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Classical setting



Definition
A Lie *-algebra is a complex Lie algebra g with an anti-linear,
anti-multiplicative involution * : g — g.

Correspondence Lie *-algebras <= real Lie algebras, given by

(9.%) = g« = {x € g:x" = —x},
s (sc,%), (x+i¥)"=-x+1iy, x,y€s.



Definition
A Lie *-algebra is a complex Lie algebra g with an anti-linear,
anti-multiplicative involution * : g — g.

Correspondence Lie *-algebras <= real Lie algebras, given by
(8.4) = 9. = {x € g1 x* = —x},
s (sc,%), (x+i¥)"=-x+1iy, x,y€s.

In the following we will fix a compact real form of g, denoted by u, and
write * for its corresponding -structure.

Let o be a Lie algebra involution of u. Then x' = o(x)* defines a
x-structure. All real semisimple Lie algebras arise as g.



We recover the usual correspondence real forms of g <= involutions of u.

There are two standard forms for an involution:
Vogan form (from max. compact Cartan),
Satake form (from max. non-compact Cartan).

We will consider g with Chevalley generators {h;, e;, f; : i € I}.



We recover the usual correspondence real forms of g <= involutions of u.

There are two standard forms for an involution:
Vogan form (from max. compact Cartan),

Satake form (from max. non-compact Cartan).
We will consider g with Chevalley generators {h;, e;, f; : i € I}.

Definition
Vogan form v = v(Y,u). Data Y C / and p € Out(g) and

v(hi) = by, vier) = ey, v(6) = ey,
Heree: | — {£1} and ;= —1for i€ Y.



We will not recall all the details of the Satake form.

Definition
Satake form 6 = 6(X,7,z): X C I, 7 € Out(g) and z a unitary character
on @, satisfying various conditions. Then

0 = Ad(z) o 7 ow o Ad(mx).



We will not recall all the details of the Satake form.

Definition
Satake form 6 = 6(X,7,z): X C I, 7 € Out(g) and z a unitary character
on @, satisfying various conditions. Then

0 = Ad(z) o 7 ow o Ad(mx).

Example

Consider the non-trivial involution of sl,. Then

v(h)=h, wv(e)=—e, v(f)=-1,
0(h)=—h, 0(e)=—-f, 6(f)=—e.

In this case p =7 =1d, Y = {1} and X = 0.



The Vogan and Satake forms v and 6 of an involution are conjugate.

However upon quantization things will become more complicated. We
will need a more elaborate way to relate them.
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Write G for the Lie group integrating g. Then the points of G can be
recovered from the characters of the algebra O(G).



The Vogan and Satake forms v and 6 of an involution are conjugate.

However upon quantization things will become more complicated. We
will need a more elaborate way to relate them.

Write G for the Lie group integrating g. Then the points of G can be
recovered from the characters of the algebra O(G).

Also write U for the Lie group integrating u. We have
U={geG:g" =g}
Then U can be recovered from the s-characters of O(G), where
() = f((g~1)").

Note that this procedure uses the Lie x-algebra structure.



Now let 6 be an involution in Satake form and v an involution in Vogan
form, which we assume to be inner conjugate.

Moreover this can be realized by unitary elements. That is we have

0 =Ad(v)ovoAd(v"), veU.
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Now let 6 be an involution in Satake form and v an involution in Vogan
form, which we assume to be inner conjugate.

Moreover this can be realized by unitary elements. That is we have
0 =Ad(v)ovoAd(v"), veU.

Define the element
k:=vu(v) =0(v)"v.

Then for any g € G we have
0(g) = kv(g)k™.
Moreover the element k satisfies

k* = (k).



Given an involution o, define the o-twisted Hermitian elements by

Hy(G)={g € G:0o(g) =g}



Given an involution o, define the o-twisted Hermitian elements by

Hy(G)={g € G:0o(g) =g}

We have an action of U on H,(G) given by

Ad,(u)g = ugo(u)*.



Given an involution o, define the o-twisted Hermitian elements by
H:(G)={g € G:0(g)" =g}
We have an action of U on H,(G) given by
Ad,(u)g = ugo(u)*.
Back to 6 and v. There is a U-equivariant isomorphism

(Ho(G), Adg) = (H,(G),Ady), x s xk.



Given an involution o, define the o-twisted Hermitian elements by
H;(G) ={g € G:o(g)" =g}
We have an action of U on H,(G) given by
Ad,(u)g = ugo(u)*.
Back to 6 and v. There is a U-equivariant isomorphism
(Ho(G),Ady) = (H,(G),Ad,), x> xk.
We also have a U-equivariant embedding

(U/U?, L) — (Hp(G),Ady), xU? — xB(x)*.



Then we can consider the composite map
(U/U% L) = (H,(G),Ad,),
which is given explicitely by

ul? — ub(u)*k = ukv(u)* = Ad,(u)k.



Then we can consider the composite map
(U/U°, 1) = (H,(G), Ady),
which is given explicitely by
ul? — ub(u)*k = ukv(u)* = Ad,(u)k.
Dualizing we obtain a surjective map

(O(H,(G)), Ad}) — (O(U/U?), L*).



Then we can consider the composite map
(U/U°, 1) = (H,(G), Ady),
which is given explicitely by
ul? — ub(u)*k = ukv(u)* = Ad,(u)k.
Dualizing we obtain a surjective map
(O(H,(G)), Ad) — (O(U/U°), L7).

Goal: quantize this map (in an equivariant way).

We will show that this is possible. On the other hand the algebras
O(Hy(G)) and O(U/U") do not admit natural quantizations.



Quantum setting



We start from the quantized enveloping algebra Uy(g). We write

U = (Uq(g), %).

We write A := U° for the dual Hopf algebra of matrix coefficients.



We start from the quantized enveloping algebra Uy(g). We write

U = (Uq(g), %).
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We have a map [ : A — U given by
(w) = (weid)(Z*Z%).

We get U/-module isomorphism A = Uyg,. Not an algebra isomorphism.



We start from the quantized enveloping algebra Uy(g). We write

U = (Uqg(g), %)-
We write A := U° for the dual Hopf algebra of matrix coefficients.
We have a map [ : A — U given by
Hw) = (w@d)(Z*Z%).
We get U/-module isomorphism A = Uyg,. Not an algebra isomorphism.

However we can modify the product of A and consider the braided
version AP". Then we have a *-algebra isomorphism A" = Ug,,.



We want a quantum analogue of (O(H,(G)),Ad}). Observe that:
A is not a U-module algebra for Ad*, while A" is,
on the other hand we want Ad}, need a twist!



We want a quantum analogue of (O(H,(G)),Ad}). Observe that:
A is not a U-module algebra for Ad*, while A" is,
on the other hand we want Ad}, need a twist!

We will use some ideas from the paper [DCNTY (18)].

We have a straightforward quantization of the Vogan form:
ve(Ko) = Knw),  vq(Ei) = €iEpuiy, vq(Fi) = €iFuiys

where N is dual to v|y. It is a Hopf *-algebra involution.

We can use 14 to twist the Drinfeld double D.



Consider the usual skew-pairing (+,-) : U~ @ UT — C. We set

(X, V) =(X,Y), (X,Y)-:= (Vq(X)7 Y).



Consider the usual skew-pairing (+,-) : U~ @ UT — C. We set
(X, )+ :=(X,Y), (X,Y)o :=(vg(X),Y).

For u, i’ € {+} we define an algebra D,, ,+ as follows. It is UT @ U~ as
a vector space, contains U/* as subalgebras, and has cross-relations

kh = (hq), ko)) uhe) k@) (S(h@) k@)w,  heU™, kel



Consider the usual skew-pairing (+,-) : U~ @ UT — C. We set
(X, )+ :=(X,Y), (X,Y)o :=(vg(X),Y).

For u, i’ € {+} we define an algebra D,, ,+ as follows. It is UT @ U~ as
a vector space, contains U/* as subalgebras, and has cross-relations

kh = (hq), ko)) uhe) k@) (S(h@) k@)w,  heU™, kel
They fit together into a Hopf-Galois system. We will write
D:D++’ DV ::D+_.

Upon identifying the two Cartan parts of D we get U.



In a similar way we can twist A" to obtain A”~P". It becomes a
U-module algebra with respect to the twisted adjoint action Ad}.



In a similar way we can twist A" to obtain A”~P". It becomes a
U-module algebra with respect to the twisted adjoint action Ad}.

The algebra A" also comes with the *-structure
wh(X) = w(v(X)*).
From this we can see that A”~"" is the quantum analogue of O(H,(G)).

Indeed the points of H,(G) can be identified with the characters of O(G)
which are compatible with the x-structure f.



Write Z for the R-matrix Z € D&D seen inside D&D,,. Also write

Xy = (v©@id)(Z) = (id @ v)(Z).



Write Z for the R-matrix Z € D&D seen inside D&D,,. Also write

Xy = (v©@id)(Z) = (id @ v)(Z).

Then we define the map /, : A*~P" — D, given by

I (W) == (w @ id)(Z:%).



Write Z for the R-matrix Z € D&D seen inside D&D,,. Also write

Xy = (v©@id)(Z) = (id @ v)(Z).

Then we define the map /, : A*~P" — D, given by

I (W) == (w @ id)(Z:%).

Theorem

The map I, : AV~" — D, is injective and is a morphism of left
Yetter-Drinfeld D-module *-algebras.

The image can be characterized: there is an algebra U,, C D,, given by
generators and relations such that /,,(A”_br) =Uy fin-

Moreover U, is isomorphic to a localization of A¥~Pr.



To proceed we need K-matrices (discussed by various authors).

Definition
We say that KL € M(U{) is a universal K-matrix for (Z,%,) if

AK)=21 Keo1)%Z,(1K)=1cK)%Z, ' (Ko 1)%,

together with the condition £* = v(K).

Remark
For v = id we have that /C =1 is a universal K-matrix for (#,%).



Generalization of results of [Kolb, Stokman (09)].

Theorem

There is one-to-one correspondence between:
universal K-matrices K € M(U),
*-characters f : AV~P" — C,
x-homomorphisms ¢ : AY~°" — A intertwining o, with A,
x-homomorphisms qAS : AV=PY 5 U intertwining v, with A.
The correspondence is determined by

fw)=w(K), ow)=(f@id)a,(w), @w)=/(de ().



Explicitely we have the maps

$(W)(X) = wUS(X))KX),  dw) = (id © w)(Z.(1 @ K)%Z").



Explicitely we have the maps
$(W)(X) = w((SX))KX2), d(w) = ({d®w)(#, (1 @ K)%").

We have that B := ¢(A”~T) is a right coideal *-subalgebra of A, while
C := ¢(A”~P") is a left coideal *-subalgebra of U.

%Au—brx

BCA ccu

For v =id and K =1 we get B = C1 and C = Ugy,.



Let us also consider the algebra

A ={weAd:waX =e(X)w, VX €C}.

Proposition

We have KX = v(X)K for all X € C.
We have the inclusion B C A€.



Let us also consider the algebra

A ={weAd:waX =e(X)w, VX €C}.

Proposition

We have KX = v(X)K for all X € C.
We have the inclusion B C A€.

Hence by this construction we get the following maps:
It &

Uy fin —— A" — B —— AC.

Can we actually find such an element K7



K-matrices



A quantization of the Satake form 6 ~» 6, was given by [Letzter (99)].
These are algebra automorphisms of U,(g), but not involutions.

Corresponding to them there are coideal subalgebras of U.



A quantization of the Satake form 6 ~» 6, was given by [Letzter (99)].
These are algebra automorphisms of U,(g), but not involutions.

Corresponding to them there are coideal subalgebras of U.

Revisited and extended by [Kolb (14)], which we follow for conventions.
We have right coideal subalgebras

Bes € Uqg(9), A(Bcs) € Bes @ Ug(9)-

Here (c,s) are parameters that need to satisfy certain conditions.

The algebra B s specializes to U(g?) in the classical limit.



A universal K-matrix for B s was recently constructed by Balagovi¢ and
Kolb, generalizing results of Bao and Wang.

For this result extra conditions on the parameters (c,s) are needed.



A universal K-matrix for B s was recently constructed by Balagovi¢ and
Kolb, generalizing results of Bao and Wang.

For this result extra conditions on the parameters (c,s) are needed.
Theorem (Balagovi¢, Kolb (16))
There exists an element K € M(U) such that:

Kb =710(b)K, Vb€ Bcg,
AK) = %1(1 @ K)%Zrry(K® 1).

Here 75 is the automorphism corresponding to the longest word of the
Weyl group. Note that & appears in a different way.



However the additional conditions for the parameters (c,s) are
incompatible with the *-invariance of the coideal B .



However the additional conditions for the parameters (c,s) are
incompatible with the *-invariance of the coideal B .

This can be fixed as follows. We take some special parameters (c,s)

satisfying the extra conditions. Then we define

— _ 1
Bes := Koo BesK ! Wo ‘= _E(p - px)-

wo ?

Lemma (DCNTY (18))

The algebra é: is *-invariant.



However the additional conditions for the parameters (c,s) are
incompatible with the *-invariance of the coideal B .

This can be fixed as follows. We take some special parameters (c,s)
satisfying the extra conditions. Then we define

wo ?

— _ 1
Bes := Koo BesK ! Wo ‘= _E(p - px)-

Lemma (DCNTY (18))

The algebra é: is *-invariant.
We can twist the K-matrix in the same way, that is we set
K = Ko KK,

Then K satisfies similar conditions to K.



We want to compute KC*. Given a U-module V define

Sov = (—1)(2”v’)‘)v, Sxv = (—1)(2”;”\)v, v e Vi



We want to compute KC*. Given a U-module V define

Sov = (—1)(2pv”\)v, Sxv = (—1)(2p>v<”\)v, v e Vi

Theorem
The element K satisfies

]E*:TTO(IE)oSOOSXOZOZT_l.

The term Sy 0 Sx 0 zo z=! contains the additional information needed to
relate the Satake form 6 to the Vogan form v.



Let us see how to relate the Satake and Vogan form. We can rewrite

0 = Ad(z) o T ow o Ad(mx)
= Ad(z) o 7 o 19 0 Ad(mg) o Ad(mx).



Let us see how to relate the Satake and Vogan form. We can rewrite

0 = Ad(z) o T ow o Ad(mx)
= Ad(z) o 7 o 19 0 Ad(mg) o Ad(mx).

Suppose §(X, T, z) is inner conjugate to v(Y, ). The outer part of the
automorphism @ is given by 7 o 79, hence we must have

i =ToTp.



Let us see how to relate the Satake and Vogan form. We can rewrite

0 = Ad(z) o T ow o Ad(mx)
= Ad(z) o 7 o 19 0 Ad(mg) o Ad(mx).

Suppose §(X, T, z) is inner conjugate to v(Y, ). The outer part of the
automorphism @ is given by 7 o 79, hence we must have

L= ToTp.
To compare signs we give the following definition.

Definition
A sign function € : [ — {£1} is (X, 7)-admissible if it is 77g-invariant
and such that v(Y,, 77p) is inner conjugate to 6(X, 7, z).



Any sign function e extends to a group homomorphism € : Q@ — C*.

To obtain the Vogan form we look for an extension € : P — C*
(non-unique) satisfying a certain condition.



Any sign function e extends to a group homomorphism € : Q@ — C*.

To obtain the Vogan form we look for an extension € : P — C*
(non-unique) satisfying a certain condition.
Theorem

Let 6 = 6(X, 1, z) be the Satake form. Let € be an (X, T)-admissible sign
function. Then there exists an extension € : P — C* of € such that

Eoro(€) =SpoSxozoz L.

Remark

The theorem does not hold if we replace inner conjugacy with conjugacy!
This happens in the case of the real form so*(4p).



Define now the Hopf x-algebra automorphism

v(X) =€ orm(X)oé.
Here € acts on a U/-module V by év = &(\)v, where v € V.
This corresponds to the Vogan form of 0, that is

V(K,') = K’r‘ro(i)a V(Ei) = efETTo(i)7 V(F,) = eiF‘r'ro(i)~



Define now the Hopf x-algebra automorphism
v(X) =€ orm(X)oé.

Here € acts on a U/-module V by év = &(\)v, where v € V.

This corresponds to the Vogan form of 0, that is

U(K,') = K’r‘ro(i)a V(Ei) = GfETTo(i)7 V(F,) = eiF‘r'ro(i)~

Theorem
The element K’ := K o ¢ satisfies

A(K') = %#o1(1 @ KN %,(K' @ 1),

and the condition K'* = v(K').



This is almost the form we want for the K-matrix.
Let R be the unitary antipode and C the ribbon element of U.
Corollary

Define K := C o R(K')*. Then K is a universal K-matrix, that is

AK) =2 Ko 1)%,(012K)=12K)%Z,(Ko1)Z,
together with the condition K* = v(KC).

Hence we can use this element K for the general construction.



Further results



We write U := R(B.). This is the quantum analogue of U(u?).
Recall the definition of the algebra C = $(A”~Pr).



We write 4% := R(Bc). This is the quantum analogue of U(u%).
Recall the definition of the algebra C = $(A”~Pr).

Theorem
We have C C U® and A = AY’ .

Remark

We can think of C as the "locally-finite" part of 2/?. Indeed in the case
v =1id and K = 1 we have U? = U and C = Ugy,.



Let us also consider the other algebra

B = ¢(AV—bI’) C .AC — AL{S.



Let us also consider the other algebra

B = d)(.AV_br) C .AC _ AZ/{S.

Theorem
The map ¢ : AV=" — AC is surjective, that is B = AY’.

An important part in the proof is played by the following result.

Theorem (Letzter (00))
o - Ao - B
AY" has the same harmonic decomposition as in the classical case.




Putting all together we have the following result.

We obtain a surjective U-equivariant x-homomorphism

It )
Uy fin —— Av—br _¢» AU



Putting all together we have the following result.

Theorem

We obtain a surjective U-equivariant x-homomorphism

It )
Uy fin —— Av7Pr ANy

This should be compared with the classical map:

(O(H,(G)), Ad}) — (O(U/U?), L*).



Putting all together we have the following result.

Theorem
We obtain a surjective U-equivariant x-homomorphism

It )
Uy fin —— Av7Pr ANy

This should be compared with the classical map:
(O(H,(6)),Ad;) — (O(U/U°), L7).

Complementary to [De Commer, Neshveyev (15)] for flag manifolds.
Should fit into this framework with appropriate modifications.

Future plan: relate representation categories of the various algebras.
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