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De�nition

A Lie ∗-algebra is a complex Lie algebra g with an anti-linear,
anti-multiplicative involution ∗ : g→ g.

Correspondence Lie ∗-algebras ⇐⇒ real Lie algebras, given by

(g, ∗) 7→ g∗ = {x ∈ g : x∗ = −x},
s 7→ (sC, ∗), (x + iy)∗ = −x + iy , x , y ∈ s.

In the following we will �x a compact real form of g, denoted by u, and
write ∗ for its corresponding ∗-structure.

Let σ be a Lie algebra involution of u. Then x† = σ(x)∗ de�nes a
∗-structure. All real semisimple Lie algebras arise as g†.
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We recover the usual correspondence real forms of g⇐⇒ involutions of u.

There are two standard forms for an involution:

1 Vogan form (from max. compact Cartan),

2 Satake form (from max. non-compact Cartan).

We will consider g with Chevalley generators {hi , ei , fi : i ∈ I}.

De�nition

Vogan form ν = ν(Y , µ). Data Y ⊆ I and µ ∈ Out(g) and

ν(hi ) = hµ(i), ν(ei ) = εieµ(i), ν(fi ) = εi fµ(i),

Here ε : I → {±1} and εi = −1 for i ∈ Y .
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We will not recall all the details of the Satake form.

De�nition

Satake form θ = θ(X , τ, z): X ⊆ I , τ ∈ Out(g) and z a unitary character
on Q, satisfying various conditions. Then

θ = Ad(z) ◦ τ ◦ ω ◦Ad(mX ).

Example

Consider the non-trivial involution of sl2. Then

ν(h) = h, ν(e) = −e, ν(f ) = −f ,
θ(h) = −h, θ(e) = −f , θ(f ) = −e.

In this case µ = τ = id, Y = {1} and X = ∅.
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The Vogan and Satake forms ν and θ of an involution are conjugate.

However upon quantization things will become more complicated. We
will need a more elaborate way to relate them.

Write G for the Lie group integrating g. Then the points of G can be
recovered from the characters of the algebra O(G ).

Also write U for the Lie group integrating u. We have

U = {g ∈ G : g∗ = g−1}.

Then U can be recovered from the ∗-characters of O(G ), where

f ∗(g) = f ((g−1)∗).

Note that this procedure uses the Lie ∗-algebra structure.
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Now let θ be an involution in Satake form and ν an involution in Vogan
form, which we assume to be inner conjugate.

Moreover this can be realized by unitary elements. That is we have

θ = Ad(v) ◦ ν ◦Ad(v∗), v ∈ U.

De�ne the element
k := vν(v)∗ = θ(v)∗v .

Then for any g ∈ G we have

θ(g) = kν(g)k∗.

Moreover the element k satis�es

k∗ = ν(k).
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Given an involution σ, de�ne the σ-twisted Hermitian elements by

Hσ(G ) = {g ∈ G : σ(g)∗ = g}.

We have an action of U on Hσ(G ) given by

Adσ(u)g = ugσ(u)∗.

Back to θ and ν. There is a U-equivariant isomorphism

(Hθ(G ),Adθ) ∼= (Hν(G ),Adν), x 7→ xk.

We also have a U-equivariant embedding

(U/Uθ, L) ↪→ (Hθ(G ),Adθ), xUθ 7→ xθ(x)∗.
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Then we can consider the composite map

(U/Uθ, L) ↪→ (Hν(G ),Adν),

which is given explicitely by

uUθ 7→ uθ(u)∗k = ukν(u)∗ = Adν(u)k .

Dualizing we obtain a surjective map

(O(Hν(G )),Ad∗ν)� (O(U/Uθ), L∗).

Goal: quantize this map (in an equivariant way).

We will show that this is possible. On the other hand the algebras
O(Hθ(G )) and O(U/Uν) do not admit natural quantizations.
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We start from the quantized enveloping algebra Uq(g). We write

U := (Uq(g), ∗).

We write A := U◦ for the dual Hopf algebra of matrix coe�cients.

We have a map I : A → U given by

I (ω) = (ω ⊗ id)(R∗R).

We get U-module isomorphism A ∼= U�n. Not an algebra isomorphism.

However we can modify the product of A and consider the braided
version Abr. Then we have a ∗-algebra isomorphism Abr ∼= U�n.
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We want a quantum analogue of (O(Hν(G )),Ad∗ν). Observe that:

1 A is not a U-module algebra for Ad∗, while Abr is,

2 on the other hand we want Ad∗ν , need a twist!

We will use some ideas from the paper [DCNTY (18)].

We have a straightforward quantization of the Vogan form:

νq(Kω) = KN(ω), νq(Ei ) = εiEµ(i), νq(Fi ) = εiFµ(i),

where N is dual to ν|h. It is a Hopf ∗-algebra involution.

We can use νq to twist the Drinfeld double D.
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Consider the usual skew-pairing (·, ·) : U− ⊗ U+ → C. We set

(X ,Y )+ := (X ,Y ), (X ,Y )− := (νq(X ),Y ).

For µ, µ′ ∈ {±} we de�ne an algebra Dµ,µ′ as follows. It is U+ ⊗ U− as
a vector space, contains U± as subalgebras, and has cross-relations

kh = (h(1), k(1))µh(2)k(2)(S(h(3)), k(3))µ′ , h ∈ U−, k ∈ U+.

They �t together into a Hopf-Galois system. We will write

D = D++, Dν := D+−.

Upon identifying the two Cartan parts of D we get U .
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In a similar way we can twist Abr to obtain Aν−br. It becomes a
U-module algebra with respect to the twisted adjoint action Ad

∗
ν .

The algebra Aν−br also comes with the ∗-structure

ω†(X ) = ω(ν(X )∗).

From this we can see that Aν−br is the quantum analogue of O(Hν(G )).

Indeed the points of Hν(G ) can be identi�ed with the characters of O(G )
which are compatible with the ∗-structure †.
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Write R̃ for the R-matrix R ∈ D⊗̂D seen inside D⊗̂Dν . Also write

Rν := (ν ⊗ id)(R) = (id⊗ ν)(R).

Then we de�ne the map Iν : Aν−br → Dν given by

Iν(ω) := (ω ⊗ id)(R̃∗νR̃).

Theorem

The map Iν : Aν−br → Dν is injective and is a morphism of left

Yetter-Drinfeld D-module ∗-algebras.

The image can be characterized: there is an algebra Uν ⊆ Dν given by
generators and relations such that Iν(Aν−br) = Uν,�n.

Moreover Uν is isomorphic to a localization of Aν−br.
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To proceed we need K-matrices (discussed by various authors).

De�nition

We say that K ∈ M(U) is a universal K-matrix for (R,Rν) if

∆(K) = R−1(K ⊗ 1)Rν(1⊗K) = (1⊗K)R−1ν (K ⊗ 1)R,

together with the condition K∗ = ν(K).

Remark

For ν = id we have that K = 1 is a universal K-matrix for (R,R).
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Generalization of results of [Kolb, Stokman (09)].

Theorem

There is one-to-one correspondence between:

1 universal K-matrices K ∈ M(U),

2 ∗-characters f : Aν−br → C,
3 ∗-homomorphisms φ : Aν−br → A intertwining αν with ∆,

4 ∗-homomorphisms φ̂ : Aν−br → U intertwining γν with ∆.

The correspondence is determined by

f (ω) = ω(K), φ(ω) = (f ⊗ id)αν(ω), φ̂(ω) = (id⊗ f )γν(ω).
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Explicitely we have the maps

φ(ω)(X ) = ω(ν(S(X(1)))KX(2)), φ̂(ω) = (id⊗ ω)(Rν(1⊗K)R∗).

We have that B := φ(Aν−br) is a right coideal ∗-subalgebra of A, while
C := φ̂(Aν−br) is a left coideal ∗-subalgebra of U .

Aν−br

B ⊆ A C ⊆ U

φ φ̂

Remark

For ν = id and K = 1 we get B = C1 and C = U�n.
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Let us also consider the algebra

AC := {ω ∈ A : ω / X = ε(X )ω, ∀X ∈ C}.

Proposition

1 We have KX = ν(X )K for all X ∈ C.
2 We have the inclusion B ⊆ AC .

Hence by this construction we get the following maps:

Uν,�n Aν−br B AC .
I−1ν φ

Can we actually �nd such an element K?
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A quantization of the Satake form θ  θq was given by [Letzter (99)].
These are algebra automorphisms of Uq(g), but not involutions.

Corresponding to them there are coideal subalgebras of U .

Revisited and extended by [Kolb (14)], which we follow for conventions.
We have right coideal subalgebras

Bc,s ⊆ Uq(g), ∆(Bc,s) ⊆ Bc,s ⊗ Uq(g).

Here (c, s) are parameters that need to satisfy certain conditions.

The algebra Bc,s specializes to U(gθ) in the classical limit.
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A universal K-matrix for Bc,s was recently constructed by Balagovi¢ and
Kolb, generalizing results of Bao and Wang.

For this result extra conditions on the parameters (c, s) are needed.

Theorem (Balagovi¢, Kolb (16))

There exists an element K ∈ M(U) such that:

Kb = ττ0(b)K, ∀b ∈ Bc,s,

∆(K) = R21(1⊗K)Rττ0(K ⊗ 1).

Here τ0 is the automorphism corresponding to the longest word of the
Weyl group. Note that R appears in a di�erent way.
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However the additional conditions for the parameters (c, s) are
incompatible with the ∗-invariance of the coideal Bc,s.

This can be �xed as follows. We take some special parameters (c, s)
satisfying the extra conditions. Then we de�ne

B̃c,s := Kω0Bc,sK
−1
ω0 , ω0 := −1

2
(ρ− ρX ).

Lemma (DCNTY (18))

The algebra B̃c,s is ∗-invariant.

We can twist the K-matrix in the same way, that is we set

K̃ := Kω0KK−1ω0 .

Then K̃ satis�es similar conditions to K.
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We want to compute K̃∗. Given a U-module V de�ne

S0v := (−1)(2ρ
∨,λ)v , SX v := (−1)(2ρ

∨
X ,λ)v , v ∈ Vλ.

Theorem

The element K̃ satis�es

K̃∗ = ττ0(K̃) ◦ S0 ◦ SX ◦ z ◦ z−1τ .

The term S0 ◦ SX ◦ z ◦ z−1τ contains the additional information needed to
relate the Satake form θ to the Vogan form ν.
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The term S0 ◦ SX ◦ z ◦ z−1τ contains the additional information needed to
relate the Satake form θ to the Vogan form ν.
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Let us see how to relate the Satake and Vogan form. We can rewrite

θ = Ad(z) ◦ τ ◦ ω ◦Ad(mX )

= Ad(z) ◦ τ ◦ τ0 ◦Ad(m0) ◦Ad(mX ).

Suppose θ(X , τ, z) is inner conjugate to ν(Y , µ). The outer part of the
automorphism θ is given by τ ◦ τ0, hence we must have

µ = τ ◦ τ0.

To compare signs we give the following de�nition.

De�nition

A sign function ε : I → {±1} is (X , τ)-admissible if it is ττ0-invariant
and such that ν(Yε, ττ0) is inner conjugate to θ(X , τ, z).
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Any sign function ε extends to a group homomorphism ε : Q → C×.

To obtain the Vogan form we look for an extension ε̃ : P → C×
(non-unique) satisfying a certain condition.

Theorem

Let θ = θ(X , τ, z) be the Satake form. Let ε be an (X , τ)-admissible sign

function. Then there exists an extension ε̃ : P → C× of ε such that

ε̃ ◦ ττ0(ε̃) = S0 ◦ SX ◦ z ◦ z−1τ .

Remark

The theorem does not hold if we replace inner conjugacy with conjugacy!
This happens in the case of the real form so∗(4p).
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De�ne now the Hopf ∗-algebra automorphism

ν(X ) := ε̃∗ ◦ ττ0(X ) ◦ ε̃.

Here ε̃ acts on a U-module V by ε̃v = ε̃(λ)v , where v ∈ Vλ.

This corresponds to the Vogan form of θ, that is

ν(Ki ) = Kττ0(i), ν(Ei ) = εiEττ0(i), ν(Fi ) = εiFττ0(i).

Theorem

The element K̃′ := K̃ ◦ ε̃ satis�es

∆(K̃′) = R21(1⊗ K̃′)Rν(K̃′ ⊗ 1),

and the condition K̃′∗ = ν(K̃′).
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This is almost the form we want for the K-matrix.

Let R be the unitary antipode and C the ribbon element of U .

Corollary

De�ne K := C ◦ R(K̃′)∗. Then K is a universal K-matrix, that is

∆(K) = R−1(K ⊗ 1)Rν(1⊗K) = (1⊗K)R−1ν (K ⊗ 1)R,

together with the condition K∗ = ν(K).

Hence we can use this element K for the general construction.
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We write Uθ := R(B̃c,s). This is the quantum analogue of U(uθ).

Recall the de�nition of the algebra C = φ̂(Aν−br).

Theorem

We have C ⊆ Uθ and AC = AUθ

.

Remark

We can think of C as the "locally-�nite" part of Uθ. Indeed in the case
ν = id and K = 1 we have Uθ = U and C = U�n.
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Let us also consider the other algebra

B = φ(Aν−br) ⊆ AC = AU
θ

.

Theorem

The map φ : Aν−br → AC is surjective, that is B = AUθ

.

An important part in the proof is played by the following result.

Theorem (Letzter (00))

AUθ

has the same harmonic decomposition as in the classical case.
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Putting all together we have the following result.

Theorem

We obtain a surjective U-equivariant ∗-homomorphism

Uν,�n Aν−br AUθ

.
I−1ν φ

This should be compared with the classical map:

(O(Hν(G )),Ad∗ν)� (O(U/Uθ), L∗).

Complementary to [De Commer, Neshveyev (15)] for �ag manifolds.
Should �t into this framework with appropriate modi�cations.

Future plan: relate representation categories of the various algebras.
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