Homogeneous vector bundles over quantum spheres

Andrey Mudrov

University of Leicester,

June 12, 2018

Edinburgh

Based on arXiv:1709.08394, arXiv:1710.05690

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The topic

- Quantization of vector bundles over a Poisson manifold is a natural next step after quantization of its function algebras
- Vector bundles are understood as projective modules over coordinate rings
- Presence of symmetry puts quantization problem in a context of representation theory
- Equivariant quantization is technically about complete reducibility of tensor product of representations
- Conravariant form is responsible for complete reducibility of tensor products

One reason to quantize vector bundles:

Quantum stabilizer and its representations may be a problem. Amazingly it can be addressed through vector bundles.

Classical vector bundles

A Lie group G, closed subgroup $K \subset G$, coset space O = G/K.

Function algebra $\mathbb{C}[O] \simeq \mathbb{C}[G]^{K}$

Vector bundle $E \rightarrow O$ with fiber $X \in K$ -mod

Sections $O \to E$ form a projective $\mathbb{C}[O]$ -module $\Gamma[O, X]$

Realization $\Gamma[O, X] = \operatorname{Hom}_{\mathcal{K}}(\mathbb{C}, \mathbb{C}[G] \otimes X)$ (coinduced module) In this talk:

$$G = SO(2n+1), \quad K = SO(2n), \quad O = \mathbb{S}^{2n}$$

a pseudo-Levi conjugacy class.

Quantization

 $G \dashrightarrow U_q(\mathfrak{g}), \quad \mathbb{C}[O] \dashrightarrow \mathbb{C}_q[O], \quad \Gamma[O, X] \dashrightarrow \Gamma_q[O, X], \quad K \dashrightarrow ?$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Coideal subalgebra approach

is solution of Reflection Equation, $\lim_{q \to 1} t'_q = t' \in \mathbb{S}^{2n}$.

 t'_q defines:

 $\blacktriangleright \text{ embedding } \mathbb{C}_q[\mathbb{S}^{2n}] = \mathcal{A}_q \hookrightarrow U^* = U_q^*(\mathfrak{g})$

▶ a coideal subalgebra $\mathcal{B}_q \subset U_q(\mathfrak{g})$ s.t. $\mathcal{A}_q = \operatorname{Hom}_{\mathcal{B}_q}(\mathbb{C}, U^*)$.

Given a \mathcal{B}_q -module X,

is $\operatorname{Hom}_{\mathcal{B}_q}(\mathbb{C}, U^* \otimes X)$ a quantum vector bunkde ?

Representation theory of \mathcal{B}_q ?

Operator quantization

Fix maximal torus $T \subset G$ of diagonal matrices and

$$t = \operatorname{diag}(-1, \ldots, -1, 1, -1, \ldots, -1) \in T \cap \mathbb{S}^{2n}$$

Polarization $\mathfrak{g} = \mathfrak{g}_{-} \oplus \mathfrak{h} \oplus \mathfrak{g}_{+}$ and positive root set $\mathrm{R}_{\mathfrak{q}}^{+}$:

$$\varepsilon_i \pm \varepsilon_j, \quad i < j, \quad \varepsilon_i, \quad i, j = 1, \dots, n$$

Basis $\Pi_{\mathfrak{a}}$:

$$\alpha_1 = \varepsilon_1, \quad \alpha_2 = \varepsilon_2 - \varepsilon_1, \quad \dots, \quad \alpha_n = \varepsilon_n - \varepsilon_{n-1}$$

Basis of *t*-stabilizer $\Pi_{\mathfrak{k}}$:

$$\varepsilon_1 + \varepsilon_2, \quad \alpha_2, \quad \ldots, \quad \alpha_n$$

Pseudo-Levi:

 $\Pi_{\mathfrak{k}} \not\subset \Pi_{\mathfrak{g}}$

Operator realization ctd: base module M_{λ}

Define compound root vectors $f_{arepsilon_i} \in U_q(\mathfrak{g})$, $i=1,\ldots,n$, by

$$f_{\varepsilon_1} = f_{\alpha_1}, \quad f_{\varepsilon_i} = [f_{\varepsilon_{i-1}}, f_{\alpha_i}]_q = f_{\varepsilon_{i-1}}f_{\alpha_i} - qf_{\alpha_i}f_{\varepsilon_{i-1}}, \quad i > 1.$$

 $U_q(\mathfrak{g}) ext{-module }M_\lambda$ of highest weight $\lambda\in\mathfrak{h}^*$, $q^{2(\lambda,arepsilon_i)}=-q^{-1}$

h.w.v
$$1_{\lambda} \in M_{\lambda}, \quad [f_{\alpha_1}, [f_{\alpha_1}, f_{\alpha_2}]_q]_{q^{-1}} 1_{\lambda} = 0 = f_{\alpha_i} 1_{\lambda}, \ i > 1.$$

$$M_{\lambda} = \operatorname{Span} \{ f_{\varepsilon_1}^{m_1} \dots f_{\varepsilon_n}^{m_n} 1_{\lambda} \}_{m_i \in \mathbb{Z}_+}$$

 M_{λ} is irreducible and $\mathcal{A}_q \subset \operatorname{End}(M_{\lambda})$

Projective equivariant A_q -modules are candidates for QVB.

Proposition.

Let V be a finite dimensional $U_q(\mathfrak{g})$ -module. Then all invariant idempotents from $\operatorname{End}(V \otimes M_\lambda)$ belong to $\operatorname{End}(V) \otimes \mathcal{A}_q$.

(日本本語を本書を本書を入事)の(の)

Problem reduces to complete reducibility of $V \otimes M_{\lambda}$.

Structure of $V \otimes M_{\lambda}$?

• What are highest weight submodules in $V \otimes M_{\lambda}$?

• When does $V \otimes M_{\lambda}$ split into direct sum of h.w. submodules?

If K were a Levi subgroup:

 M_{λ} is a parabolic Verma module of h.w. λ .

- ► Highest weight submodules in V ⊗ M_λ are parabolically induced from irreducible U_q(𝔅)-submodules in V.
- Generically $V \otimes M_{\lambda}$ is a direct sum of h.w. submodules

Non-Levi case is special: no natural $U_q(\mathfrak{k})$ in $U_q(\mathfrak{g})$ no parabolic induction

Contravariant forms

We use shortcuts $U = U_q(\mathfrak{g}), \ U^{\pm} = U_q(\mathfrak{g}_{\pm})$

Define $\omega, \sigma \colon U \to U$

$$\sigma\colon e_{\alpha}\mapsto f_{\alpha}, \quad \sigma\colon h_{\alpha}\mapsto -h_{\alpha}, \quad \sigma\colon f_{\alpha}\mapsto e_{\alpha},$$

$$\omega = \gamma^{-1} \circ \sigma$$
, where $\gamma = antipode$

 σ is algebra anti-automorphism and coalgebra map

A symmetric bilinear form $\langle ., . \rangle$ on a V-module is **contravariant** if

$$\langle xv,w\rangle = \langle v,\omega(x)w\rangle, \quad v,w\in V, \quad x\in U$$

Canonical contravariant form on $V \otimes M$

- i) Every module of h.w. has a unique contravariant (Shapovalov) form, up to a scalar.
- ii) The module is irreducible *iff* the Shapovalov form is non-degenerate.
 - Let V, M be irreducible h.w. modules.
 - Introduce canonical contravariant form on $V \otimes M$ as product of Shapovalov forms.
 - Denote by $(V \otimes M)^+ \subset V \otimes M$ the span of singular vectors.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Contravariant form and complete reducibility of $V \otimes M$

Theorem. (A.M.)

The following statements are equivalent:

- 1. $V \otimes M$ is completely reducible
- 2. Canonical form is non-degenerate on $(V \otimes M)^+$
- 3. All h.w. submodules in $V \otimes M$ are irreducible

Pseudo-parabolic modules

Let $\xi \in \mathfrak{h}^*$ be an integral dominant weight of \mathfrak{k} . Then

$$n_{\alpha} = (\xi, \alpha^{\vee}) + 1 \in \mathbb{N}, \quad q^{2(\xi + \lambda + \rho, \alpha)} = q^{n_{\alpha}(\alpha, \alpha)}, \quad \forall \alpha \in \Pi_{\mathfrak{k}}$$

In Verma module $\hat{M}_{\xi+\lambda}$ there are submodules $\hat{M}_{\lambda+\xi-n_{\alpha}\alpha}$, $\alpha \in \Pi_{\mathfrak{k}}$

<u>Definition</u>: Pseudo-parabolic module

$$M_{\xi,\lambda} = \hat{M}_{\xi+\lambda} / \sum_{lpha \in \Pi_{\mathfrak{k}}} \hat{M}_{\lambda+\xi-n_{lpha}lpha}$$

Pseudo-parabolic category $\mathcal{O}_{\mathbb{S}^{2n}}$

Classical decomposition $V = \bigoplus_i X_i$ into sum of \mathfrak{k} -irreps of h.w. ξ_i .

Theorem.

For generic q:

- 1. $V \otimes M_{\lambda} \simeq \oplus_i M_{\xi_i,\lambda}$
- 2. All $M_{\xi_i,\lambda}$ are irreducible.

<u>Definition</u>: Pseudo-parabolic category $\mathcal{O}_{\mathbb{S}^{2n}_{\alpha}}$ is a full subcat. in \mathcal{O} :

 $\operatorname{Ob} \mathcal{O}_{\mathbb{S}^{2n}_{a}} \subset \{ \operatorname{fin.dim.} U_q(\mathfrak{g})\operatorname{-mod} \} \otimes M_{\lambda},$

- $\mathcal{O}_{\mathbb{S}^{2n}}$ is a module cat. over $U_q(\mathfrak{g})$ -mod[°] (fin. dim.)
- ▶ O_{S²ⁿ} is semisimple Abelian
- ▶ O_{S²ⁿ} is isomorphic to ℓ-mod[°]

QVB over \mathcal{A}_q

Let $X \subset V$ be a \mathfrak{k} -submodule of h.w. ξ .

Let $P \in \operatorname{End}(V) \otimes \mathcal{A}_q$ be an idempotent,

 $P: V \otimes M_{\lambda} \to M_{\xi,\lambda}$

Put $\Gamma_q[\mathbb{S}^{2n}, X] = P(\operatorname{End}(V) \otimes \mathcal{A}_q).$

It is a left $U_q(\mathfrak{g})$ -module and equivariant right \mathcal{A}_q -module Proposition.

 $\Gamma_q[\mathbb{S}^{2n}, X]$ is an equivariant quantization of $\Gamma[\mathbb{S}^{2n}, X]$.

Remark that $\Gamma_q[\mathbb{S}^{2n}, X]$ is a locally finite part of $\operatorname{Hom}_{\mathbb{C}}(M_{\lambda}, M_{\xi, \lambda})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Quantum symmetric pair and its representations

Get back to coideal subalgebra $\mathcal{B}_q \subset U_q(\mathfrak{g})$. It is generated by entries of $\mathcal{R}_{12}(1 \otimes t'_q)\mathcal{R}_{21} \in U_q(\mathfrak{g}) \otimes \operatorname{End}(\mathbb{C}^{2n+1})$ Matrix t'_q defines a character $\chi_{t'_q} \colon \mathcal{A}_q \to \mathbb{C}$. Let $\mathfrak{k}' \simeq \mathfrak{k}$ be the stabilizer of $t' = \lim_{q \to 1} t'_q$.

Theorem.

- 1. Every finite dimensional $U_q(\mathfrak{g})$ -module V is completely reducible over \mathcal{B}_q for generic q.
- Each irreducible B_q-submodule is a deformation of a classical U(t')-submodule.

An irreducible \mathcal{B}_q -submodule in V is the image of a \mathcal{B}_q -invariant projector $(\mathrm{id} \otimes \chi_{t'_q})(P) \in End(V)$, where

 $P \in End(V) \otimes \mathcal{A}_q$

is a $U_q(\mathfrak{g})$ -invariant indecomposable idempotent.

Bird's eye view

Additive categories (right $U_q(\mathfrak{g})$ -mod setting)

1. finite-dimensional representations of quantum symmetric pair $U_q(\mathfrak{g}) \supset \mathcal{B}_q$

$$\downarrow \operatorname{Hom}_{\mathcal{B}_q}(\mathbb{C}, U^* \otimes \{\cdot\}) \qquad \uparrow \ \mathbb{C}_{\chi} \otimes_{\mathcal{A}_q} \{\cdot\}$$

2. equivariant finitely generated \mathcal{A}_q -modules, $U_q(\mathfrak{g})$ -loc. fin.

 $\downarrow \ M_{\lambda} \otimes_{\mathcal{A}_{q}} \{\cdot\}, \qquad \qquad \uparrow \ \operatorname{Hom}^{\circ}_{\mathbb{C}} \big(M_{\lambda}, \{\cdot\} \big)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

3. pseudo-parabolic category $\mathcal{O}_{\mathbb{S}^{2n}}$

1. and 3. are equivalent semisimple Abelian

Parametrization of singular vectors in $V \otimes M$

Fix a pair of irreducible h.w. U-modules V, M.

Then

$$^*M\simeq U^+/I_M^+,$$

where I_M^+ is left ideal in U^+ . Put

$$V_M^+ = \operatorname{Hom}_{U_+}({}^*M, V) = \ker I_M^+ \subset V,$$

One has

$$V_M^+ \simeq (V \otimes M)^+ \simeq M_V^+,$$

 $V = V_M^+ \oplus \omega(I_M^+)V$

Pull-back of the canonical form from $(V \otimes M)^+$ to V_M^+ "belongs" to dynamical Weyl group Example: $\mathfrak{g} = \mathfrak{so}(5)$, V = (3, 2), $M = M_{\lambda}$

In general, for $\mathfrak{g} = \mathfrak{so}(2n+1)$ and $V = (\ell_1, \ldots, \ell_n)$:

$$V_M^+ \simeq M_V^+ = \operatorname{Span}\{f_{\varepsilon_1}^{m_1} \dots f_{\varepsilon_n}^{m_n} \mathbb{1}_\lambda\}, \quad m_k = 0, \dots, \ell_k, \quad k = 1, \dots, n$$

Extremal twist

Consider the dual module *M of lowest weight and invariant form

 $M \otimes {}^*M \to \mathbb{C}.$

$$\mathbb{C} o {}^*\!M \otimes M o U^+ \otimes U^-, \quad 1 \mapsto \mathcal{F}_M$$

Let $\gamma \colon U \to U$ be antipode.

Put $\Phi_M = \gamma^{-1}(\mathcal{F}_M^-)\mathcal{F}_M^+ \in U$ and define extremal twists $\theta_{V,M}$ by $\theta_{V,M}^+ \in \operatorname{End}(V_M^+)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proposition.

The pull-back of canonical form under ismomorphism $V_M^+ \to (V \otimes M)^+$ is $\langle \theta_{V,M}(.), . \rangle$