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A is homogeneous in the canonical language. (Orbits are
isomorphism types.)
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Permutation
g Ly: path metric|d(x,y) =1

@ k-closed: G = Aut(A[Lg)

@ [,-homogeneous: Li-isomorphism types determine
G-orbits
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Aut(P) = Sym(5) (2-closed).
L3-homogeneous.
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N , 5} (237
Structures and
Permutation {1 4} (2 4}
Groups
{2 5}—{1 3}

Aut(P) = Sym(5) (2-closed).
L3-homogeneous.

Independent triples:

{1,2}, {1,3}, {2,3} (triangle); {1,2}, {1,3}, {1,4} (star).

AN
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rc-spectrum

{r13(a1,...,ar),(a1,...,3a))
Not G-conjugate

all proper restrictions G-conjugate}

p(G) = sup(rc-spectrum)
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cherlin p bounded

AP /G bounded.

(Stability theory)

Generalization: A*/G bounded.
Kantor-Liebeck-Macpherson Classified in the primitive case.
Classical or semi-classical geometries.

C-H Structure theory based on the primitive classification
(neostability theory)

History
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@ What can we say about A if p is bounded?

@ What can we say about p (and possibly the spectrum)
when A is “natural?”

Questions,

Examples @ What is the meaning of gaps in the spectrum?
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_ Q SL, < G <GL,: n+1 (linear algebra)
Cherlin ° SLn: n
o ASL, < G <AGL,: n+2unlessn=1, G =D,

n isotropic
@ 0%(n,q), q #2: i

2 anisotropic
Questions, . .
Examples (linear algebra or inner products)

@ PL: 4 (cross ratio)

@ (P([n]), Sym(n)): [logy n] + 1
“la(S)| =" o a Boolean atom
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G Conjecture (Binary Conjecture)

The (finite) primitive binary structures are

o C, (regular action)
e Sym(n) (theory of equality)
e AO(n, q) anisotropic

Very small p
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G Conjecture (Binary Conjecture)

The (finite) primitive binary structures are

o C, (regular action)
e Sym(n) (theory of equality)
e AO(n, q) anisotropic

Very small p
Cherlin, Wiscons: reduced to almost simple case
(Very dependent on the value p = 2)
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The Binary Conjecture holds for alternating socle.

Very small p
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Theorem (Gill, Spiga)

Cherlin

The Binary Conjecture holds for alternating socle.

The easy cases:

e Sym(n) on k-sets: [log, k| + 2
(bounded family, but not usually 2)

Very small p
e Sym(n = nyny) on partitions of shape n; x np: At least

max(n1, |logy 2(n2 — 1))
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The hard case
Primitive point stabilizer M = G,

Key device: Elements of M have few fixed points on [n]
Very small p
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g7 (01234) ¢ M

a = (0)(1243)--- € M. 5 =(01234) not in M
H = (o, 8) ~ Fs x Fg, acting naturally on {0,1,2,3,4}.

Very small p
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a (0)3,2,4,3)--- (0)(1243)--- €M

C h Mn

8 (0,1,2,3,4)--- (01234) ¢ M

= (0)(1243)--- € M. B = (01234) not in M
H = (o, B) ~ Fs x Fg, acting naturally on {0,1,2,3,4}.
Let 0 be M in M\G and let O0=0-H= 0,1 ,...,4).

Very small p



If M has an element of order 4 with a fixed point

Relational
Complexity of

a Finite

Structure M\G [n]
regor a (0)3,2,4,3)--- (0)(1243)--- €M

C h Mn

8 (0,1,2,3,4)--- (01234) ¢ M

= (0)(1243)--- € M. B = (01234) not in M
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Let 0 be M in M\G and let O =0-H = (0,1 ,...,4).
Then Hz = Ho = (a) and H acts doubly transitively on O.

Very small p
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regor a (0)3,2,4,3)--- (0)(1243)--- €M

C h Mn

8 (0,1,2,3,4)--- (01234) ¢ M

= (0)(1243)--- € M. B = (01234) not in M
H = (o, B) ~ Fs x Fg, acting naturally on {0,1,2,3,4}.
Let 0 be M in M\G and let O =0-H = (0,1 ,...,4).
Then Hz = Ho = (a) and H acts doubly transitively on O.
Binarity: G induces Sym(0) on O.

Very small p
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Structure M\G [n]
regor a (0)3,2,4,3)--- (0)(1243)--- €M

C h Mn

8 (0,1,2,3,4)--- (01234) ¢ M

= (0)(1243)--- € M. B = (01234) not in M
H = (o, B) ~ Fs x Fg, acting naturally on {0,1,2,3,4}.
Let 0 be M in M\G and let O =0-H = (0,1 ,...,4).
Then Hz = Ho = (a) and H acts doubly transitively on O.
Binarity: G induces Sym(0) on O.
In particular 8 has a conjugate 3’ such that 33’ is nontrivial
and fixes 0.
Return to [n]: Many fixed points, in M: contradiction!
(or n is not very large).

Very small p
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Cherlin Take 5 such orbits and make the regular representation of
H =TFgs x FX, with 3 having exactly 4 orbits of length 5.

Very small p
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Cherlin Take 5 such orbits and make the regular representation of
H = TFs x FX, with 3 having exactly 4 orbits of length 5.
We still have 0 fixed by (c).

Gregor

M\G [n]
(0)(1,2,4,3) (e, a,a? a%)(b,ba, ba®,ba®)--- €M

(; (071727374) (17b7 b27b37b4)()()() §é M

Very small p
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Then many orbits of length 4 (a? has few fixed points).
Cherlin Take 5 such orbits and make the regular representation of
H = TFs x FX, with 3 having exactly 4 orbits of length 5.
We still have 0 fixed by (c).

Gregor

M\G [n]
a (0)(1,2,4,3) (e, a,a% a)(b,ba,ba®, ba%)--- €M

B (071727374) (17b7 b27b37b4)()()() §é M

Very small p

Finish as before, working mostly in M\G.



M has no element of order 47
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Wander through the various possibilities for M, coming back to
M almost simple by the same method.

Then use the classification of finite simple groups (or rather an
early result in that direction).

Very small p



M has no element of order 47

Relational
Complexity of
a Finite
Primitive
Structure

Gregory

Cherlin Meanders . ..
Wander through the various possibilities for M, coming back to
M almost simple by the same method.

Then use the classification of finite simple groups (or rather an
early result in that direction).

Exceptions occur:

W izl E.g., Sym(p) on AGL(1, p)

(and its restriction to Alt(p)).
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This is the action on Sylow p-subgroups by conjugacy.

Very small p
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This is the action on Sylow p-subgroups by conjugacy.
AGL(1, p) = Cp x Cp_1; for p > 5, a given C,_1 normalizes
more than 1 p-Sylow.

So AGL(1, p) acts on some orbits as on the affine line, with
relational complexity 3.

Very small p
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This is the action on Sylow p-subgroups by conjugacy.
AGL(1, p) = Cp x Cp_1; for p > 5, a given C,_1 normalizes
more than 1 p-Sylow.

So AGL(1, p) acts on some orbits as on the affine line, with
relational complexity 3.

Very small p (Similarly for AGL(1, p) N Alt(p) once p > 5.)
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with sporadic socle.

Most actions are explicitly known. Computation will reach a
certain distance (and rather far if supported by a rich range of

theoretical tests).
Again, the “small stabilizer” case arises, and the fact that one

just needs to understand one M-orbit can be very helpful.
Notably, M = Alts x Symsg in Cos, (5:4) x Alts in Ru, where
one finds M N M& = 2-Sylow for some g.

Very small p



Sporadic socle

Relational . .
el Gill, Dalla Volta, Spiga, to appear.
a Finite
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Cregory There are no primitive binary actions of almost simple groups
with sporadic socle.

Most actions are explicitly known. Computation will reach a
certain distance (and rather far if supported by a rich range of
theoretical tests).

Again, the “small stabilizer” case arises, and the fact that one
just needs to understand one M-orbit can be very helpful.
Notably, M = Alts x Symsg in Cos, (5:4) x Alts in Ru, where
one finds M N M& = 2-Sylow for some g.

Observation There are relatively few transitive binary actions as
well, apparently and this can be remarkably useful in exploiting
knowledge about the point stabilizer.

Very small p
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Cherlin (Remains bounded as n — cc.)
k-sets under Alt(n):

n—1 ifk=1
n—2 ifk=2orn=2k+1)
n—3 otherwise

Some natural

examples
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Gregor

k-sets under Sym(n): |log, k| + 2
Cherlin (Remains bounded as n — cc.)
k-sets under Alt(n):

n—1 ifk=1
n—2 ifk=2orn=2k+1)
n—3 otherwise

Some natural

examples Why?
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derived from the action of Sym(20)
Above p™ = p(k-sets, Sym(n)) the relational spectrum for
Alt(n) on k-sets comes from sequences of k-sets which just
separate points in [n].
Namely (Xi,...,X;) and its image under an odd permutation.
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Structure Spectrum: Sym(20) on 4-tuples: (2-4)
Gregon Spectrum: Alt(20) on 4-tuples: (2—-4,8-17). Both pieces
derived from the action of Sym(20)

Above p™ = p(k-sets, Sym(n)) the relational spectrum for
Alt(n) on k-sets comes from sequences of k-sets which just
separate points in [n].

Namely (Xi,...,X;) and its image under an odd permutation.

Cherlin

Some natural

eamples What is the longest sequence of k-sets which just separates
points in [n]?




Just separating sequences
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Cherlin separates points in [n]. Then there is a numerical partition of n
into a sum of n — r terms n = ) n; with the following splitting
property: if nj > 2 and n; is replaced by (1, n; — 1) then some
subsum involving exactly one of these two terms sums to k.

Some natural
examples



Just separating sequences

Relational

Gty & Proposition
ir,'zmlc'nt{% Suppose there is a sequence of k-sets of length r which just
o separates points in [n]. Then there is a numerical partition of n
Cherlin into a sum of n — r terms n =) n; with the following splitting
property: if nj > 2 and n; is replaced by (1, nj — 1) then some
subsum involving exactly one of these two terms sums to k.

Application: Look for the shortest sum with the splitting
property:

k=1 n=n Length 1

ot k=2 n=(n-1)+1 Length 2
n=2k+1) n=(k+1)+(k+1) Length 2

Else n=(k—1)+(k—1)+(---) Length3

Then reverse the analysis.
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Just separating sequences

Proposition

Suppose there is a sequence of k-sets of length r which just
separates points in [n]. Then there is a numerical partition of n
into a sum of n — r terms n = ) n; with the following splitting
property: if nj > 2 and n; is replaced by (1, n; — 1) then some
subsum involving exactly one of these two terms sums to k.

The analysis: If we omit Xj, there is a pair (a;, b;) no longer
separated.

This makes an acyclic graph with r edges, so n— r components.
The sizes of the components are the n;.
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Just separating sequences

Proposition

Suppose there is a sequence of k-sets of length r which just
separates points in [n]. Then there is a numerical partition of n
into a sum of n — r terms n = ) n; with the following splitting
property: if nj > 2 and n; is replaced by (1, n; — 1) then some
subsum involving exactly one of these two terms sums to k.

The analysis: If we omit Xj, there is a pair (a;, b;) no longer
separated.

This makes an acyclic graph with r edges, so n— r components.
The sizes of the components are the n;.

To reverse, use stars and make the k-sets correspondingly (and
check).
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This is a mechanism whereby low complexity for one group in a
cohort may result in high complexity for smaller groups. But
low complexity is not that common.

We will look at a more delicate case.

Some natural
examples
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Sym(2n) and Alt(2n) on partitions: shape n x 2
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Structure

Gregor + .
Cherin P (n X 2) 'n
Mobius Band
o—eo—0—@ . .
| e & & ® & ® = @»
Some natural  ——o—o . ® ®

examples

Edge-colored graph: connected, but any two edge colors have
small components.
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p (nx2):<n n = 2,4; or odd; or a multiple of 6
n—1 n> 6 even, not a multiple of 6

(or so it seems)

Some natural

examples



Sym(2n) and Alt(2n) on partitions: shape n x 2

Stwowi  (2017-18, with Wiscons)
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v pr(nx2):n
n+1 n=3

p (nx2):<n n = 2,4; or odd; or a multiple of 6
n—1 n> 6 even, not a multiple of 6

(or so it seems)

el Some of this follows by direct inheritance from Sym(n):

examples

@ Inheritance for n odd: p~ > p™ because when
n = ny + ny, one of the parts is odd (Mdbius band)

@ Sequences of partitions just separating points: n — 1 if
n>?2,



Independent partitions of shape n x k

Rl Maximum sequences of partitions of shape n x k which just

Complexity of

2 Finite separate points.

Structure

Gregory n(k — 1)

Cherlin n(k B 1) _ 1
nlk—1)—2

Some natural

examples

fm=n=2
if min(n, k) =2 and max(n, k) > 2
if n,k >2



Independent partitions of shape n x k

B Maximum sequences of partitions of shape n x k which just
mplexity

a Finite separate points.
Primitive
Structure

Gregon n(k —1) fm=n=2
e n(k—1)—1 if min(n, k) = 2 and max(n, k) > 2
ntk—1)—2 ifnk>2

nk = n;. The splitting condition:
If nj > 2 then the sum with n; split to 1+ (n; — 1) can

be rearranged into n sums equal to k (with 1,(n; — 1)
Some natural Separated)

examples

Examples (Optimal)

k"2(k—1)212 kr—l1k (k—1)"21772 (k4 1)1(nDk-l
n+2 n+k—1 2n—1 (n—1)k
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Conjecture

The relational complexity of Alt(nk) on shape n x k is well
approximated by n(k — 1) — 2 (and should always be at least
that).

The relational complexity of Sym(nk) on shape n x k is
typically much less (but not for k = 2).

Some natural
examples




Shape 2 x k

Relational For Alt(2k) we eXpeCt 2k — 3.
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Structure Examples: 2 x k

Chertn k 2k—3 p-
3 3 4
4 5 5
5 7 7
6 9 >9

Some natural
examples



Shape 2 x k
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Primitive
Structure

k 2k=3 p~ p'(LB)
Cherlin 3 3 4 3 (2)
4 5 5 5 (4)
5 7 7 4 (4)
6 9 >9 6(4)
7 > 5 (4)

For Sym(2k) there is a lower bound applying to the point

Some natural

examples Stab”izer, namely

2|log; k]

This may possibly be the true value for the point stabilizer
when k is odd.
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cosets of Sym(k) ¢ Sym(n) has relational complexity going to
infinity with n.

Some natural
examples
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Problem

Gregory

Cherlin Show that the relational complexity of Sym(nk) acting on
cosets of Sym(k) ¢ Sym(n) has relational complexity going to
infinity with n.

Problem
Let po(G) = min(p(X, G) | primitive).
Some natural Is this uniformly bounded for G simple?

examples

If so, what is the minimum bound holding for almost all such
G?
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Show that
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for some explicit constant cx (<< k?).
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Problem
Show that

U —
nlLrgop (nx k)/n=cg

for some explicit constant cx (<< k?).

Problem

Some natural
examples

Determine the relational complexity of [Z] d

(k = 1: Saracino.)
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