures Grain size ratio distributions

- All lattice types favor similar disparity in grain size between neighbors
 - <δ> = 0.62, 0.61,
 0.64, 0.64
- Hexagonal: grain area ratio very similar to La Boissonière et al.^a

^a La Boissonière et al., Model. Simul. Mater. Sci. Eng. **26** (2018)

Analysis of different microstructures Grain misorientation distributions

density

- Very different distributions
 for different lattice types!
- Hexagonal: favors large
 misorientations
 - Previous^a: small!
 - Model and parameters
- Square: bump at ~15°
- 12-fold: bump at ~7°
- Grain boundary energy?
- ^a La Boissonière et al., Model. Simul. Mater. Sci. Eng. **26** (2018)

Conclusions

- A new accurate method for extracting grains and analyzing microstructures in poly(quasi)crystals was introduced and assessed^a
- Applied to study microstructures of different lattice types^a
 Many properties universal beyond lattice type
 Lattice misorientations show unique behavior
- We expect our method can greatly facilitate the study of complex microstructures in quasicrystals

^a Hirvonen et al., Grain extraction and microstructural analysis method for two-dimensional poly and quasicrystalline solids, submitted to Phys. Rev. Materials (June 2018), <u>arXiv:1806.00700</u>

- Collaborators
 - Gabriel Martine La Boissonière (McGill University)
 - Zheyong Fan (Aalto University)
 - Cristian-Vasile Achim (University of Concepcion)
 - Nikolas Provatas (McGill University)
 - Ken Elder (Oakland University)
 - Tapio Ala-Nissila (Aalto Univ., Loughborough Univ.)
- You
- P.S. In case you forgot, my info:
 - Petri Hirvonen, petri.hirvonen@aalto.fi, MSP, Aalto Univ.

Obtaining the orientation field

PFC model systems Construction of model systems

- Properties
 - Periodic boundaries
 - Planar
 - Free-standing
- Random tiled initial state
 - For stability
- Diffusive PFC dynamics

$$\frac{\partial \psi}{\partial t} = \nabla^2 \frac{\delta F}{\delta \psi}$$

Assessment of grain extraction method Applicability to molecular dynamics data

Paper scraps

Stripe systems

Further results Grain neighbor count distributions

Further results Grain circularity distributions

Further results Grain aspect ratio distributions

Further results Grain misalignment distributions

• Benchmark

- 8192 x 8192 system with 1084 grains
- Quad-core (Intel Xeon E3-1230 v5) PC
- Execution times (a few minutes in total)
 - ϕ + χ : ~90 s (more CPU cores → faster)
 - $\circ\,$ Subdomain growth: ~90 s (smarter parallel algorithm $\rightarrow\,$ much faster)*
 - Initialization + reading data: ~40 s *
 - Principal component analysis: ~60 s (optional)
- Maximal memory usage: ~10 GB (smarter algorithm \rightarrow less)

GB energy calculations Details

 $F = f_{\rm eq}S + 2\gamma L_{\parallel} + \gamma^* L_{\perp} + 2\delta$

GB energy calculations Results

