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Dugald’s 1982 paper on distance transitive graphs

Definition. A standard graph Γ has the following form:
• Let T be a biregular (infinite) tree with valencies s and t
• Let Vs and Vt be the two parts of the bipartition of T , where

vertices in Vs have valency s
• Set V Γ := Vs & {v, w} ∈ EΓ ⇐⇒ dT (v, w) = 2

Notation. We denote such a graph by Γ(s,Kt). Each Kt is
called a lobe

Theorem. (Macpherson, ’82) An infinite, locally finite, distance
transitive graph is a regular tree or has the form Γ(s,Kt) for
some s ≥ 2 and t ≥ 3.

This proved a conjecture of Chris Godsil. The same result was
also obtained independently by A. A. Ivanov in ‘83.
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• ∀ vertices v, the stabiliser (M �N)v induces N on the set
of lobes containing v
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Why is � interesting?



It behaves like the wreath product . . .

Theorem (poss. attributable to W. Manning, early 20th C)
M WrN is primitive (in product action) ⇐⇒
• M is primitive and not regular and
• N is transitive and finite

Theorem (S., 2017)
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• M is primitive and not regular and
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It can be used to easily solve a well-known problem
from topological group theory

The study of locally compact groups splits into the connected
case, and the totally disconnected (“tdlc”) case.

Question (Folklore) Let S be the class of (non-discrete)
compactly generated & simple tdlc groups.

How large is the class S?

Theorem (Ol’shanskiĭ, ’91) For any prime p > 1075 there are
2ℵ0 pairwise nonisomorphic infinite groups all of whose proper
nontrivial subgroups have order p.

Theorem (S., ’17) There are 2ℵ0 pairwise nonisomorphic
groups of the form Q� Sym(3), where Q is an Ol’shanskĭi
group, and all such groups lie in S.

Hence |S| = 2ℵ0 .
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group, and all such groups lie in S.

Hence |S| = 2ℵ0 .



It can be used to easily solve a well-known problem
from topological group theory

The study of locally compact groups splits into the connected
case, and the totally disconnected (“tdlc”) case.

Question (Folklore) Let S be the class of (non-discrete)
compactly generated & simple tdlc groups.

How large is the class S?
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It is required to understand the structure of infinite
primitive permutation groups

Definition: G is subdegree-finite if all orbits of point stabilisers
are finite.

• All automorphism groups of locally finite connected graphs
are closed & subdegree-finite
• Every tdlc group has a “natural” permutation

representation that is closed & subdegree-finite

Let P be the class of closed, subdegree-finite and primitive
permutation groups that are not regular.

Abridged Theorem (S.) If G ∈ P is infinite, then either:
• G is one-ended & almost topologically simple
• G ≤prim G0 Wr Sym (n) where G0 ∈ P is of other types

• G ≤prim G0 � Sym (n) where G0 ∈ P is of other types or finite

Moreover, G induces on each lobe or fibre a group that is
dense in G0
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