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The topic

I Quantization of vector bundles over a Poisson manifold is a
natural next step after quantization of its function algebras

I Vector bundles are understood as projective modules over
coordinate rings

I Presence of symmetry puts quantization problem in a context of
representation theory

I Equivariant quantization is technically about complete reducibility
of tensor product of representations

I Conravariant form is responsible for complete reducibility of tensor
products

One reason to quantize vector bundles:

I Quantum stabilizer and its representations may be a problem.
Amazingly it can be addressed through vector bundles.



Classical vector bundles

A Lie group G , closed subgroup K ⊂ G , coset space O = G/K .

Function algebra C[O] ' C[G ]K

Vector bundle E → O with fiber X ∈ K -mod

Sections O → E form a projective C[O]-module Γ[O,X ]

Realization Γ[O,X ] = HomK (C,C[G ]⊗ X ) (coinduced module)

In this talk:

G = SO(2n + 1), K = SO(2n), O = S2n

a pseudo-Levi conjugacy class.

Quantization

G 99K Uq(g), C[O] 99K Cq[O], Γ[O,X ] 99K Γq[O,X ], K 99K ?



Coideal subalgebra approach
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is solution of Reflection Equation, limq→1 t

′
q = t ′ ∈ S2n.

t ′q defines:

I embedding Cq[S2n] = Aq ↪→ U∗ = U∗q(g)

I a coideal subalgebra Bq ⊂ Uq(g) s.t. Aq = HomBq(C,U∗).

Given a Bq-module X ,

is HomBq(C,U∗ ⊗ X ) a quantum vector bunlde ?

Representation theory of Bq?



Operator quantization

Fix maximal torus T ⊂ G of diagonal matrices and

t = diag(−1, . . . ,−1, 1 ,−1, . . . ,−1) ∈ T ∩ S2n

Polarization g = g− ⊕ h⊕ g+ and positive root set R+
g :

εi ± εj , i < j , εi , i , j = 1, . . . , n

Basis Πg:

α1 = ε1, α2 = ε2 − ε1, . . . , αn = εn − εn−1

Basis of t-stabilizer Πk:

ε1 + ε2, α2, . . . , αn

Pseudo-Levi:
Πk 6⊂ Πg



Operator realization ctd: base module Mλ

Define compound root vectors fεi ∈ Uq(g), i = 1, . . . , n, by

fε1 = fα1 , fεi = [fεi−1 , fαi ]q = fεi−1fαi − qfαi fεi−1 , i > 1.

Uq(g)-module Mλ of highest weight λ ∈ h∗, q2(λ,εi ) = −q−1

h.w.v 1λ ∈ Mλ, [fα1 , [fα1 , fα2 ]q]q−11λ = 0 = fαi 1λ, i > 1.

Mλ = Span{f m1
ε1

. . . f mn
εn 1λ}mi∈Z+

Mλ is irreducible and Aq ⊂ End(Mλ)

Projective equivariant Aq-modules are candidates for QVB.

Proposition.

Let V be a finite dimensional Uq(g)-module. Then all invariant
idempotents from End(V ⊗Mλ) belong to End(V )⊗Aq.

Problem reduces to complete reducibility of V ⊗Mλ.



Structure of V ⊗Mλ?

I What are highest weight submodules in V ⊗Mλ?

I When does V ⊗Mλ split into direct sum of h.w. submodules?

If K were a Levi subgroup:

Mλ is a parabolic Verma module of h.w. λ.

I Highest weight submodules in V ⊗Mλ are parabolically
induced from irreducible Uq(k)-submodules in V .

I Generically V ⊗Mλ is a direct sum of h.w. submodules

Non-Levi case is special: no natural Uq(k) in Uq(g)
no parabolic induction



Contravariant forms

We use shortcuts U = Uq(g), U± = Uq(g±)

Define ω, σ : U → U

σ : eα 7→ fα, σ : hα 7→ −hα, σ : fα 7→ eα,

ω = γ−1 ◦ σ, where γ = antipode

σ is algebra anti-automorphism and coalgebra map

A symmetric bilinear form 〈., .〉 on a V -module is contravariant if

〈xv ,w〉 = 〈v , ω(x)w〉, v ,w ∈ V , x ∈ U



Canonical contravariant form on V ⊗M

i) Every module of h.w. has a unique contravariant
(Shapovalov) form, up to a scalar.

ii) The module is irreducible iff the Shapovalov form is
non-degenerate.

• Let V ,M be irreducible h.w. modules.

• Introduce canonical contravariant form on V ⊗M as product
of Shapovalov forms.

• Denote by (V ⊗M)+ ⊂ V ⊗M the span of singular vectors.



Contravariant form and complete reducibility of V ⊗M

Theorem. (A.M.)

The following statements are equivalent:

1. V ⊗M is completely reducible

2. Canonical form is non-degenerate on (V ⊗M)+

3. All h.w. submodules in V ⊗M are irreducible



Pseudo-parabolic modules

Let ξ ∈ h∗ be an integral dominant weight of k. Then

nα = (ξ, α∨) + 1 ∈ N, q2(ξ+λ+ρ,α) = qnα(α,α), ∀α ∈ Πk

In Verma module M̂ξ+λ there are submodules M̂λ+ξ−nαα, α ∈ Πk

Definition: Pseudo-parabolic module

Mξ,λ = M̂ξ+λ/
∑
α∈Πk

M̂λ+ξ−nαα



Pseudo-parabolic category OS2n

Classical decomposition V = ⊕iXi into sum of k-irreps of h.w. ξi .

Theorem.

For generic q:

1. V ⊗Mλ ' ⊕iMξi ,λ

2. All Mξi ,λ are irreducible.

Definition: Pseudo-parabolic category OS2n
q

is a full subcat. in O:

ObOS2n
q
⊂ {fin.dim. Uq(g)-mod} ⊗Mλ,

I OS2n is a module cat. over Uq(g)-mod◦ (fin. dim.)

I OS2n is semisimple Abelian

I OS2n is isomorphic to k-mod◦



QVB over Aq

Let X ⊂ V be a k-submodule of h.w. ξ.

Let P ∈ End(V )⊗Aq be an idempotent,

P : V ⊗Mλ → Mξ,λ

Put Γq[S2n,X ] = P
(
End(V )⊗Aq

)
.

It is a left Uq(g)-module and equivariant right Aq-module

Proposition.

Γq[S2n,X ] is an equivariant quantization of Γ[S2n,X ].

Remark that Γq[S2n,X ] is a locally finite part of HomC(Mλ,Mξ,λ).



Quantum symmetric pair and its representations

Get back to coideal subalgebra Bq ⊂ Uq(g).

It is generated by entries of R12(1⊗ t ′q)R21 ∈ Uq(g)⊗End(C2n+1)

Matrix t ′q defines a character χt′q : Aq → C.

Let k′ ' k be the stabilizer of t ′ = limq→1 t
′
q.

Theorem.

1. Every finite dimensional Uq(g)-module V is completely
reducible over Bq for generic q.

2. Each irreducible Bq-submodule is a deformation of a classical
U(k′)-submodule.

An irreducible Bq-submodule in V is the image of a Bq-invariant
projector (id⊗ χt′q)(P) ∈ End(V ), where

P ∈ End(V )⊗Aq

is a Uq(g)-invariant indecomposable idempotent.



Bird’s eye view

Additive categories (right Uq(g)-mod setting)

1. finite-dimensional representations

of quantum symmetric pair Uq(g) ⊃ Bq

↓ HomBq(C,U∗ ⊗ {·}) ↑ Cχ ⊗Aq {·}

2. equivariant finitely generated Aq-modules, Uq(g)-loc. fin.

↓ Mλ ⊗Aq {·}, ↑ Hom◦C
(
Mλ, {·}

)
3. pseudo-parabolic category OS2n

1. and 3. are equivalent semisimple Abelian



Parametrization of singular vectors in V ⊗M

Fix a pair of irreducible h.w. U-modules V ,M.

I Regard ∗V and ∗M as U+-modules.

Then
∗M ' U+/I+

M ,

where I+
M is left ideal in U+.

Put
V+
M = HomU+(∗M,V ) = ker I+

M ⊂ V ,

One has
V+
M ' (V ⊗M)+ ' M+

V ,

V = V+
M ⊕ ω(I+

M)V

Pull-back of the canonical form from (V ⊗M)+ to V+
M

”belongs” to dynamical Weyl group



Example: g = so(5), V = (3, 2), M = Mλ
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V = (3, 2)
V+
M
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In general, for g = so(2n + 1) and V = (`1, . . . , `n):

V+
M ' M+

V = Span{f m1
ε1

. . . f mn
εn 1λ}, mk = 0, . . . , `k , k = 1, . . . , n



Extremal twist

Consider the dual module ∗M of lowest weight and invariant form

M ⊗ ∗M → C.

C→ ∗M ⊗M → U+ ⊗ U−, 1 7→ FM

Let γ : U → U be antipode.

Put ΦM = γ−1(F−M)F+
M ∈ U and define extremal twists θV ,M by

θ+
V ,M ∈ End(V+

M )

Proposition.

The pull-back of canonical form under ismomorphism
V+
M → (V ⊗M)+ is

〈θV ,M( . ), . 〉


