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Definition: A graph I' is distance transitive if it satisfies the
following condition:

forall o, 3,0/, 8 € VI with d(«, 8) = d(c/, 5’) there exists
g € Aut (") such that

ad=d & pI=p
Example 2. Aut (73) is distance transitive
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Definition. A standard graph I" has the following form:
Let 7" be a biregular (infinite) tree with valencies s and ¢
Let Vs and V; be the two parts of the bipartition of 7', where
vertices in V; have valency s
Set VI :=V,; & {v,w} € ET <= dr(v,w) =2

Notation. We denote such a graph by I'(s, K;). Each K is
called a lobe

Theorem. (Macpherson, ’82) An infinite, locally finite, distance
transitive graph is a regular tree or has the form I'(s, K;) for
some s >2andt > 3.

This proved a conjecture of Chris Godsil. The same result was
also obtained independently by A. A. lvanov in ‘83.
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M < Aut (A)
N < Sym (s)
MXN < Aut (I'(s,A))

When M and N are transitive, M X N is the
largest subgroup of Aut (I'(s,A)) s.t.
V vertices v, the stabiliser (M X N), induces N on the set
of lobes containing v
V lobes A’, the stabiliser (M X N)xry induces M on A’
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Theorem (poss. attributable to W. Manning, early 20th C)
M Wr N is primitive (in product action) <

M is primitive and not regular and

N is transitive and finite

Theorem (S., 2017)

M X N is primitive <~
M is primitive and not regular and
N is transitive
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One can see the “shape” of a permutation group by looking at
an orbital graph

Sym (3) X Sym (2) Sym (3) Wr Sym (2)



It can be used to easily solve a well-known problem
from topological group theory



It can be used to easily solve a well-known problem
from topological group theory

The study of locally compact groups splits into the connected
case, and the totally disconnected (“tdIc”) case.



It can be used to easily solve a well-known problem
from topological group theory

The study of locally compact groups splits into the connected
case, and the totally disconnected (“tdIc”) case.

Question (Folklore) Let S be the class of (non-discrete)
compactly generated & simple tdic groups.



It can be used to easily solve a well-known problem
from topological group theory

The study of locally compact groups splits into the connected
case, and the totally disconnected (“tdIc”) case.

Question (Folklore) Let S be the class of (non-discrete)
compactly generated & simple tdic groups.

How large is the class 87




It can be used to easily solve a well-known problem
from topological group theory

The study of locally compact groups splits into the connected
case, and the totally disconnected (“tdIc”) case.

Question (Folklore) Let S be the class of (non-discrete)
compactly generated & simple tdic groups.

How large is the class 87

Theorem (OI'shanskii, ’91) For any prime p > 107 there are
2% pairwise nonisomorphic infinite groups all of whose proper
nontrivial subgroups have order p.




It can be used to easily solve a well-known problem
from topological group theory

The study of locally compact groups splits into the connected
case, and the totally disconnected (“tdIc”) case.

Question (Folklore) Let S be the class of (non-discrete)
compactly generated & simple tdic groups.

How large is the class 87

Theorem (OI'shanskii, ’91) For any prime p > 107 there are
2% pairwise nonisomorphic infinite groups all of whose proper
nontrivial subgroups have order p.

Theorem (S., *17) There are 2% pairwise nonisomorphicv
groups of the form @ X Sym(3), where @ is an OlI'shanskii
group, and all such groups lie in 8.

Hence |§| = 2%.
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It is required to understand the structure of infinite
primitive permutation groups
Definition: G is subdegree-finite if all orbits of point stabilisers
are finite. }

All automorphism groups of locally finite connected graphs
are closed & subdegree-finite

Every tdic group has a “natural” permutation
representation that is closed & subdegree-finite

Let P be the class of closed, subdegree-finite and primitive
permutation groups that are not regular.
Abridged Theorem (S.) If G € P is infinite, then either:
G is one-ended & almost topologically simple
G <prim Go Wr Sym (n) where G, € P is of other types
G <prim Go X Sym (n) where G, € P is of other types or finite

Moreover, GG induces on each lobe or fibre a group that is
dense in Gy
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Papers:

H. D. Macpherson, Infinite distance transitive graphs of finite valency,
Combinatorica 2 (1982)

S. M. Smith, A product for permutation groups and topological groups,
Duke Math. J. (2017)

Preprint on subdegree-finite permutation groups coming soon



