Quantum groups acting on the nodal cubic

Manuel Martins and Ulrich Krähmer Institute of Geometry, TU Dresden

Classical notions		Quantum analogues
X set, G group	~~~>	B algebra, A Hopf algebra,
$\alpha_x \colon \mathcal{G} \to X$ surjective	$\sim \rightarrow$	$B \hookrightarrow A$ faithfully flat,
$\alpha\colon X\times G\to X \text{ action},$	$\sim \rightarrow$	$\Delta \colon B \to B \otimes A$ right coideal
$H \leqslant G$ isotropy group	\sim	A/AB^+ quotient coalgebra

< □ > < 同 > < 回 > < 回 > < 回 >

э

Classical notions		Quantum analogues
$X \operatorname{set}, G \operatorname{group}$	~~~>	B algebra, A Hopf algebra,
$\alpha_x \colon \mathcal{G} \to X$ surjective	~~~>	$B \hookrightarrow A$ faithfully flat,
$\alpha \colon X \times G \to X$ action,	~~~>	$\Delta \colon B \to B \otimes A$ right coideal
$H \leqslant G$ isotropy group	~~~>	A/AB^+ quotient coalgebra

An algebra embedding $B \subseteq A$ is **faithfully flat** when any chain complex

$$L \xrightarrow{f} M \xrightarrow{g} N, \quad g \circ f = 0$$

of B-modules is exact if and only if so is the induced complex of A-modules

$$A \otimes_B L \to A \otimes_B M \to A \otimes_B N.$$

Let A be a Hopf algebra. A quantum homogeneous space is a right coideal subalgebra $B \subseteq A$, such that A is a faithfully flat B-module.

Let A be a Hopf algebra. A quantum homogeneous space is a right coideal subalgebra $B \subseteq A$, such that A is a faithfully flat B-module.

• Given a right coideal subalgebra $B \subseteq A$,

 $C := A/AB^+$, where $B^+ := B \cap \ker \varepsilon$

is a quotient coalgebra. It is Hopf iff $AB^+ = B^+A$.

Let A be a Hopf algebra. A quantum homogeneous space is a right coideal subalgebra $B \subseteq A$, such that A is a faithfully flat B-module.

• Given a right coideal subalgebra $B \subseteq A$,

 $C := A/AB^+$, where $B^+ := B \cap \ker \varepsilon$

is a quotient coalgebra. It is Hopf iff $AB^+ = B^+A$.

 The canonical map π: A → C induces a left coaction λ: A → C ⊗ A (via Δ). Faithfully flatness implies that

$$B = A^{\operatorname{Co} C} := \{ a \in A \mid \lambda(a) = \pi(1) \otimes a \}.$$

• $B \subseteq A$ is a **Galois** *C*-extension, since the Galois map

$$\beta \colon A \otimes_B A \to C \otimes A, \quad a \otimes_B b \mapsto \pi(a_{(1)}) \otimes a_{(2)}b.$$

is bijective with inverse given by $\pi(a) \otimes b \mapsto a_1 \otimes_B S(a_2)b$.

• $B \subseteq A$ is a **Galois** *C*-extension, since the Galois map

$$\beta \colon A \otimes_B A \to C \otimes A, \quad a \otimes_B b \mapsto \pi(a_{(1)}) \otimes a_{(2)}b.$$

is bijective with inverse given by $\pi(a) \otimes b \mapsto a_1 \otimes_B S(a_2)b$.

• Classical: the orbit stabiliser theorem $\dashrightarrow G/H \simeq X$, i.e., as a set $G \cong X \times H$. However, $\alpha_x \colon G \to X$ is not necessarily a trivial *H*-principal bundle.

• $B \subseteq A$ is a **Galois** *C*-extension, since the Galois map

$$\beta \colon A \otimes_B A \to C \otimes A, \quad a \otimes_B b \mapsto \pi(a_{(1)}) \otimes a_{(2)}b.$$

is bijective with inverse given by $\pi(a) \otimes b \mapsto a_1 \otimes_B S(a_2)b$.

- Classical: the orbit stabiliser theorem $\rightsquigarrow G/H \simeq X$, i.e., as a set $G \cong X \times H$. However, $\alpha_x \colon G \to X$ is not necessarily a trivial *H*-principal bundle.
- Quantum: the most trivial bundle is $A = C \otimes B$, followed by $C \ltimes B$, followed by **cleft extensions**.

Definition

The extension $B \subseteq A$ is *C*-cleft if there exists a *C*-colinear map $\gamma \colon C \to A$ that is convolution invertible.

Faithful flatness implies that the functor

$$-\Box_C A \colon \mathbf{Mod}^C \to \mathbf{Mod}_B^A$$

is an equivalence of categories. To finite-dimensional C-comodules V correspond finitely generated projective B-modules \rightsquigarrow K-theory of B.

Faithful flatness implies that the functor

$$-\Box_C A \colon \mathbf{Mod}^C \to \mathbf{Mod}_B^A$$

is an equivalence of categories. To finite-dimensional C-comodules V correspond finitely generated projective B-modules \rightsquigarrow K-theory of B.

Question: can we generate $K_0(B)$ in this way?

Faithful flatness implies that the functor

$$-\Box_C A \colon \mathbf{Mod}^C \to \mathbf{Mod}_B^A$$

is an equivalence of categories. To finite-dimensional C-comodules V correspond finitely generated projective B-modules \rightsquigarrow K-theory of B.

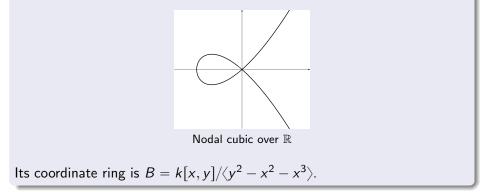
Question: can we generate $K_0(B)$ in this way?

C-cleft \Rightarrow all associated modules are free since $V \square_C C \otimes B \cong V \otimes B$. \Rightarrow answer is no, non-trivial elements in $K_0(B)$ are not reached.

The nodal cubic

Let k be a field.

The **nodal cubic** is plane curve in k^2 given by the equation $y^2 = x^2 + x^3$:



Singular curves cannot be homogeneous, right?

Manuel Martins

The nodal cubic as a quantum homogeneous space

Consider the algebra \tilde{A} generated by x, y and invertible elements a, b satisfying

$$y^2 = x^2 + x^3$$
, $a^3 = b^2$,
 $ba = ab$, $ya = ay$, $bx = xb$, $by = -yb$,
 $xa^2 + axa + a^2x - a^2 + a^3 = 0$, $x^2a + xax + ax^2 + ax + xa = 0$,

Consider the algebra \tilde{A} generated by x, y and invertible elements a, b satisfying

$$y^2 = x^2 + x^3, \quad a^3 = b^2,$$

 $ba = ab, \quad ya = ay, \quad bx = xb, \quad by = -yb,$
 $xa^2 + axa + a^2x - a^2 + a^3 = 0, \qquad x^2a + xax + ax^2 + ax + xa = 0,$

From these relations, it follows that \tilde{A} is a right free *B*-module (hence faithfully flat), with vector space basis

$$\left\{a^{i}b^{j}(xa)^{k}x^{m}y^{n}\mid i\in\mathbb{Z}, k, m\in\mathbb{N}, j, n\in\{0,1\}\right\}.$$

However, in this presentation, the commutation relations are too complicated for extensive computations.

A Hopf algebra structure in \tilde{A} is given by

$$\begin{split} \Delta(x) &= 1 \otimes x + x \otimes a, \quad \Delta(y) = 1 \otimes y + y \otimes b, \\ \Delta(a) &= a \otimes a, \qquad \Delta(b) = b \otimes b, \\ \varepsilon(x) &= \varepsilon(y) = 0, \quad \varepsilon(a) = \varepsilon(b) = 1, \\ S(x) &= -xa^{-1}, \quad S(y) = -yb^{-1}, \quad S(a) = a^{-1}, \quad S(b) = b^{-1}, \end{split}$$

from where it is clear that $\Delta(B) \subseteq B \otimes A$.

A Hopf algebra structure in \tilde{A} is given by

$$\begin{split} \Delta(x) &= 1 \, \otimes \, x + x \, \otimes \, a, \quad \Delta(y) = 1 \, \otimes \, y + y \, \otimes \, b, \\ \Delta(a) &= a \, \otimes \, a, \qquad \Delta(b) = b \, \otimes \, b, \\ \varepsilon(x) &= \varepsilon(y) = 0, \quad \varepsilon(a) = \varepsilon(b) = 1, \\ S(x) &= -xa^{-1}, \quad S(y) = -yb^{-1}, \quad S(a) = a^{-1}, \quad S(b) = b^{-1}, \end{split}$$

from where it is clear that $\Delta(B) \subseteq B \otimes A$.

- \tilde{A} is pointed but not connected. What else can we say about its properties, both as an algebra and as a coalgebra?
- Coproducts on powers of x and (xa) are also hard to compute, because of the commutation relations.

Idea: find a smaller Hopf algebra which still admits a faithfully flat embedding of B as a right coideal subalgebra.

How: look for central and grouplike/primitive elements in \tilde{A} , generating (Hopf) ideals that intersect *B* trivially. E.g., $\langle a^3 - 1 \rangle$, since a^3 is grouplike and central.

Idea: find a smaller Hopf algebra which still admits a faithfully flat embedding of B as a right coideal subalgebra.

How: look for central and grouplike/primitive elements in \tilde{A} , generating (Hopf) ideals that intersect *B* trivially. E.g., $\langle a^3 - 1 \rangle$, since a^3 is grouplike and central.

If the field contains a primitive 3rd root r of unity, then one can define

$$F := xa + (r+1)ax + \frac{r+2}{3}(a-a^2).$$

Think of F as a change of the variable (xa) that yields a nicer presentation.

Lemma

The class of F in $ilde{A}/\langle a^3-1
angle$ satisfies

$$aF = r^{2}Fa, \qquad bF = Fb, \qquad yF = Fy,$$

$$xF = rFx + \frac{r+2}{3}aF + \frac{r-1}{3}F + \frac{1}{3}(a-1),$$

and

$$\Delta(F) = a \otimes F + F \otimes a^2.$$

Furthermore, the class of F^3 is central and primitive.

 \longrightarrow It is also "safe" to add the relation $F^3 = 0$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Lemma

The class of F in $ilde{A}/\langle a^3-1
angle$ satisfies

$$aF = r^{2}Fa, \qquad bF = Fb, \qquad yF = Fy,$$
$$xF = rFx + \frac{r+2}{3}aF + \frac{r-1}{3}F + \frac{1}{3}(a-1),$$

and

$$\Delta(F) = a \otimes F + F \otimes a^2.$$

Furthermore, the class of F^3 is central and primitive.

 \longrightarrow It is also "safe" to add the relation $F^3 = 0$.

The resulting quotient $A := \tilde{A}/\langle a^3 - 1, F^3 \rangle$ is an iterated Ore extension and a finitely generated free B-module.

・ロト ・ 同ト ・ ヨト ・ ヨト

Note that B is the subalgebra of A generated by x and y. Let C be the subalgebra generated by a, b and F.

Note that *B* is the subalgebra of *A* generated by x and y. Let *C* be the subalgebra generated by a, b and *F*.

Theorem

- $B \subseteq A$ is a quantum homogeneous space.
- $C \cong A/AB^+$ as coalgebras.
- Multiplication in A defines an isomorphism C ⊗ B ≃ A as left C-comodules and right B-modules, so A is a cleft extension of B.

Note that *B* is the subalgebra of *A* generated by x and y. Let *C* be the subalgebra generated by a, b and *F*.

Theorem

- $B \subseteq A$ is a quantum homogeneous space.
- $C \cong A/AB^+$ as coalgebras.
- Multiplication in A defines an isomorphism C ⊗ B ≃ A as left C-comodules and right B-modules, so A is a cleft extension of B.

The decomposition $A \cong C \otimes B$ follows explicitly from

$$\left\{a^{i}b^{j}F^{k}x^{m}y^{n} \mid i,k \in \{0,1,2\}, m \in \mathbb{N}, j, n \in \{0,1\}\right\}.$$

being a basis of A as a vector space. Since $B^+ = \langle x, y \rangle_B$, the projection $\pi: A \to A/AB^+$ restricts to an isomorphism $C \cong A/AB^+$.

Relation to $U_r(\mathfrak{sl}_2)$ and the small quantum group $u_r(\mathfrak{sl}_2)$

One can also define elements

$$E := xa - rax + \frac{1-r}{3}(a - a^2), \qquad K := a^2$$

which together with F satisfy the defining relations of $U_r(\mathfrak{sl}_2)$:

$$KE = r^2 EK, \quad KF = rFK, \quad [E, F] = \frac{K - K^2}{r - r^2}, \quad KK^{-1} = K^{-1}K = 1.$$

Relation to $U_r(\mathfrak{sl}_2)$ and the small quantum group $u_r(\mathfrak{sl}_2)$

One can also define elements

$$E := xa - rax + \frac{1-r}{3}(a - a^2), \qquad K := a^2$$

which together with F satisfy the defining relations of $U_r(\mathfrak{sl}_2)$:

$$KE = r^2 EK, \quad KF = rFK, \quad [E, F] = \frac{K - K^2}{r - r^2}, \quad KK^{-1} = K^{-1}K = 1.$$

Remark: Monomials in a, x and (xa) can be replaced by monomials in E, F and K (PBW-like basis), while b and y have the coproduct of the generators of Sweedler's infinite dimensional Hopf algebra H. Indeed, A can be seen as a quotient of $U_r(\mathfrak{sl}_2) \otimes H$ by the relations

$$F^{3} = 0, \quad K^{3} = 1, \qquad y^{2} = \frac{1}{27}E^{3}, \quad a^{3} = b^{2}, \qquad b^{2} = 1, \quad yb = -by$$

Relation to $U_r(\mathfrak{sl}_2)$ and the small quantum group $u_r(\mathfrak{sl}_2)$

The small quantum group $u_r(\mathfrak{sl}_2)$ is obtained by truncating $U_r(\mathfrak{sl}_2)$, i.e., imposing the relations

$$E^3 = 0, \quad F^3 = 0, \quad K^3 = 1.$$

The small quantum group $u_r(\mathfrak{sl}_2)$ is obtained by truncating $U_r(\mathfrak{sl}_2)$, i.e., imposing the relations

$$E^3 = 0, \quad F^3 = 0, \quad K^3 = 1.$$

The last two of these relations are already present in A, but the relation $E^3 = 0$ is equivalent to $y^2 = x^2 + x^3 = 0$. In this case, we obtain $u_r(\mathfrak{sl}_2) \otimes H_4$ as a quotient of A, where H_4 is Sweedler's 4-dimensional Hopf algebra.

The small quantum group $u_r(\mathfrak{sl}_2)$ is obtained by truncating $U_r(\mathfrak{sl}_2)$, i.e., imposing the relations

$$E^3 = 0, \quad F^3 = 0, \quad K^3 = 1.$$

The last two of these relations are already present in A, but the relation $E^3 = 0$ is equivalent to $y^2 = x^2 + x^3 = 0$. In this case, we obtain $u_r(\mathfrak{sl}_2) \otimes H_4$ as a quotient of A, where H_4 is Sweedler's 4-dimensional Hopf algebra.

We have the Casimir element in A

$$\Omega := EF + \frac{r^2K + rK^2}{(r - r^2)^2} = (xa)^2 - a^2x - a^2x^2 + \frac{1}{3}$$

which is central.

Proposition

The algebra A is Noetherian of Gelfand-Kirillov dimension 1, but neither regular nor semiprime.

Proposition

The algebra A is Noetherian of Gelfand-Kirillov dimension 1, but neither regular nor semiprime.

Noetherianity and GK dimension (resp. non-regularity) follow from B having the mentioned properties and A being a f. g. (resp. free) B-module.

.

Proposition

The algebra A is Noetherian of Gelfand-Kirillov dimension 1, but neither regular nor semiprime.

Noetherianity and GK dimension (resp. non-regularity) follow from B having the mentioned properties and A being a f. g. (resp. free) B-module.

The Casimir element Ω has as minimal polynomial:

$$t^{3} - \frac{1}{3}t + \frac{2}{27} = \left(t - \frac{1}{3}\right)^{2} \left(t + \frac{2}{3}\right),$$

from where it follows that A is not semiprime.

Theorem

If char $k \neq 2$ and $0 \neq I \subseteq A$ is a Hopf ideal, then $B \cap I \neq 0$. In other words, A is a minimal Hopf algebra containing B as a quantum homogeneous space.

Motivation: classically, find a smallest subgroup that still acts transitively.

Theorem

If char $k \neq 2$ and $0 \neq I \subseteq A$ is a Hopf ideal, then $B \cap I \neq 0$. In other words, A is a minimal Hopf algebra containing B as a quantum homogeneous space.

Motivation: classically, find a smallest subgroup that still acts transitively.

Proof: The group of group-likes of A is $\mathbb{Z}_3 \times \mathbb{Z}_2$. The presentation of A in terms of $U_r(\mathfrak{sl}_2)$ and H gives a complete characterization of the Yetter-Drinfel'd module of twisted primitives of A:

$$(1,1): \langle x^2 + x^3 \rangle_k, \qquad (1,a): \langle x, axa^2 \rangle_k, \qquad (1,b): \langle y \rangle_k.$$

Theorem

If char $k \neq 2$ and $0 \neq I \subseteq A$ is a Hopf ideal, then $B \cap I \neq 0$. In other words, A is a minimal Hopf algebra containing B as a quantum homogeneous space.

Motivation: classically, find a smallest subgroup that still acts transitively.

Proof: The group of group-likes of A is $\mathbb{Z}_3 \times \mathbb{Z}_2$. The presentation of A in terms of $U_r(\mathfrak{sl}_2)$ and H gives a complete characterization of the Yetter-Drinfel'd module of twisted primitives of A:

$$(1,1)\colon \langle x^2+x^3\rangle_k, \qquad (1,a)\colon \langle x,axa^2\rangle_k, \qquad (1,b)\colon \langle y\rangle_k.$$

A Hopf algebra map $A \to A/I$ such that $B \cap I = 0$ induces a injective map on the level of group-like elements and subsequently, on the level of the twisted primitives of A. This implies that $A \to A/I$ is injective, so $I = 0 \notin$.

- Besides the Casimir, $y^2 = x^2 + x^3$ is also an element in the center. Is the whole center generated by these two?
- What is the nilradical of A?
- For other curves (as in Angela's work), are the corresponding extensions cleft as well?
- Can the K₀-group of B be obtained from A in some other way, such as a generalisation of a Mayer-Vietoris sequence to Hopf algebras or Hopf Galois extensions?