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Remark

A is homogeneous in the canonical language. (Orbits are
isomorphism types.)
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Example

A G

Cn D2n

L2: path metric d(x , y) = i

k-closed: G = Aut(A�Lk)

Lk -homogeneous: Lk -isomorphism types determine
G -orbits
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k-closure and homogeneity

Example (Petersen Graph)

Aut(P) = Sym(5) (2-closed).
L3-homogeneous.

Independent triples:
{1, 2}, {1, 3}, {2, 3} (triangle); {1, 2}, {1, 3}, {1, 4} (star).
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Relational Complexity

ρ(G ) = min(r : A�Lr is G -homogeneous)

rc-spectrum

{r | ∃(a1, . . . , ar ), (a′1, . . . , a
′
r )

Not G -conjugate

all proper restrictions G -conjugate}

ρ(G ) = sup(rc-spectrum)
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Model Theoretic Background

Lachlan Homogeneous for a finite relational language
ρ bounded
Aρ/G bounded.
(Stability theory)

Generalization: A4/G bounded.
Kantor-Liebeck-Macpherson Classified in the primitive case.
Classical or semi-classical geometries.
C-H Structure theory based on the primitive classification
(neostability theory)
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Questions for the primitive case

What can we say about A if ρ is bounded?

What can we say about ρ (and possibly the spectrum)
when A is “natural?”

What is the meaning of gaps in the spectrum?
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A few more examples

1 SLn < G ≤ GLn: n + 1 (linear algebra)

SLn: n
ASLn < G ≤ AGLn: n + 2 unless n = 1, G = D2·q

2 O±(n, q), q 6= 2:

{
n isotropic

2 anisotropic

(linear algebra or inner products)

3 P1: 4 (cross ratio)

4 (P([n]),Sym(n)): blog2 nc+ 1
“|α(S̄)| = i” α a Boolean atom
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Small ρ: ρ = 2

Conjecture (Binary Conjecture)

The (finite) primitive binary structures are
~Cp (regular action)

Sym(n) (theory of equality)

AO(n, q) anisotropic

Cherlin, Wiscons: reduced to almost simple case
(Very dependent on the value ρ = 2)
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Almost Simple Case

Gill, Spiga, Dalla Volta, Hunt, Liebeck

Theorem (Gill, Spiga)

The Binary Conjecture holds for alternating socle.

The easy cases:

Sym(n) on k-sets: blog2 kc+ 2
(bounded family, but not usually 2)

Sym(n = n1n2) on partitions of shape n1 × n2: At least

max(n1, blog2 2(n2 − 1)c)
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Alternating Socle: Primitive Point Stabilizer

The hard case
Primitive point stabilizer M = G∗

Key device: Elements of M have few fixed points on [n]
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If M has an element of order 4 with a fixed point

M\G [n]

α ? (0)(1243) · · · ∈ M
β ? (01234) /∈ M

α = (0)(1243) · · · ∈ M. β = (01234) not in M
H = 〈α, β〉 ' F5 o F×5 , acting naturally on {0, 1, 2, 3, 4}.

Let 0̃ be M in M\G and let Õ = 0̃ · H = (0̃, 1̃, . . . , 4̃).
Then H0̃ = H0 = 〈α〉 and H acts doubly transitively on Õ.
Binarity: G induces Sym(Õ) on Õ.
In particular β has a conjugate β′ such that ββ′ is nontrivial
and fixes 0̃.
Return to [n]: Many fixed points, in M: contradiction!
(or n is not very large).
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If M has an element of order 4 with no fixed point

Then many orbits of length 4 (α2 has few fixed points).
Take 5 such orbits and make the regular representation of
H = F5 o F×5 , with β having exactly 4 orbits of length 5.

We still have 0̃ fixed by 〈α〉.

M\G [n]

α (e, a, a2, a3)(b, ba, ba2, ba3) · · · ∈ M
β (1, b, b2, b3, b4)(· · · )(· · · )(· · · ) /∈ M

Finish as before, working mostly in M\G .
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M has no element of order 4?

Meanders . . .
Wander through the various possibilities for M, coming back to
M almost simple by the same method.
Then use the classification of finite simple groups (or rather an
early result in that direction).

Exceptions occur:
E.g., Sym(p) on AGL(1, p)
(and its restriction to Alt(p)).
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Sym(p) with stabilizer AGL(1, p)

This is the action on Sylow p-subgroups by conjugacy.

AGL(1, p) = Cp o Cp−1; for p ≥ 5, a given Cp−1 normalizes
more than 1 p-Sylow.
So AGL(1, p) acts on some orbits as on the affine line, with
relational complexity 3.
(Similarly for AGL(1, p) ∩Alt(p) once p > 5.)
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Sporadic socle

Gill, Dalla Volta, Spiga, to appear.

Theorem

There are no primitive binary actions of almost simple groups
with sporadic socle.

Most actions are explicitly known. Computation will reach a
certain distance (and rather far if supported by a rich range of
theoretical tests).
Again, the “small stabilizer” case arises, and the fact that one
just needs to understand one M-orbit can be very helpful.
Notably, M = Alt4×Sym5 in Co3, (5 : 4)×Alt5 in Ru, where
one finds M ∩Mg = 2-Sylow for some g .
Observation There are relatively few transitive binary actions as
well, apparently and this can be remarkably useful in exploiting
knowledge about the point stabilizer.
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k-sets

k-sets under Sym(n): blog2 kc+ 2
(Remains bounded as n→∞.)

k-sets under Alt(n):
n − 1 if k = 1

n − 2 if k = 2 or n = 2(k + 1)

n − 3 otherwise

Why?
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Relational spectrum

Spectrum: Sym(20) on 4-tuples: (2–4)
Spectrum: Alt(20) on 4-tuples: (2–4,8–17). Both pieces
derived from the action of Sym(20)

Above ρ+ = ρ(k-sets,Sym(n)) the relational spectrum for
Alt(n) on k-sets comes from sequences of k-sets which just
separate points in [n].
Namely (X1, . . . ,Xr ) and its image under an odd permutation.

Question

What is the longest sequence of k-sets which just separates
points in [n]?
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Above ρ+ = ρ(k-sets, Sym(n)) the relational spectrum for
Alt(n) on k-sets comes from sequences of k-sets which just
separate points in [n].
Namely (X1, . . . ,Xr ) and its image under an odd permutation.

Question

What is the longest sequence of k-sets which just separates
points in [n]?
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Just separating sequences

Proposition

Suppose there is a sequence of k-sets of length r which just
separates points in [n]. Then there is a numerical partition of n
into a sum of n − r terms n =

∑
ni with the following splitting

property: if ni ≥ 2 and ni is replaced by (1, ni − 1) then some
subsum involving exactly one of these two terms sums to k.

The analysis: If we omit Xi , there is a pair (ai , bi ) no longer
separated.
This makes an acyclic graph with r edges, so n− r components.
The sizes of the components are the ni .

To reverse, use stars and make the k-sets correspondingly (and
check).
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Proposition

Suppose there is a sequence of k-sets of length r which just
separates points in [n]. Then there is a numerical partition of n
into a sum of n − r terms n =

∑
ni with the following splitting

property: if ni ≥ 2 and ni is replaced by (1, ni − 1) then some
subsum involving exactly one of these two terms sums to k.

Application: Look for the shortest sum with the splitting
property:

k = 1 n = n Length 1
k = 2 n = (n − 1) + 1 Length 2

n = 2(k + 1) n = (k + 1) + (k + 1) Length 2
Else n = (k − 1) + (k − 1) + (· · · ) Length 3

Then reverse the analysis.

The analysis: If we omit Xi , there
is a pair (ai , bi ) no longer separated.
This makes an acyclic graph with r edges, so n− r components.
The sizes of the components are the ni .

To reverse, use stars and make the k-sets correspondingly (and
check).
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Proposition

Suppose there is a sequence of k-sets of length r which just
separates points in [n]. Then there is a numerical partition of n
into a sum of n − r terms n =

∑
ni with the following splitting

property: if ni ≥ 2 and ni is replaced by (1, ni − 1) then some
subsum involving exactly one of these two terms sums to k.

The analysis: If we omit Xi , there is a pair (ai , bi ) no longer
separated.
This makes an acyclic graph with r edges, so n− r components.
The sizes of the components are the ni .

To reverse, use stars and make the k-sets correspondingly (and
check).
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Cohorts?

This is a mechanism whereby low complexity for one group in a
cohort may result in high complexity for smaller groups. But
low complexity is not that common.
We will look at a more delicate case.
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Sym(2n) and Alt(2n) on partitions: shape n × 2

(2017-18, with Wiscons)

ρ+(n × 2) : n

Möbius Band

Edge-colored graph: connected, but any two edge colors have
small components.
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Sym(2n) and Alt(2n) on partitions: shape n × 2

(2017-18, with Wiscons)

ρ+(n × 2) : n

ρ−(n × 2) :


n + 1 n = 3

n n = 2, 4; or odd; or a multiple of 6

n − 1 n > 6 even, not a multiple of 6

(or so it seems)

Some of this follows by direct inheritance from Sym(n):

Inheritance for n odd: ρ− ≥ ρ+ because when
n = n1 + n2, one of the parts is odd (Möbius band)

Sequences of partitions just separating points: n − 1 if
n > 2.
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Independent partitions of shape n × k

Maximum sequences of partitions of shape n × k which just
separate points.

n(k − 1) if m = n = 2

n(k − 1)− 1 if min(n, k) = 2 and max(n, k) > 2

n(k − 1)− 2 if n, k > 2

nk =
∑

ni . The splitting condition:

If ni ≥ 2 then the sum with ni split to 1 + (ni − 1) can
be rearranged into n sums equal to k (with 1, (ni − 1)
separated).

Examples (Optimal)

kn−2(k − 1)212 kn−11k (k − 1)n21n−2 (k + 1)1(n−1)k−1

n + 2 n + k − 1 2n − 1 (n − 1)k
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General shapes

Conjecture

The relational complexity of Alt(nk) on shape n × k is well
approximated by n(k − 1)− 2 (and should always be at least
that).
The relational complexity of Sym(nk) on shape n × k is
typically much less (but not for k = 2).
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Shape 2× k

For Alt(2k) we expect 2k − 3.

Examples: 2× k

k 2k − 3 ρ−

3 3 4
4 5 5
5 7 7
6 9 ≥ 9

For Sym(2k) there is a lower bound applying to the point
stabilizer, namely

2blog2 kc

This may possibly be the true value for the point stabilizer
when k is odd.



Relational
Complexity of

a Finite
Primitive
Structure

Gregory
Cherlin

Structures and
Permutation
Groups

History

Questions,
Examples

Very small ρ

Some natural
examples

Shape 2× k

Examples: 2× k

k 2k − 3 ρ−

3 3 4
4 5 5
5 7 7
6 9 ≥ 9
7

ρ+ (L.B.)

3 (2)
5 (4)
4 (4)
6 (4)
≥ 5 (4)

For Sym(2k) there is a lower bound applying to the point
stabilizer, namely

2blog2 kc

This may possibly be the true value for the point stabilizer
when k is odd.
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Problems I

Problem

Show that the relational complexity of Sym(nk) acting on
cosets of Sym(k) o Sym(n) has relational complexity going to
infinity with n.

Problem

Let ρ0(G ) = min(ρ(X ,G ) | primitive).
Is this uniformly bounded for G simple?
If so, what is the minimum bound holding for almost all such
G?
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Problems II

Problem

Show that

lim
n→∞

ρ+(n × k)/n = ck

for some explicit constant ck (<< k?).

Problem

Determine the relational complexity of
[ n
k

]d
(k = 1: Saracino.)
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