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Motivation

● Quasicrystals have many potential applications due to their 
interesting properties
○ Low ᶞ, resistance to oxidationa, etc.b, c

● Microstructure → material properties
○ What are the connections?
○ Modeling microstructures very difficult

● Quasicrystals’ aperiodic nature
○ Characterization difficult

a Thiel, Annu. Rev. Phys. Chem. 59 (2008)
b McGrath et al., J. Phys. Condens. Matt. 14 (2002)
c Smerdon et al., J. Phys. Condens. Matt 20 (2008)
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● A new highly generalizable method for grain extraction
○ Find grains → study microstructural properties and their 

distributions
○ Works for many lattice types --- also for quasicrystals!

● Four-step algorithm for grain extraction from atomic density 
maps
1. Generate orientation field
2. Generate deformation field
3. Grow subdomains in

deformation field
4. Merge subdomains

Grain extraction method
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Grain extraction method
Step 1: Orientation field
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Grain extraction method
Step 2: Deformation field
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Grain extraction method
Step 3: Subdomain growth
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Grain extraction method
Step 4: Subdomain merging
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● PFC very well suited for generating realistic microstructuresb

● Simple density functional approach to crystalline materials
● Main advantage access to long, diffusional time scales
● Can handle mesoscopic systems with atomic

resolution
● Two main components

○ Smooth classical density field ᶪ
○ Governing free energy

functional F(ᶪ)

PFC model systems
Basics of PFCa

a Elder et al., Phys. Rev. Lett. 88 (2002); Elder et 
al., Phys. Rev. E 70 (2004)
b Hirvonen et al., Phys. Rev. B 94 (2016); Hirvonen 
et al., Sci. Rep. 7 (2017); Fan et al., Nano Lett. 17 
(2017); Azizi et al., Carbon 125 (2017) 9



● Two competing length scales ᶝn ~ 1/qn
○ More lattices: square, hexagonal, 10-fold and 12-fold

● This and other PFC models used previously in studies 
related to quasicrystals
○ Growth modesb

○ Interfacesc

○ Monolayers on quasi-
crystalline surfacesd

○ Three-dimensional
quasicrystalse

PFC model systems
Two-mode PFC modela, b

a Wu et al., Phys. Rev. E 81 (2010)
b Achim et al., Phys. Rev. Lett. 112 (2014)
c Schmiedeberg et al., Phys. Rev. E 96 (2017)
d Rottler et al., J. Phys. Condens. Matt. 24 (2012)
e Subramanian et al., Phys. Rev. Lett. 117 (2016) 10
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Assessment of grain extraction method
Subdomain network
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Assessment of grain extraction method
Subdomain merging

a Boissonière et al., Model. Simul. Mater. Sci. Eng. 26 (2018))

a
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Assessment of grain extraction method
Subdomain merging



Analysis of different microstructures
Evolution of average grain size
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● Power-law growth expecteda, b, c

● All lattice types demonstrate
perfect power-law growth
○ ᶔ = 0.21 - 0.24

● Hexagonal: good agreement
with Backofen et al.d

a Burke, Trans. Metall. Soc. AIME 180 (1949)
b Burke and Turnbull, Prog. Metal. Phys. 3 (1952)
c Krzanowski et al., Acta Metall. 34 (1986)
d Backofen et al., Acta Mater. 64 (2014)

ᶔ = 0.21
ᶔ = 0.21

ᶔ = 0.23

ᶔ = 0.24
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● Log-normal distributions
both expecteda, b, c and
observed

● All lattice types
demonstrate identical
behavior

a Backofen et al., Acta Mater. 64 (2014)
b La Boissonière et al., Model. Simul. Mater. Sci.
  Eng. 26 (2018)
c Barmak et al., Prog. Mater. Sci. 58 (2013)

Analysis of different microstructures
Normalized grain size distributions
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● All lattice types favor
similar disparity in grain
size between neighbors
○ <ᶖ> = 0.62, 0.61,

0.64, 0.64
● Hexagonal: grain area

ratio very similar to
La Boissonière et al.a

a La Boissonière et al., Model. Simul. Mater. Sci.
  Eng. 26 (2018)

Analysis of different microstructures
Grain size ratio distributions
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Analysis of different microstructures
Grain misorientation distributions

12-fold10-fold

square hex

P
ro

ba
bi

lit
y 

de
ns

ity

P
ro

ba
bi

lit
y 

de
ns

ity

P
ro

ba
bi

lit
y 

de
ns

ity

P
ro

ba
bi

lit
y 

de
ns

ity

a La Boissonière et al., Model. Simul. Mater. Sci.
  Eng. 26 (2018)

● Very different distributions
for different lattice types!

● Hexagonal: favors large
misorientations
○ Previousa: small!
○ Model and parameters

● Square: bump at ~15°
● 12-fold: bump at ~7°
● Grain boundary energy?

Misorientation (degrees) Misorientation (degrees)

Misorientation (degrees) Misorientation (degrees)



● A new accurate method for extracting grains and analyzing 
microstructures in poly(quasi)crystals was introduced and 
assesseda

● Applied to study microstructures of different lattice typesa

○ Many properties universal beyond lattice type
○ Lattice misorientations show unique behavior

● We expect our method can greatly facilitate the study of 
complex microstructures in quasicrystals

Conclusions
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Obtaining the orientation field
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PFC model systems
Construction of model systems
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● Properties
○ Periodic boundaries
○ Planar
○ Free-standing

● Random tiled initial state
○ For stability

● Diffusive PFC dynamics



Assessment of grain extraction method
Applicability to molecular dynamics data
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Paper scraps
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Stripe systems
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Further results
Grain neighbor count distributions
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Further results
Grain circularity distributions
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Further results
Grain aspect ratio distributions
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Further results
Grain misalignment distributions
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● Benchmark
○ 8192 x 8192 system with 1084 grains
○ Quad-core (Intel Xeon E3-1230 v5) PC

● Execution times (a few minutes in total)
○ ᶰ + ᶩ: ~90 s (more CPU cores → faster)
○ Subdomain growth: ~90 s (smarter parallel algorithm → 

much faster)*
○ Initialization + reading data: ~40 s *
○ Principal component analysis: ~60 s (optional)

● Maximal memory usage: ~10 GB (smarter algorithm → less)

Computational performance
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GB energy calculations
Details

31



GB energy calculations
Results
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