Relating the Vogan and Satake forms in the quantum setting

Marco Matassa (joint work with Kenny De Commer)

Vrije Universiteit Brussel (VUB)

Quantum homogeneous spaces, 11-15 June 2018

2 Quantum setting

3 K-matrices

4 Further results

Definition

A Lie *-algebra is a complex Lie algebra \mathfrak{g} with an anti-linear, anti-multiplicative involution $* : \mathfrak{g} \to \mathfrak{g}$.

Correspondence Lie *-algebras \iff real Lie algebras, given by

$$(\mathfrak{g},*) \mapsto \mathfrak{g}_* = \{x \in \mathfrak{g} : x^* = -x\},\$$

 $\mathfrak{s} \mapsto (\mathfrak{s}_{\mathbb{C}},*), \quad (x + iy)^* = -x + iy, \quad x, y \in \mathfrak{s}$

Definition

A Lie *-algebra is a complex Lie algebra \mathfrak{g} with an anti-linear, anti-multiplicative involution $* : \mathfrak{g} \to \mathfrak{g}$.

Correspondence Lie *-algebras \iff real Lie algebras, given by

$$(\mathfrak{g},*) \mapsto \mathfrak{g}_* = \{x \in \mathfrak{g} : x^* = -x\},\$$

 $\mathfrak{s} \mapsto (\mathfrak{s}_{\mathbb{C}},*), \quad (x+iy)^* = -x+iy, \quad x, y \in \mathfrak{s}.$

In the following we will fix a compact real form of \mathfrak{g} , denoted by \mathfrak{u} , and write * for its corresponding *-structure.

Let σ be a Lie algebra involution of \mathfrak{u} . Then $x^{\dagger} = \sigma(x)^*$ defines a *-structure. All real semisimple Lie algebras arise as \mathfrak{g}_{\dagger} .

We recover the usual correspondence real forms of $\mathfrak{g} \iff$ involutions of \mathfrak{u} .

There are two standard forms for an involution:

- **1** Vogan form (from max. compact Cartan),
- **2** Satake form (from max. non-compact Cartan).

We will consider \mathfrak{g} with Chevalley generators $\{h_i, e_i, f_i : i \in I\}$.

We recover the usual correspondence real forms of $\mathfrak{g} \iff$ involutions of \mathfrak{u} .

There are two standard forms for an involution:

- Vogan form (from max. compact Cartan),
- Satake form (from max. non-compact Cartan).

We will consider \mathfrak{g} with Chevalley generators $\{h_i, e_i, f_i : i \in I\}$.

Definition

Vogan form $\nu = \nu(Y, \mu)$. Data $Y \subseteq I$ and $\mu \in Out(\mathfrak{g})$ and

$$u(h_i) = h_{\mu(i)}, \quad \nu(e_i) = \epsilon_i e_{\mu(i)}, \quad \nu(f_i) = \epsilon_i f_{\mu(i)},$$

Here $\epsilon: I \to \{\pm 1\}$ and $\epsilon_i = -1$ for $i \in Y$.

We will not recall all the details of the Satake form.

Definition

Satake form $\theta = \theta(X, \tau, z)$: $X \subseteq I$, $\tau \in Out(\mathfrak{g})$ and z a unitary character on Q, satisfying various conditions. Then

$$\theta = \operatorname{Ad}(z) \circ \tau \circ \omega \circ \operatorname{Ad}(m_X).$$

We will not recall all the details of the Satake form.

Definition

Satake form $\theta = \theta(X, \tau, z)$: $X \subseteq I$, $\tau \in Out(\mathfrak{g})$ and z a unitary character on Q, satisfying various conditions. Then

$$\theta = \operatorname{Ad}(z) \circ \tau \circ \omega \circ \operatorname{Ad}(m_X).$$

Example

Consider the non-trivial involution of \mathfrak{sl}_2 . Then

$$\nu(h) = h, \quad \nu(e) = -e, \quad \nu(f) = -f,$$

$$\theta(h) = -h, \quad \theta(e) = -f, \quad \theta(f) = -e.$$

In this case $\mu = \tau = id$, $Y = \{1\}$ and $X = \emptyset$.

The Vogan and Satake forms ν and θ of an involution are conjugate. However upon quantization things will become more complicated. We will need a more elaborate way to relate them. The Vogan and Satake forms ν and θ of an involution are conjugate.

However upon quantization things will become more complicated. We will need a more elaborate way to relate them.

Write G for the Lie group integrating \mathfrak{g} . Then the points of G can be recovered from the characters of the algebra $\mathcal{O}(G)$.

The Vogan and Satake forms ν and θ of an involution are conjugate.

However upon quantization things will become more complicated. We will need a more elaborate way to relate them.

Write G for the Lie group integrating \mathfrak{g} . Then the points of G can be recovered from the characters of the algebra $\mathcal{O}(G)$.

Also write U for the Lie group integrating \mathfrak{u} . We have

$$U = \{g \in G : g^* = g^{-1}\}.$$

Then U can be recovered from the *-characters of $\mathcal{O}(G)$, where

$$f^*(g) = \overline{f((g^{-1})^*)}.$$

Note that this procedure uses the Lie *-algebra structure.

Now let θ be an involution in Satake form and ν an involution in Vogan form, which we assume to be inner conjugate.

Moreover this can be realized by unitary elements. That is we have

$$\theta = \operatorname{Ad}(v) \circ v \circ \operatorname{Ad}(v^*), \quad v \in U.$$

Now let θ be an involution in Satake form and ν an involution in Vogan form, which we assume to be inner conjugate.

Moreover this can be realized by unitary elements. That is we have

$$\theta = \operatorname{Ad}(v) \circ v \circ \operatorname{Ad}(v^*), \quad v \in U.$$

Define the element

$$k := v\nu(v)^* = \theta(v)^*v.$$

Now let θ be an involution in Satake form and ν an involution in Vogan form, which we assume to be inner conjugate.

Moreover this can be realized by unitary elements. That is we have

$$\theta = \operatorname{Ad}(v) \circ v \circ \operatorname{Ad}(v^*), \quad v \in U.$$

Define the element

$$k := v\nu(v)^* = \theta(v)^*v.$$

Then for any $g \in G$ we have

$$\theta(g)=k\nu(g)k^*.$$

Moreover the element k satisfies

$$k^* = \nu(k).$$

$$H_{\sigma}(G) = \{g \in G : \sigma(g)^* = g\}.$$

$$H_{\sigma}(G) = \{g \in G : \sigma(g)^* = g\}.$$

We have an action of U on $H_{\sigma}(G)$ given by

$$\operatorname{Ad}_{\sigma}(u)g = ug\sigma(u)^*.$$

$$H_{\sigma}(G) = \{g \in G : \sigma(g)^* = g\}.$$

We have an action of U on $H_{\sigma}(G)$ given by

$$\operatorname{Ad}_{\sigma}(u)g = ug\sigma(u)^*.$$

Back to θ and ν . There is a *U*-equivariant isomorphism

$$(H_{\theta}(G), \operatorname{Ad}_{\theta}) \cong (H_{\nu}(G), \operatorname{Ad}_{\nu}), \quad x \mapsto xk.$$

$$H_{\sigma}(G) = \{g \in G : \sigma(g)^* = g\}.$$

We have an action of U on $H_{\sigma}(G)$ given by

$$\operatorname{Ad}_{\sigma}(u)g = ug\sigma(u)^*.$$

Back to θ and ν . There is a *U*-equivariant isomorphism

$$(H_{\theta}(G), \operatorname{Ad}_{\theta}) \cong (H_{\nu}(G), \operatorname{Ad}_{\nu}), \quad x \mapsto xk.$$

We also have a U-equivariant embedding

$$(U/U^{\theta},L) \hookrightarrow (H_{\theta}(G),\mathrm{Ad}_{\theta}), \quad xU^{\theta} \mapsto x\theta(x)^{*}.$$

Then we can consider the composite map

$$(U/U^{\theta}, L) \hookrightarrow (H_{\nu}(G), \mathrm{Ad}_{\nu}),$$

which is given explicitely by

$$uU^{\theta} \mapsto u\theta(u)^*k = uk\nu(u)^* = \mathrm{Ad}_{\nu}(u)k.$$

Then we can consider the composite map

$$(U/U^{\theta}, L) \hookrightarrow (H_{\nu}(G), \operatorname{Ad}_{\nu}),$$

which is given explicitely by

$$uU^{\theta} \mapsto u\theta(u)^*k = uk\nu(u)^* = \mathrm{Ad}_{\nu}(u)k.$$

Dualizing we obtain a surjective map

$$(\mathcal{O}(H_{\nu}(G)), \operatorname{Ad}_{\nu}^{*}) \twoheadrightarrow (\mathcal{O}(U/U^{\theta}), L^{*}).$$

Then we can consider the composite map

$$(U/U^{\theta}, L) \hookrightarrow (H_{\nu}(G), \operatorname{Ad}_{\nu}),$$

which is given explicitely by

$$uU^{\theta} \mapsto u\theta(u)^*k = uk\nu(u)^* = \mathrm{Ad}_{\nu}(u)k.$$

Dualizing we obtain a surjective map

$$(\mathcal{O}(H_{\nu}(G)), \operatorname{Ad}_{\nu}^{*}) \twoheadrightarrow (\mathcal{O}(U/U^{\theta}), L^{*}).$$

Goal: quantize this map (in an equivariant way).

We will show that this is possible. On the other hand the algebras $\mathcal{O}(H_{\theta}(G))$ and $\mathcal{O}(U/U^{\nu})$ do not admit natural quantizations.

2 Quantum setting

3 K-matrices

4 Further results

We start from the quantized enveloping algebra $U_q(\mathfrak{g})$. We write

$$\mathcal{U} := (U_q(\mathfrak{g}), *).$$

We write $\mathcal{A} := \mathcal{U}^{\circ}$ for the dual Hopf algebra of matrix coefficients.

We start from the quantized enveloping algebra $U_q(\mathfrak{g})$. We write

$$\mathcal{U} := (U_q(\mathfrak{g}), *).$$

We write $\mathcal{A} := \mathcal{U}^\circ$ for the dual Hopf algebra of matrix coefficients. We have a map $I : \mathcal{A} \to \mathcal{U}$ given by

$$I(\omega) = (\omega \otimes \mathrm{id})(\mathscr{R}^*\mathscr{R}).$$

We get \mathcal{U} -module isomorphism $\mathcal{A} \cong \mathcal{U}_{\mathrm{fin}}$. Not an algebra isomorphism.

We start from the quantized enveloping algebra $U_q(\mathfrak{g})$. We write

$$\mathcal{U} := (U_q(\mathfrak{g}), *).$$

We write $\mathcal{A} := \mathcal{U}^\circ$ for the dual Hopf algebra of matrix coefficients. We have a map $I : \mathcal{A} \to \mathcal{U}$ given by

$$I(\omega) = (\omega \otimes \mathrm{id})(\mathscr{R}^*\mathscr{R}).$$

We get \mathcal{U} -module isomorphism $\mathcal{A} \cong \mathcal{U}_{\mathrm{fin}}$. Not an algebra isomorphism.

However we can modify the product of \mathcal{A} and consider the braided version $\mathcal{A}^{\mathrm{br}}$. Then we have a *-algebra isomorphism $\mathcal{A}^{\mathrm{br}} \cong \mathcal{U}_{\mathrm{fin}}$.

We want a quantum analogue of $(\mathcal{O}(H_{\nu}(G)), \mathrm{Ad}_{\nu}^*)$. Observe that:

- $\blacksquare \ {\cal A}$ is not a ${\cal U}\text{-module}$ algebra for ${\rm Ad}^*,$ while ${\cal A}^{\rm br}$ is,
- **2** on the other hand we want $\operatorname{Ad}_{\nu}^{*}$, need a twist!

We want a quantum analogue of $(\mathcal{O}(H_{\nu}(G)), \operatorname{Ad}_{\nu}^*)$. Observe that:

- **1** \mathcal{A} is not a \mathcal{U} -module algebra for Ad^* , while $\mathcal{A}^{\mathrm{br}}$ is,
- **2** on the other hand we want $\operatorname{Ad}^*_{\nu}$, need a twist!

1

We will use some ideas from the paper [DCNTY (18)].

We have a straightforward quantization of the Vogan form:

$$u_q(K_\omega) = K_{\mathcal{N}(\omega)}, \quad
u_q(E_i) = \epsilon_i E_{\mu(i)}, \quad
u_q(F_i) = \epsilon_i F_{\mu(i)},$$

where N is dual to $\nu|_{\mathfrak{h}}$. It is a Hopf *-algebra involution. We can use ν_q to twist the Drinfeld double \mathcal{D} . Consider the usual skew-pairing $(\cdot, \cdot): \mathcal{U}^- \otimes \mathcal{U}^+ \to \mathbb{C}.$ We set

$$(X, Y)_+ := (X, Y), \quad (X, Y)_- := (\nu_q(X), Y).$$

Consider the usual skew-pairing $(\cdot, \cdot) : \mathcal{U}^- \otimes \mathcal{U}^+ \to \mathbb{C}$. We set

$$(X, Y)_+ := (X, Y), \quad (X, Y)_- := (\nu_q(X), Y).$$

For $\mu, \mu' \in \{\pm\}$ we define an algebra $\mathcal{D}_{\mu,\mu'}$ as follows. It is $\mathcal{U}^+ \otimes \mathcal{U}^-$ as a vector space, contains \mathcal{U}^{\pm} as subalgebras, and has cross-relations

$$kh = (h_{(1)}, k_{(1)})_{\mu} h_{(2)} k_{(2)} (S(h_{(3)}), k_{(3)})_{\mu'}, \quad h \in \mathcal{U}^-, \ k \in \mathcal{U}^+.$$

Consider the usual skew-pairing $(\cdot, \cdot) : \mathcal{U}^- \otimes \mathcal{U}^+ \to \mathbb{C}$. We set

$$(X, Y)_+ := (X, Y), \quad (X, Y)_- := (\nu_q(X), Y).$$

For $\mu, \mu' \in \{\pm\}$ we define an algebra $\mathcal{D}_{\mu,\mu'}$ as follows. It is $\mathcal{U}^+ \otimes \mathcal{U}^-$ as a vector space, contains \mathcal{U}^{\pm} as subalgebras, and has cross-relations

$$kh = (h_{(1)}, k_{(1)})_{\mu} h_{(2)} k_{(2)} (S(h_{(3)}), k_{(3)})_{\mu'}, \quad h \in \mathcal{U}^-, \ k \in \mathcal{U}^+.$$

They fit together into a Hopf-Galois system. We will write

$$\mathcal{D} = \mathcal{D}_{++}, \quad \mathcal{D}_{\nu} := \mathcal{D}_{+-}.$$

Upon identifying the two Cartan parts of \mathcal{D} we get \mathcal{U} .

In a similar way we can twist $\mathcal{A}^{\mathrm{br}}$ to obtain $\mathcal{A}^{\nu-\mathrm{br}}$. It becomes a \mathcal{U} -module algebra with respect to the twisted adjoint action Ad_{ν}^* .

In a similar way we can twist $\mathcal{A}^{\mathrm{br}}$ to obtain $\mathcal{A}^{\nu-\mathrm{br}}$. It becomes a \mathcal{U} -module algebra with respect to the twisted adjoint action Ad_{ν}^* .

The algebra $\mathcal{A}^{
u-\mathrm{br}}$ also comes with the *-structure

$$\omega^{\dagger}(X) = \overline{\omega(\nu(X)^*)}.$$

From this we can see that $\mathcal{A}^{\nu-\mathrm{br}}$ is the quantum analogue of $\mathcal{O}(H_{\nu}(G))$. Indeed the points of $H_{\nu}(G)$ can be identified with the characters of $\mathcal{O}(G)$ which are compatible with the *-structure †. Write $\widetilde{\mathscr{R}}$ for the R-matrix $\mathscr{R} \in \mathcal{D} \hat{\otimes} \mathcal{D}$ seen inside $\mathcal{D} \hat{\otimes} \mathcal{D}_{\nu}$. Also write

$$\mathscr{R}_{\nu} := (\nu \otimes \mathrm{id})(\mathscr{R}) = (\mathrm{id} \otimes \nu)(\mathscr{R}).$$

Write $\widetilde{\mathscr{R}}$ for the R-matrix $\mathscr{R} \in \mathcal{D} \hat{\otimes} \mathcal{D}$ seen inside $\mathcal{D} \hat{\otimes} \mathcal{D}_{\nu}$. Also write

$$\mathscr{R}_{\nu} := (\nu \otimes \mathrm{id})(\mathscr{R}) = (\mathrm{id} \otimes \nu)(\mathscr{R}).$$

Then we define the map $I_
u: \mathcal{A}^{
u-\mathrm{br}} o \mathcal{D}_
u$ given by

$$I_{\nu}(\omega) := (\omega \otimes \mathrm{id})(\widetilde{\mathscr{R}}_{\nu}^* \widetilde{\mathscr{R}}).$$

Write $\widetilde{\mathscr{R}}$ for the R-matrix $\mathscr{R} \in \mathcal{D} \hat{\otimes} \mathcal{D}$ seen inside $\mathcal{D} \hat{\otimes} \mathcal{D}_{\nu}$. Also write

$$\mathscr{R}_{\nu} := (\nu \otimes \mathrm{id})(\mathscr{R}) = (\mathrm{id} \otimes \nu)(\mathscr{R}).$$

Then we define the map $I_{\nu}: \mathcal{A}^{\nu-\mathrm{br}}
ightarrow \mathcal{D}_{
u}$ given by

$$I_{\nu}(\omega) := (\omega \otimes \mathrm{id})(\widetilde{\mathscr{R}}_{\nu}^* \widetilde{\mathscr{R}}).$$

Theorem

The map $I_{\nu} : \mathcal{A}^{\nu-\mathrm{br}} \to \mathcal{D}_{\nu}$ is injective and is a morphism of left Yetter-Drinfeld \mathcal{D} -module *-algebras.

The image can be characterized: there is an algebra $\mathcal{U}_{\nu} \subseteq \mathcal{D}_{\nu}$ given by generators and relations such that $I_{\nu}(\mathcal{A}^{\nu-\mathrm{br}}) = \mathcal{U}_{\nu,\mathrm{fin}}$.

Moreover \mathcal{U}_{ν} is isomorphic to a localization of $\mathcal{A}^{\nu-\mathrm{br}}$.

To proceed we need K-matrices (discussed by various authors).

Definition We say that $\mathcal{K} \in M(\mathcal{U})$ is a universal K-matrix for $(\mathscr{R}, \mathscr{R}_{\nu})$ if $\Delta(\mathcal{K}) = \mathscr{R}^{-1}(\mathcal{K} \otimes 1)\mathscr{R}_{\nu}(1 \otimes \mathcal{K}) = (1 \otimes \mathcal{K})\mathscr{R}_{\nu}^{-1}(\mathcal{K} \otimes 1)\mathscr{R},$ together with the condition $\mathcal{K}^* = \nu(\mathcal{K}).$

Remark

For $\nu = \mathrm{id}$ we have that $\mathcal{K} = 1$ is a universal K-matrix for $(\mathscr{R}, \mathscr{R})$.

Generalization of results of [Kolb, Stokman (09)].

Theorem

There is one-to-one correspondence between:

- **1** universal K-matrices $\mathcal{K} \in M(\mathcal{U})$,
- **2** *-characters $f : \mathcal{A}^{\nu-\mathrm{br}} \to \mathbb{C}$,
- \blacksquare *-homomorphisms $\phi : \mathcal{A}^{\nu-\mathrm{br}} \to \mathcal{A}$ intertwining α_{ν} with Δ ,
- 4 *-homomorphisms $\widehat{\phi} : \mathcal{A}^{\nu-\mathrm{br}} \to \mathcal{U}$ intertwining γ_{ν} with Δ .

The correspondence is determined by

 $f(\omega) = \omega(\mathcal{K}), \quad \phi(\omega) = (f \otimes \mathrm{id})\alpha_{\nu}(\omega), \quad \widehat{\phi}(\omega) = (\mathrm{id} \otimes f)\gamma_{\nu}(\omega).$

Explicitely we have the maps

 $\phi(\omega)(X) = \omega(\nu(S(X_{(1)}))\mathcal{K}X_{(2)}), \quad \widehat{\phi}(\omega) = (\mathrm{id}\otimes\omega)(\mathscr{R}_{\nu}(1\otimes\mathcal{K})\mathscr{R}^*).$

Explicitely we have the maps

 $\phi(\omega)(X) = \omega(\nu(S(X_{(1)}))\mathcal{K}X_{(2)}), \quad \widehat{\phi}(\omega) = (\mathrm{id}\otimes\omega)(\mathscr{R}_{\nu}(1\otimes\mathcal{K})\mathscr{R}^*).$

We have that $\mathcal{B} := \phi(\mathcal{A}^{\nu-\mathrm{br}})$ is a right coideal *-subalgebra of \mathcal{A} , while $\mathcal{C} := \widehat{\phi}(\mathcal{A}^{\nu-\mathrm{br}})$ is a left coideal *-subalgebra of \mathcal{U} .

Remark

For $u = \mathrm{id}$ and $\mathcal{K} = 1$ we get $\mathcal{B} = \mathbb{C}1$ and $\mathcal{C} = \mathcal{U}_{\mathrm{fin}}$.

Let us also consider the algebra

$$\mathcal{A}^{\mathcal{C}} := \{ \omega \in \mathcal{A} : \omega \triangleleft X = \varepsilon(X)\omega, \ \forall X \in \mathcal{C} \}.$$

Proposition

- **1** We have $\mathcal{K}X = \nu(X)\mathcal{K}$ for all $X \in \mathcal{C}$.
- **2** We have the inclusion $\mathcal{B} \subseteq \mathcal{A}^{\mathcal{C}}$.

Let us also consider the algebra

$$\mathcal{A}^{\mathcal{C}} := \{ \omega \in \mathcal{A} : \omega \triangleleft X = \varepsilon(X)\omega, \ \forall X \in \mathcal{C} \}.$$

Proposition

1 We have $\mathcal{K}X = \nu(X)\mathcal{K}$ for all $X \in \mathcal{C}$. **2** We have the inclusion $\mathcal{B} \subseteq \mathcal{A}^{\mathcal{C}}$.

Hence by this construction we get the following maps:

$$\mathcal{U}_{
u,\mathrm{fin}} \stackrel{I_
u^{-1}}{\longrightarrow} \mathcal{A}^{
u-\mathrm{br}} \stackrel{\phi}{\longrightarrow} \mathcal{B} \longrightarrow \mathcal{A}^{\mathcal{C}}.$$

Can we actually find such an element \mathcal{K} ?

2 Quantum setting

3 K-matrices

4 Further results

A quantization of the Satake form $\theta \rightsquigarrow \theta_q$ was given by [Letzter (99)]. These are algebra automorphisms of $U_q(\mathfrak{g})$, but not involutions.

Corresponding to them there are coideal subalgebras of \mathcal{U} .

A quantization of the Satake form $\theta \rightsquigarrow \theta_q$ was given by [Letzter (99)]. These are algebra automorphisms of $U_q(\mathfrak{g})$, but not involutions.

Corresponding to them there are coideal subalgebras of \mathcal{U} .

Revisited and extended by [Kolb (14)], which we follow for conventions. We have right coideal subalgebras

$$B_{\mathsf{c},\mathsf{s}} \subseteq U_q(\mathfrak{g}), \quad \Delta(B_{\mathsf{c},\mathsf{s}}) \subseteq B_{\mathsf{c},\mathsf{s}} \otimes U_q(\mathfrak{g}).$$

Here (\mathbf{c}, \mathbf{s}) are parameters that need to satisfy certain conditions. The algebra $B_{\mathbf{c},\mathbf{s}}$ specializes to $U(\mathfrak{g}^{\theta})$ in the classical limit. A universal K-matrix for $B_{c,s}$ was recently constructed by Balagović and Kolb, generalizing results of Bao and Wang.

For this result extra conditions on the parameters (c, s) are needed.

A universal K-matrix for $B_{c,s}$ was recently constructed by Balagović and Kolb, generalizing results of Bao and Wang.

For this result extra conditions on the parameters (\mathbf{c}, \mathbf{s}) are needed.

Theorem (Balagović, Kolb (16))

There exists an element $\mathcal{K} \in M(\mathcal{U})$ such that:

$$\begin{split} \mathcal{K}b &= \tau \tau_0(b)\mathcal{K}, \quad \forall b \in B_{\mathsf{c},\mathsf{s}}, \\ \Delta(\mathcal{K}) &= \mathscr{R}_{21}(1 \otimes \mathcal{K}) \mathscr{R}_{\tau \tau_0}(\mathcal{K} \otimes 1). \end{split}$$

Here τ_0 is the automorphism corresponding to the longest word of the Weyl group. Note that \mathscr{R} appears in a different way.

However the additional conditions for the parameters (c, s) are incompatible with the *-invariance of the coideal $B_{c,s}$.

However the additional conditions for the parameters (c, s) are incompatible with the *-invariance of the coideal $B_{c,s}$.

This can be fixed as follows. We take some special parameters (c, s) satisfying the extra conditions. Then we define

$$\widetilde{B_{\mathsf{c},\mathsf{s}}} := \mathcal{K}_{\omega_{\mathsf{0}}} B_{\mathsf{c},\mathsf{s}} \mathcal{K}_{\omega_{\mathsf{0}}}^{-1}, \quad \omega_{\mathsf{0}} := -\frac{1}{2} (\rho - \rho_X).$$

Lemma (DCNTY (18))

The algebra $\widetilde{B_{c,s}}$ is *-invariant.

However the additional conditions for the parameters (c, s) are incompatible with the *-invariance of the coideal $B_{c,s}$.

This can be fixed as follows. We take some special parameters (c, s) satisfying the extra conditions. Then we define

$$\widetilde{B_{\mathsf{c},\mathsf{s}}} := \mathcal{K}_{\omega_{\mathsf{0}}} B_{\mathsf{c},\mathsf{s}} \mathcal{K}_{\omega_{\mathsf{0}}}^{-1}, \quad \omega_{\mathsf{0}} := -\frac{1}{2} (\rho - \rho_X).$$

Lemma (DCNTY (18))

The algebra $\widetilde{B_{c,s}}$ is *-invariant.

We can twist the K-matrix in the same way, that is we set

$$\widetilde{\mathcal{K}} := K_{\omega_0} \mathcal{K} K_{\omega_0}^{-1}.$$

Then $\widetilde{\mathcal{K}}$ satisfies similar conditions to \mathcal{K} .

We want to compute $\widetilde{\mathcal{K}}^*.$ Given a $\mathcal{U} ext{-module }V$ define

$$\mathcal{S}_0 v := (-1)^{(2 \rho^{ee}, \lambda)} v, \quad \mathcal{S}_X v := (-1)^{(2 \rho_X^{ee}, \lambda)} v, \quad v \in V_\lambda.$$

We want to compute $\widetilde{\mathcal{K}}^*$. Given a \mathcal{U} -module V define

$$\mathcal{S}_0 v := (-1)^{(2
ho^{ee},\lambda)} v, \quad \mathcal{S}_X v := (-1)^{(2
ho_X^{ee},\lambda)} v, \quad v \in V_\lambda.$$

Theorem

The element $\widetilde{\mathcal{K}}$ satisfies

$$\widetilde{\mathcal{K}}^* = \tau \tau_0(\widetilde{\mathcal{K}}) \circ \mathcal{S}_0 \circ \mathcal{S}_X \circ z \circ z_{\tau}^{-1}.$$

The term $S_0 \circ S_X \circ z \circ z_{\tau}^{-1}$ contains the additional information needed to relate the Satake form θ to the Vogan form ν .

Let us see how to relate the Satake and Vogan form. We can rewrite

$$\begin{split} \theta &= \mathrm{Ad}(z) \circ \tau \circ \omega \circ \mathrm{Ad}(m_X) \\ &= \mathrm{Ad}(z) \circ \tau \circ \tau_0 \circ \mathrm{Ad}(m_0) \circ \mathrm{Ad}(m_X). \end{split}$$

Let us see how to relate the Satake and Vogan form. We can rewrite

$$\begin{split} \theta &= \mathrm{Ad}(z) \circ \tau \circ \omega \circ \mathrm{Ad}(m_X) \\ &= \mathrm{Ad}(z) \circ \tau \circ \tau_0 \circ \mathrm{Ad}(m_0) \circ \mathrm{Ad}(m_X). \end{split}$$

Suppose $\theta(X, \tau, z)$ is inner conjugate to $\nu(Y, \mu)$. The outer part of the automorphism θ is given by $\tau \circ \tau_0$, hence we must have

$$\mu = \tau \circ \tau_0.$$

Let us see how to relate the Satake and Vogan form. We can rewrite

$$\begin{split} \theta &= \mathrm{Ad}(z) \circ \tau \circ \omega \circ \mathrm{Ad}(m_X) \\ &= \mathrm{Ad}(z) \circ \tau \circ \tau_0 \circ \mathrm{Ad}(m_0) \circ \mathrm{Ad}(m_X) \end{split}$$

Suppose $\theta(X, \tau, z)$ is inner conjugate to $\nu(Y, \mu)$. The outer part of the automorphism θ is given by $\tau \circ \tau_0$, hence we must have

$$\mu = \tau \circ \tau_0.$$

To compare signs we give the following definition.

Definition

A sign function $\epsilon: I \to \{\pm 1\}$ is (X, τ) -admissible if it is $\tau \tau_0$ -invariant and such that $\nu(Y_{\epsilon}, \tau \tau_0)$ is inner conjugate to $\theta(X, \tau, z)$. Any sign function ϵ extends to a group homomorphism $\epsilon : Q \to \mathbb{C}^{\times}$. To obtain the Vogan form we look for an extension $\tilde{\epsilon} : P \to \mathbb{C}^{\times}$ (non-unique) satisfying a certain condition. Any sign function ϵ extends to a group homomorphism $\epsilon : Q \to \mathbb{C}^{\times}$.

To obtain the Vogan form we look for an extension $\tilde{\epsilon}: P \to \mathbb{C}^{\times}$ (non-unique) satisfying a certain condition.

Theorem

Let $\theta = \theta(X, \tau, z)$ be the Satake form. Let ϵ be an (X, τ) -admissible sign function. Then there exists an extension $\tilde{\epsilon} : P \to \mathbb{C}^{\times}$ of ϵ such that

$$\tilde{\epsilon} \circ \tau \tau_0(\tilde{\epsilon}) = \mathcal{S}_0 \circ \mathcal{S}_X \circ z \circ z_{\tau}^{-1}.$$

Remark

The theorem does not hold if we replace inner conjugacy with conjugacy! This happens in the case of the real form $\mathfrak{so}^*(4p)$.

Define now the Hopf *-algebra automorphism

$$\nu(X) := \tilde{\epsilon}^* \circ \tau \tau_0(X) \circ \tilde{\epsilon}$$

Here $\tilde{\epsilon}$ acts on a \mathcal{U} -module V by $\tilde{\epsilon}v = \tilde{\epsilon}(\lambda)v$, where $v \in V_{\lambda}$.

This corresponds to the Vogan form of θ , that is

$$\nu(K_i) = K_{\tau\tau_0(i)}, \quad \nu(E_i) = \epsilon_i E_{\tau\tau_0(i)}, \quad \nu(F_i) = \epsilon_i F_{\tau\tau_0(i)}.$$

Define now the Hopf *-algebra automorphism

$$\nu(X) := \tilde{\epsilon}^* \circ \tau \tau_0(X) \circ \tilde{\epsilon}$$

Here $\tilde{\epsilon}$ acts on a \mathcal{U} -module V by $\tilde{\epsilon}v = \tilde{\epsilon}(\lambda)v$, where $v \in V_{\lambda}$.

This corresponds to the Vogan form of θ , that is

$$\nu(K_i) = K_{\tau\tau_0(i)}, \quad \nu(E_i) = \epsilon_i E_{\tau\tau_0(i)}, \quad \nu(F_i) = \epsilon_i F_{\tau\tau_0(i)}.$$

Theorem

The element $\widetilde{\mathcal{K}}' := \widetilde{\mathcal{K}} \circ \widetilde{\epsilon}$ satisfies $\Delta(\widetilde{\mathcal{K}}') = \mathscr{R}_{21}(1 \otimes \widetilde{\mathcal{K}}') \mathscr{R}_{\nu}(\widetilde{\mathcal{K}}' \otimes 1),$ and the condition $\widetilde{\mathcal{K}}'^* = \nu(\widetilde{\mathcal{K}}').$ This is almost the form we want for the K-matrix.

Let R be the unitary antipode and C the ribbon element of U.

Corollary

Define $\mathcal{K} := C \circ R(\widetilde{\mathcal{K}}')^*$. Then \mathcal{K} is a universal K-matrix, that is

$$\Delta(\mathcal{K}) = \mathscr{R}^{-1}(\mathcal{K} \otimes 1)\mathscr{R}_{\nu}(1 \otimes \mathcal{K}) = (1 \otimes \mathcal{K})\mathscr{R}_{\nu}^{-1}(\mathcal{K} \otimes 1)\mathscr{R},$$

together with the condition $\mathcal{K}^* = \nu(\mathcal{K})$.

Hence we can use this element $\mathcal K$ for the general construction.

2 Quantum setting

3 K-matrices

We write $\mathcal{U}^{\theta} := R(\widetilde{B_{c,s}})$. This is the quantum analogue of $U(\mathfrak{u}^{\theta})$. Recall the definition of the algebra $\mathcal{C} = \widehat{\phi}(\mathcal{A}^{\nu-\mathrm{br}})$. We write $\mathcal{U}^{\theta} := R(\widetilde{B_{c,s}})$. This is the quantum analogue of $U(\mathfrak{u}^{\theta})$.

Recall the definition of the algebra $\mathcal{C}=\widehat{\phi}(\mathcal{A}^{
u-\mathrm{br}}).$

Theorem

We have $\mathcal{C} \subseteq \mathcal{U}^{\theta}$ and $\mathcal{A}^{\mathcal{C}} = \mathcal{A}^{\mathcal{U}^{\theta}}$.

Remark

We can think of C as the "locally-finite" part of \mathcal{U}^{θ} . Indeed in the case $\nu = \mathrm{id}$ and $\mathcal{K} = 1$ we have $\mathcal{U}^{\theta} = \mathcal{U}$ and $\mathcal{C} = \mathcal{U}_{\mathrm{fin}}$.

Let us also consider the other algebra

$$\mathcal{B}=\phi(\mathcal{A}^{
u-\mathrm{br}})\subseteq\mathcal{A}^\mathcal{C}=\mathcal{A}^{\mathcal{U}^ heta}.$$

Let us also consider the other algebra

$$\mathcal{B} = \phi(\mathcal{A}^{\nu-\mathrm{br}}) \subseteq \mathcal{A}^{\mathcal{C}} = \mathcal{A}^{\mathcal{U}^{\theta}}.$$

Theorem

The map $\phi: \mathcal{A}^{\nu-\mathrm{br}} \to \mathcal{A}^{\mathcal{C}}$ is surjective, that is $\mathcal{B} = \mathcal{A}^{\mathcal{U}^{\theta}}$.

An important part in the proof is played by the following result.

Theorem (Letzter (00))

 $\mathcal{A}^{\mathcal{U}^{ heta}}$ has the same harmonic decomposition as in the classical case.

Putting all together we have the following result.

Theorem

We obtain a surjective \mathcal{U} -equivariant *-homomorphism

$$\mathcal{U}_{\nu,\mathrm{fin}} \xrightarrow{I_{\nu}^{-1}} \mathcal{A}^{\nu-\mathrm{br}} \xrightarrow{\phi} \mathcal{A}^{\mathcal{U}^{\theta}}.$$

Putting all together we have the following result.

Theorem

We obtain a surjective U-equivariant *-homomorphism

$$\mathcal{U}_{\nu,\mathrm{fin}} \xrightarrow{I_{\nu}^{-1}} \mathcal{A}^{\nu-\mathrm{br}} \xrightarrow{\phi} \mathcal{A}^{\mathcal{U}^{\theta}}.$$

This should be compared with the classical map:

 $(\mathcal{O}(H_\nu(G)), \operatorname{Ad}^*_\nu) \twoheadrightarrow (\mathcal{O}(U/U^\theta), L^*).$

Putting all together we have the following result.

Theorem

We obtain a surjective U-equivariant *-homomorphism

$$\mathcal{U}_{\nu,\mathrm{fin}} \xrightarrow{I_{\nu}^{-1}} \mathcal{A}^{\nu-\mathrm{br}} \xrightarrow{\phi} \mathcal{A}^{\mathcal{U}^{\theta}}.$$

This should be compared with the classical map:

$$(\mathcal{O}(H_{\nu}(G)), \operatorname{Ad}_{\nu}^{*}) \twoheadrightarrow (\mathcal{O}(U/U^{\theta}), L^{*}).$$

Complementary to [De Commer, Neshveyev (15)] for flag manifolds. Should fit into this framework with appropriate modifications.

Future plan: relate representation categories of the various algebras.